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Sufficient conditions for uniform global asymptotic
stabilization of affine discrete-time systems

with periodic coefficients

Adam CZORNIK, Evgenii MAKAROV, Michał NIEZABITOWSKI, Svetlana POPOVA,
and Vasilii ZAITSEV

Affine discrete-time control periodic systems are considered. The problem of global asymp-
totic stabilization of the zero equilibrium of the closed-loop system by state feedback is studied. It
is assumed that the free dynamic system has the Lyapunov stable zero equilibrium. The method
for constructing a damping control is extended from time-invariant systems to time varying
periodic affine discrete-time systems. By using this approach, sufficient conditions for uniform
global asymptotic stabilization for those systems are obtained. Examples of using the obtained
results are presented.
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1. Introduction

Consider a nonlinear control discrete-time system

x(t + 1) = f (t, x(t), u(t)). (1)

Here x ∈ Rn is the state, u ∈ Rr is the control input, t ∈ Z, f (t, 0, 0) ≡ 0. We
investigate the problem of asymptotic stabilization of system (1): one needs to
construct a feedback control u(t) = û(t, x(t)) with û(t, 0) ≡ 0 in system (1) such
that the equilibrium x = 0 of the closed-loop system

x(t + 1) = f (t, x(t), û(t, x(t)))

is asymptotically stable.
Stabilization problems for nonlinear time-invariant discrete-time systems

were studied in [1–9]. Pole placement problems for time-varying discrete-time
systems were studied in [10] for periodic systems, and in [11–14] for arbitrary
non-periodic time-varying systems.

In [2], sufficient conditions for global asymptotic stabilization of bilinear
discrete time-invariant systems were obtained. In [3], sufficient conditions were
obtained for global asymptotic stabilization of affine discrete time-invariant sys-
tems (1) ( f (t, x, u) = f (x) + g(x)u), see also [1]. In the paper [4], sufficient
conditions for global asymptotic stabilization were obtained for general discrete
time-invariant nonlinear systems (1) ( f (t, x, u) ≡ f (x, u)). In the present research,
we extend the results of [1] to affine time-varying periodic discrete systems. We
use the Krasovsky–LaSalle principle for periodic discrete-time systems. The cor-
responding results have been obtained before for bilinear discrete-time homoge-
neous (see [15]) and non-homogeneous (see [16]) periodic systems. For systems
with continuous time, similar results have been obtained in [17] and [18].

2. Main results

Consider a discrete-time affine time-varying system

x(t + 1) = f (t, x(t)) + g
(
t, x(t)

)
u(t), (t, x, u) ∈ Z × Rn × Rr, (2)

where f : Z × Rn → Rn, f (t, 0) ≡ 0, g : Z × Rn → Mn,r . Here Mn,r is the space
of real n × r-matrices. Denote Mn := Mn,n; T is the transposition; I ∈ Mn the
identity matrix. We suppose that f and g are continuous in x. We understand
inequalities for symmetric matrices in the sense of quadratic forms. Consider the
corresponding free system

x(t + 1) = f (t, x(t)). (3)
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Let ξ (t) = ξ (t, t0, x0), t ­ t0 (t0 ∈ Z), be a solution of system (3) with an initial
condition ξ (t0) = x0. Let us denote

f 0(t0, x0) := x0, f 1(t0, x0) := f (t0, x0),

f 2(t0, x0) := f (t0 + 1, f (t0, x0)), . . . , f i+1(t0, x0) := f (t0 + i, f i (t0, x0)).

Then ξ (t0 + i) = f i (t0, x0), i = 0, 1, 2, . . ..
Suppose that system (2) is periodic, i.e., there exists an ω ∈ N such that

f (t + ω, x) = f (t, x), g(t + ω, x) = g(t, x) for all t ∈ Z, x ∈ Rn. Suppose that
there exists a P(t) ∈ Mn satisfying conditions

P(t + ω) = P(t), PT (t) = P(t) > 0, (4)

and the following condition holds for all t ∈ Z, x ∈ Rn:

f T (t, x)P(t + 1) f (t, x)c ¬ xT P(t)x. (5)

Conditions (4) and (5) ensure the Lyapunov (non-asymptotic) stability of the
equilibrium x = 0 for system (3).

Let us construct the Lyapunov function

V (t, x) = xT P(t)x, x ∈ Rn, P(t) ∈ Mn , (6)

with P(t) satisfying (4) and (5) for all t ∈ Z, x ∈ Rn. Set

G(t, x) = I +
1
2
gT (t, x)P(t + 1)g(t, x), (7)

where I ∈ Mr . Then G(t, x) ∈ Mr , G(t, x) = GT (t, x) ­ I > 0, G(t, x) =
G(t + ω, x), and G−1(t, x) is defined for all t ∈ Z, x ∈ Rn. Let us construct the
control function

û(t, x) = −G−1(t, x)gT (t, x)P(t + 1) f (t, x). (8)

Then û(t + ω, x) = û(t, x), t ∈ Z, x ∈ Rn, û(t, 0) ≡ 0, and(
gT (t, x)P(t + 1) f (t, x)

)T
= −ûT (t, x)G(t, x). (9)

Let us substitute
u(t) = û(t, x(t)) (10)

into (2). The closed-loop system has the form

x(t + 1) = f (t, x(t)) + g
(
t, x(t)

)
û(t, x(t)). (11)
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Denote by F (t, x(t)) the right-hand side of (11). Then we have F (t + ω, x) =
F (t, x), t ∈ Z, x ∈ Rn, i.e., (11) is a periodic system. Let us consider the difference
∆FV (t, x(t)) = V (t + 1, x(t + 1)) −V (t, x(t)) of the Lyapunov function (6) along
trajectories of (11). We have

∆FV (t, x(t)) = f T (t, x(t))P(t + 1) f (t, x(t))

− xT (t)P(t)x(t) + 2µ(t, x(t))û(t, x(t)),

where

µ(t, x) = f T (t, x)P(t + 1)g(t, x) +
1
2

ûT (t, x)gT (t, x)P(t + 1)g(t, x). (12)

Substituting (9) for the first summand in (12) and taking into account (7), we
obtain that µ(t, x) = −ûT (t, x). Thus,

∆FV (t, x(t)) = f T (t, x(t))P(t + 1) f (t, x(t))

− xT (t)P(t)x(t) − 2ûT (t, x(t))û(t, x(t)).
(13)

Hence, by (5), we obtain that ∆FV (t, x(t)) ¬ 0. Thus, the zero equilibrium of
(11) is Lyapunov stable. Let us consider the set

E(V ) =
{
(t, x) ∈ Z × Rn : ∆FV (t, x) = 0

}
.

By (13) and (5), the set E(V ) coincides with

Ê(V ) =
{
(t, x) ∈ Z × Rn : f T (t, x)P(t + 1) f (t, x) − xT P(t)x = |û(t, x) | = 0

}
.

Set

Ω0(V ) =
{
(t, x) ∈ Z × Rn : f T (t, x)P(t + 1) f (t, x) = xT P(t)x

}
,

S0(V ) =
{
(t, x) ∈ Z × Rn : f T (t, x)P(t + 1)g(t, x) = 0

}
,

E0(V ) = Ω0(V ) ∩ S0(V ).

By (8), Ê(V ) = E0(V ). Denote by M (V ) the largest positive invariant set of
(11) relative to E(V ), i.e., M (V ) is the union of all semi-trajectories x(t), t ­ t0
(t0 ∈ Z), of (11) such that (t, x(t)) ∈ E(V ) for all t ­ t0. Then we have
0 ∈ M (V ) because ξ0(t) ≡ 0, t ­ t0, is a solution of (11) and ∆FV (t, 0) ≡ 0,
t ­ t0. If M (V ) = {0}, then the zero equilibrium of (11) is uniformly globally
asymptotically (UGA) stable due to the Krasovsky–La Salle invariance principle
for discrete-time periodic systems. The UGA stability of the zero equilibrium
means that (see, e.g., [19, Ch. I, Sect. 2.11], [20, Sect. 13.6]) it is uniformly stable
and uniformly globally attractive.
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Denote by ξ (t) = ξ (t, t0, x0), t ­ t0 (t0 ∈ Z), a solution of system (11)
with an initial condition ξ (t0) = x0. Suppose that ξ (t) ∈ M (V ), t ­ t0. Since
E(V ) = Ê(V ) = E0(V ), we obtain

f T (t, ξ (t))P(t + 1) f (t, ξ (t)) = ξT (t)P(t)ξ (t), t ­ t0 , (14)

f T (t, ξ (t))P(t + 1)g(t, ξ (t)) = 0, t ­ t0 , (15)

and hence, by (8), û(t, ξ (t)) = 0, t ­ t0. By (11), ξ (t + 1) = f (t, ξ (t)), t ­ t0, i.e.,
ξ (t) is a solution of the free system (3). Hence, ξ (t0+ i) = f i (t0, x0). Substituting
this equality into (14), (15), we get the equalities(

f i+1(t0, x0)
)T

P(t0 + i + 1)
(

f i+1(t0, x0)
)
=

=
(

f i (t0, x0)
)T

P(t0 + i)
(

f i (t0, x0)
)
, i ­ 0,

(16)

(
f i+1(t0, x0)

)T
P(t0 + i + 1)g(t0 + i, f i (t0, x0)) = 0, i ­ 0. (17)

Denote by M0(V ) the largest positive invariant set of the free system (3)
relative to E0(V ). Thus, we obtain that ξ (t) ∈ M0(V ), t ­ t0. It follows that
M (V ) ⊂ M0(V ). Therefore, if M0(V ) = {0}, then M (V ) = {0}. The condition
M0(V ) = {0} means that for any t0 ∈ Z identities (16), (17) hold only if x0 = 0.
In the last sentence, the phrase “for any t0 ∈ Z” can be replaced by the phrase
“for some t0 ∈ Z”. Let us proof this fact.

Lemma 1 The following statements are equivalent.
1. For any t0 ∈ Z identities (16), (17) hold only if x0 = 0.
2. For some t0 ∈ Z identities (16), (17) hold only if x0 = 0.

Proof. The implication (1⇒ 2) is obvious. Let us prove the implication (2⇒ 1).
Suppose that for some t0 ∈ Z identities (16), (17) hold only if x0 = 0. Consider an
arbitrary t1 ∈ Z. There exists a k ∈ N such that t0+ kω ­ t1. Denote t2 := t0+ kω,
j0 := t2 − t1 ­ 0. Suppose that identities(

f i+1(t1, x1)
)T

P(t1 + i + 1)
(

f i+1(t1, x1)
)
=

=
(

f i (t1, x1)
)T

P(t1 + i)
(

f i (t1, x1)
)
,

(18)

(
f i+1(t1, x1)

)T
P(t1 + i + 1)g(t1 + i, f i (t1, x1)) = 0 (19)

hold for i ­ 0. Then (18), (19) hold for i ­ j0 as well. Denote x2 = f j0 (t1, x1),
j := i − j0 ­ 0. We have

f i (t1, x1) = f j+ j0 (t1, x1) = f j (t1 + j0, f j0 (t1, x1)) = f j (t2, x2).
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Similarly,

g(t1 + i, f i (t1, x1) = g(t1 + j0 + j, f j (t2, x2)) = g(t2 + j, f j (t2, x2)),

P(t1 + i) = P(t1 + j0 + j) = P(t2 + j),

P(t1 + i + 1) = P(t2 + j + 1).

Hence, it follows from (18), (19) that identities(
f j+1(t2, x2)

)T
P(t2 + j + 1)

(
f j+1(t2, x2)

)
=

=
(

f j (t2, x2)
)T

P(t2 + j)
(

f j (t2, x2)
)
,

(20)

(
f j+1(t2, x2)

)T
P(t2 + j + 1)g(t2 + j, f j (t2, x2)) = 0 (21)

hold for j ­ 0. Since system (2) and the matrix P(t) are ω-periodic, it follows
from (20), (21) that identities(

f j+1(t0, x2)
)T

P(t0 + j + 1)
(

f j+1(t0, x2)
)
=

=
(

f j (t0, x2)
)T

P(t0 + j)
(

f j (t0, x2)
)
,(

f j+1(t0, x2)
)T

P(t0 + j + 1)g(t0 + j, f j (t0, x2)) = 0

hold for j ­ 0. By assumption, it follows that x2 = 0, i.e.,

f j0 (t1, x1) = 0. (22)

Consider equalities (18) at i = 0, . . . , j0 − 1. From these equalities, we obtain

xT
1 P(t1)x1 =

(
f 1(t1, x1)

)T
P(t1 + 1)

(
f 1(t1, x1)

)
= . . .

. . . =
(

f j0 (t1, x1)
)T

P(t1 + j0)
(

f j0 (t1, x1)
)
. (23)

It follows from (22) and (23) that xT
1 P(t1)x1 = 0. Since P(t) > 0 for all t ∈ Z,

we have x1 = 0. The lemma is proved. �
Thus, the following theorem is proved.

Theorem 1 Let system (2) beω-periodic. Suppose that there exists a matrix P(t)
satisfying conditions (4), (5) for all t ∈ Z, x ∈ Rn. Suppose that for some t0 ∈ Z
identities (16), (17) hold only if x0 = 0. Then the state feedback control (10), (8)
UGA stabilizes the origin of (2).
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Remark 1 Suppose that ω = 1. Thus, f (t, x) ≡ f (x), g(t, x) ≡ g(x), i.e., system
(2) is time-invariant, and P(t) ≡ P. Then Theorem 1 coincides with [1, Theorem
3.1]. Thus, Theorem 1 is a generalization of [1, Theorem 3.1] on global asymptotic
stabilization from time-invariant systems to time-varying periodic systems.

Remark 2 The question of when conditions (4) and (5) are satisfied is an impor-
tant and difficult one. In fact, this is the question of the existence of the Lyapunov
function. Conditions (4) and (5) are sufficient conditions for Lyapunov (non-
asymptotic) stability of the free system (3). Suppose that system (3) is linear, i.e.,
f (t, x) = A(t)x that is system (3) has the form

x(t + 1) = A(t)x(t), (24)

where A(t + ω) = A(t). Then condition of Lyapunov (non-asymptotic) stability
is both necessary and sufficient for the fulfillment of conditions (4) and (5). This
fact was proved, e.g., in [15], under the assumption that the linear periodic
system (24) is reducible. It can be shown that the reducibility requirement can
be removed. Moreover, the method for constructing the matrix P(t) for the linear
system (24) is constructive. This construction method makes it possible to find a
wide class C of periodic matrices P(t) satisfying condition (4) and the condition

AT (t)P(t + 1) A(t) − P(t) ¬ 0. (25)

The size of this class depends on the number k of multipliers of system (24) lying
strictly inside the unit circle. The larger k, the wider the class C.

In the general case, if the system is nonlinear, then the condition of (non-
asymptotic) stability is not sufficient for the existence of a nonstrict Lyapunov
function, and even more so in the form of a quadratic function. How to construct
a Lyapunov function satisfying conditions (4) and (5) in the general case is an
open question. Onemethodmight be as follows. Using the system (3), we construct
system (24) of linear approximation. Next, we construct a class C of matrices
P(t) satisfying conditions (4) and (25). From this class, one can try to choose the
matrix P(t) satisfying conditions (4) and (5). We apply this method, in particular,
further in Examples 1 and 2.

Next, we obtain sufficient conditions for the equality M0(V ) = {0} to be

fulfilled. Suppose that f (t, x) is of classC1 in x. Let us define K (t, x) =
∂ f (t, x)
∂x

.
Let us construct the following matrices:

N1(τ, x) = g(τ, x),

Ni+1(τ, x) =
[
K (τ + i, f i (τ, x)) · Ni (τ, x), g(τ + i, f i (τ, x))

]
, i ­ 1.

We have Ni (τ + ω, x) = Ni (τ, x) ∈ Mn,ir for any i ∈ N, τ ∈ Z, x ∈ Rn.
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Theorem 2 Let system (2) be ω-periodic. Let f be of class C1 in x. Suppose that
there exists a matrix P(t) satisfying conditions (4), (5) for all t ∈ Z, x ∈ Rn.
Suppose that the following condition holds:

∃ t0 ∈ Z ∀x ∈ Rn \ {0} ∃ ν ­ 1 rank Nν (t0, x) = n. (26)

Then the state feedback control (10), (8) UGA stabilizes the origin of (2).

Proof. Let us prove that M0(V ) = {0} under the assumptions of the theorem.
Then, by the proof of Theorem 1, the theorem will be proved. We prove this
statement by contradiction. Suppose M0(V ) , {0}. Then there exist t1 ∈ Z and
x1 ∈ R

n, x1 , 0, such that the solution ξ (t) = ξ (t, t1, x1) of the free system (3)
with the initial condition ξ (t1) = x1 satisfies the condition ξ (t, t1, x1) ∈ M0(V )
for all t ­ t1. Hence, identities (18), (19) hold for i ­ 0. Let us show that
ξ (t, t1, x1) , 0 for any t ­ t1. Suppose that ξ (t2, t1, x1) = 0 for some t2 ­ t1.
Hence, f t2−t1 (t1, x1) = 0. By (18) at i = 0, . . . , t2 − t1 − 1, we obtain, similarly to
(23), the following equalities:

xT
1 P(t1)x1 =

(
f 1(t1, x1)

)T
P(t1 + 1)

(
f 1(t1, x1)

)
= . . .

. . . =
(

f t2−t1 (t1, x1)
)T

P(t2)
(

f t2−t1 (t1, x1)
)
= 0.

Since P(t1) > 0, we have x1 = 0. This is contradiction. Hence, ξ (t, t1, x1) , 0,
t ­ t1. Let us construct the number t0 ∈ Z from condition (26). By periodicity
of Ni (τ, x), one can assume without loss of generality that t0 > t1. Set x0 =
ξ (t0, t1, x1). Hence,

ξ (t, t0, x0) , 0, t ­ t0. (27)

Let us construct for x0 , 0 the number ν ­ 1 from condition (26) such that
rank Nν (t0, x0) = n. Since ξ (t, t0, x0) ∈ M0(V ) for all t ­ t0, equalities (16), (17)
hold.

Consider the function

ϕ(t, x) = f T (t, x)P(t + 1) f (t, x) − xT P(t)x.

We have Ω0(V ) = {(t, x) ∈ Z × Rn : ϕ(t, x) = 0}. The function ϕ(t, x) attains its
maximum at any point (̃t, x̃) ∈ Ω0(V ) because ϕ(t, x) ¬ 0 for all (t, x) ∈ Z × Rn,
by (5). Consequently, (∂ϕ/∂x) (̃t, x̃) = 0 for any (̃t, x̃) ∈ Ω0(V ). We have

∂ϕ(t, x)
∂x

= 2 f T (t, x)P(t + 1)
∂ f (t, x)
∂x

− 2xT P(t)

= 2( f T (t, x)P(t + 1)K (t, x) − xT P(t)).
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Therefore for any m ∈ N and for any function (s, y) 7→ z(s, y) ∈ Mn,m the equality(
f T (̃t, x̃)P (̃t + 1)K (̃t, x̃) − x̃T P (̃t)

)
z(s, y) = 0,

(̃t, x̃) ∈ Ω0(V ), s ∈ Z, y ∈ Rn,
(28)

holds. Equality (17) for i = 0 implies that

f T (t0, x0)P(t0 + 1)g(t0, x0) = 0.
This means that the row vector f T (t0, x0)P(t0 + 1) is orthogonal to the columns
of the matrix N1(t0, x0).

Let us prove, by induction, the following assertion (A):
for all k ∈ N the row vector

(
f k (t0, x0)

)T
P(t0 + k) is orthogonal to the columns

of the matrix Nk (t0, x0).
The basis for k = 1 is proved. Assume (A) holds for k = i, i.e.,(

f i (t0, x0)
)T

P(t0 + i)Ni (t0, x0) = 0. (29)

By (16), the relation (t, ξ (t, t0, x0)) ∈ Ω0(V ) holds for all t ­ t0. Substituting i · r
for m, t0 for s, x0 for y, t0 + i for t̃, ξ (t0 + i, t0, x0) =: f i (t0, x0) for x̃, Ni (t0, x0)
for z(s, y) in (28), we get

[(
f (t0 + i, f i (t0, x0)

)T
P(t0 + i + 1)K (t0 + i, f i (t0, x0))

−
(

f i (t0, x0)
)T

P(t0 + i)
]
Ni (t0, x0) = 0.

Taking into account the induction assumption (29), we obtain(
f i+1(t0, x0)

)T
P(t0 + i + 1)K (t0 + i, f i (t0, x0)) · Ni (t0, x0) = 0. (30)

It follows from (30) and (17) that(
f i+1(t0, x0)

)T
P(t0 + i + 1)·

·
[
K (t0 + i, f i (t0, x0))Ni (t0, x0), g(t0 + i, f i (t0, x0))

]
= 0.

Thus, assertion (A) holds for k = i + 1. By induction, assertion (A) holds for
all k ∈ N. In particular, for k = ν, we have(

f ν (t0, x0)
)T

P(t0 + ν)Nν (t0, x0) = 0.

Since rank Nν (t0, x0) = n, we obtain(
f ν (t0, x0)

)T
P(t0 + ν) = 0.

Since P(t) > 0, we get f ν (t0, x0) = 0, i.e., ξ (t0 + ν, t0, x0) = 0. This contradicts
(27). The theorem is proved. �
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Remark 3 Theorem 1 and Theorem 2 generalize results obtained before for
periodic bilinear homogeneous [15, Theorem 8 and Theorem 10] and non-
homogeneous [16, Theorem 1 and Theorem 2] systems.

Remark 4 Suppose that system is linear, i.e.,

f (t, x) = A(t)x, g(t, x) = B(t). (31)

Then condition (26) means that system (2), (31) is completely reachable (see
Theorem 5 in [16]).

Theorem 1 and Theorem 2 give sufficient conditions for uniform global
asymptotic stabilization of the origin of (2). The similar theorems can be proved
for the problem of uniform local asymptotic (ULA) stabilization of the origin
of (2). We give below the formulations of these theorems omitting the rigor-
ous proofs. These proofs can be obtained by following the method of proving
Theorems 1 and 2. The differences will be that inequality (5) is assumed to be
fulfilled not for all x ∈ Rn but for x ∈ D where D ⊂ Rn is some neighborhood
of the origin (i.e., an open set containing the origin); also, identities (16), (17)
are considered not for any x0 ∈ R

n but for x0 ∈ W whereW ⊂ Rn is some
neighborhood of the origin.

Theorem 3 Let system (2) beω-periodic. Suppose that there exists a matrix P(t)
satisfying conditions (4), (5) for all t ∈ Z and for all x ∈ D where D ⊂ Rn is
some neighborhood of the origin. Suppose that, for some neighborhoodW ⊂ Rn

of the origin, for some t0 ∈ Z, the fulfillment of the identities (16) and (17) for
some x0 ∈ W implies x0 = 0. Then the state feedback control (10), (8) ULA
stabilizes the origin of (2).

Theorem 4 Let system (2) be ω-periodic. Let f be of class C1 in x. Suppose that
there exists a matrix P(t) satisfying conditions (4), (5) for all t ∈ Z and for all
x ∈ D where D ⊂ Rn is some neighborhood of the origin. Suppose that, for
some neighborhoodW ⊂ Rn of the origin, the following condition holds:

∃ t0 ∈ Z ∀x ∈ W \ {0} ∃ ν ­ 1 rank Nν (t0, x) = n. (32)

Then the state feedback control (10), (8) ULA stabilizes the origin of (2).
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3. Examples

Example 1 Consider system (2) with

n = 2, r = 1, ω = 2,

f0(x) =
[
sin x1

x2

]
, f1(x) =

[
0
x2

]
,

f (t, x) =
{

f0(x), t = 2s,

f1(x), t = 2s − 1,
s ∈ Z,

g0(x) =
[

x1x2

x2
1 + x2

2

]
, g1(x) =

[
1 + x2

1 + x2
2

x1x2

]
,

g(t, x) =
{
g0(x), t = 2s,

g1(x), t = 2s − 1,
s ∈ Z.

(33)

Note that the system of linear approximation at the equilibrium x = 0 has the
form

x(t + 1) = A(t)x(t) + B(t)u(t), x ∈ R2, u ∈ R1,

A(0) =
[
1 0
0 1

]
, A(1) =

[
0 0
0 1

]
, A(t + ω) = A(t),

B(0) =
[
0
0

]
, B(1) =

[
1
0

]
, B(t + ω) = B(t).

(34)

It is clear that system (34) is not asymptotically stabilizable by any linear feedback
control u(t) = U (t)x(t).

We have

f T (0, x) f (0, x) = sin2 x1 + x2
2 ¬ x2

1 + x2
2 = xT x,

f T (1, x) f (1, x) = x2
2 ¬ x2

1 + x2
2 = xT x.

Hence, (5) holds for all x ∈ Rn and (by periodicity) for all t ∈ Z if P(t) ≡ I.
In particular, the free nonlinear system is Lyapunov stable. Note that the free
nonlinear system is not asymptotically stable because for every x0 = col (0, β),
where β , 0, the solution ξ (t) = ξ (t, 0, x0) of the free system with the initial
condition ξ (0) = x0 satisfies ξ (t) ≡ x0, t ­ 0 (i.e., does not tend to 0 as t → ∞).

Let us apply Theorem 2. Suppose t0 := 0. We have

N1(0, x) =
[

x1x2

x2
1 + x2

2

]
,
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N2(0, x) =
[
K (1, f (0, x))N1(0, x), g(1, f (0, x))

]

=

[
0 1 + sin2 x1 + x2

2
x2

1 + x2
2 x2 sin x1

]
.

Hence, rank N2(0, x) = 2 ∀x , 0. Thus, conditions of Theorem 2 are fulfilled.
Constructing G(t, x) by (7), and û(t, x) by (8), we obtain

G(t, x) =




1 +
1
2

(
x2

1x2
2 + (x2

1 + x2
2)2

)
, t = 2s,

1 +
1
2

(
x2

1x2
2 + (1 + x2

1 + x2
2)2

)
, t = 2s − 1,

û(t, x) =




−
2
[
x1x2 sin x1 + x2(x2

1 + x2
2)
]

2 + x2
1x2

2 + (x2
1 + x2

2)2
, t = 2s,

−
2x1x2

2

2 + x2
1x2

2 + (1 + x2
1 + x2

2)2
, t = 2s − 1,

(35)

s ∈ Z. By Theorem 2, feedback control (10), (35) UGA stabilizes the origin of
system (2), (33).

Example 2 Consider system (2) with

n = 2, r = 1, ω = 2,

f0(x) =
[
x1 sin x2

x2e−x2
1

]
, f1(x) =

[
x1 cos x2

x2

]
,

f (t, x) =
{

f0(x), t = 2s,
f1(x), t = 2s − 1, s ∈ Z,

g0(x) =
[
x2

1 − x2
2

2x1x2

]
, g1(x) =

[
−2x1x2

x2
1 + x2

2

]
,

g(t, x) =
{
g0(x), t = 2s,
g1(x), t = 2s − 1, s ∈ Z.

(36)

We have

f T (0, x) f (0, x) = x2
1 sin2 x2 + x2

2e−2x2
1 ¬ x2

1 + x2
2 = xT x,

f T (1, x) f (1, x) = x2
1 cos2 x2 + x2

2 ¬ x2
1 + x2

2 = xT x.

Hence, (5) holds for all x ∈ Rn and (by periodicity) for all t ∈ Z if P(t) ≡ I.
In particular, the free nonlinear system is Lyapunov stable. Note that the free
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nonlinear system is not asymptotically stable because for every x0 = col (0, β),
where β , 0, the solution ξ (t) = ξ (t, 0, x0) of the free system with the initial
condition ξ (0) = x0 satisfies ξ (t) ≡ x0, t ­ 0 (i.e., does not tend to 0 as t → ∞).

Suppose t0 := 1. Denote x0 = col (α, β). Suppose that (16) and (17) hold.
Let us show that this implies x0 = 0 necessarily. Assume the contrary. From (16)
at i = 0, 1 and (17) at i = 0, it follows that

α2 + β2 = α2 cos2 β + β2 = α2 sin2 β + β2e−2α2
, (37)

α cos β(−2αβ) + β(α2 + β2) = 0. (38)

From (37), it follows that

α2(1 − cos2 β) = 0, (39)

α2(1 − sin2 β) + β2(1 − e−2α2
) = 0. (40)

From (39), it follows that α = 0 or cos2 β = 1. If α = 0 then it follows from
(38) that β = 0, hence, x0 = 0. This is contradiction. Hence, α , 0. Therefore
cos2 β = 1. Then α2(1 − sin2 β) + β2(1 − e−2α2

) ­ α2 > 0. This contradicts
(40). Thus, (16) and (17) hold only if x0 = 0. Thus, conditions of Theorem 1 are
fulfilled. Constructing G(t, x) by (7), and û(t, x) by (8), we obtain

G(t, x) =




1 +
1
2

(
x2

1 + x2
2

)2
, t = 2s,

1 +
1
2

(
(x2

1 + x2
2)2 + 4x2

1x2
2

)
, t = 2s − 1,

û(t, x) =




−
2
[
(x2

1 − x2
2)x1 sin x2 + 2x1x2

2e−x2
1
]

2 + (x2
1 + x2

2)2
, t = 2s,

−
2
[
(−2x1x2)x1 cos x2 + (x2

1 + x2
2)x2

]

2 + (x2
1 + x2

2)2 + 4x2
1x2

2
, t = 2s − 1,

(41)

s ∈ Z. By Theorem 1, feedback control (10), (41) UGA stabilizes the origin of
system (2), (36).

Example 3 Let some organisms, interacting with the environment in the wild,
have a dependence of the reproduction rate on the number, which is determined
by a non-monotonic curve, so that the reproduction rate is low when the number
of organisms is small, as well as when the number approaches a certain limit,
above which reproduction stops completely. The maximum is reached at a certain
intermediate number. Such dependence can arise as an adaptation to the scarcity



94 A. CZORNIK, E. MAKAROV, M. NIEZABITOWSKI, S. POPOVA, V. ZAITSEV

of food resources. More accurate modeling of the population of such organ-
isms naturally requires taking into account the volume of these food resources.
However, this information may not always be available. Information on the exact
values of the breeding factor may also not be available. Under these conditions, it
is reasonable to model the dependence of the reproduction rate on the abundance
using a function similar to the Tent Map without introducing an equation for food
resources into the model.

Let us denote by y = y(t) ∈ [0, 1] the dimensionless population size, the free
dynamics of which is tracked at integer points t ∈ N0 := {0, 1, 2, . . .} in time and
is described by the equation

y(t + 1) = p(y(t)), t ∈ N0, (42)

where p : [0, 1] → [0, 1] is a function like the Tent Map (see [21, Section 15.4])
slightly modified:

p(x) =
{

2x, x ∈ [0, 1/2),
3/2 − x, x ∈ [1/2, 1].

System (42) has the equilibrium H = 3/4. Let an arbitrary initial condition be
given: y0 = 3/4 − a, where a ∈ (0, 1/4). System (42) with the initial condition
y(0) = y0 has the solution

ŷ(t) =
{

3/4 − a, t = 0, 2, . . . ,
3/4 + a, t = 1, 3, . . . . (43)

Here we consider solutions only to the right, for t ∈ N0; the periodicity of a
function α(t) is understood as α(t +ω) = α(t) for t ∈ N0. Note that all Theorems
given above are valid if we consider the time t not on the whole axis Z but only
on the right semiaxis: t ∈ N0. The solution ŷ(t) is ω-periodic with ω = 2. The
solution ŷ(t) is (non-asymptotically) stable.

Suppose we are dealing with some kind of anthropogenic impact on the
population, which is expressed in the influence on the change in its numbers. In
the general case, this influence can be constant or variable. One of the typical cases
of variable influence is periodic, associated with various economic and biological
cycles. In the simplest case, it can be associated with a change in the seasons of
the year or time of day, and, accordingly, its simplest dependence on time has
the form of a periodic switch from zero to maximum intensity, which, however,
naturally also depends on the number of organisms. For example, the intensity of
the catch of free-living individuals obviously increases with the growth of their
numbers. We will assume that this anthropogenic impact on the population is
described by the term q(t, y(t))u(t), where the function q(t, y) has the form

q(t, y) =
{

0, t = 2s,
y, t = 2s + 1, s ∈ N0 .
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So, we consider the affine discrete-time system

y(t + 1) = p(y(t)) + q(t, y(t))u(t), t ∈ N0 . (44)

We solve the problem of ULA stabilization of the solution (43): one needs to
construct a state feedback control

u(t) = ũ(t, y(t)) (45)

such that the function ŷ(t) is ULA stable solution of the closed-loop system
(44), (45). This means that the anthropogenic impact is aimed at maintaining the
asymptotic dynamics of the population in the given mode.

Reduce system (44) to the system in deviations. Let x = y − ŷ(t). We have

x(t + 1) = y(t + 1) − ŷ(t + 1) = p(y(t)) − p( ŷ(t)) + q(t, y(t))u(t)
= p(x(t) + ŷ(t)) − p( ŷ(t)) + q(t, x(t) + ŷ(t))u(t).

(46)

Denote f (t, x) := p(x + ŷ(t)) − p( ŷ(t)), g(t, x) := q(t, x + ŷ(t)). Then system
(46) takes the form

x(t + 1) = f (t, x(t)) + g(t, x(t))u(t). (47)

It is clear that f (t, 0) ≡ 0, t ­ 0. The problem of ULA stabilization of the solution
ŷ(t) of system (44) is reduced to the problem of ULA stabilization of the origin of
(47). We consider system (47) for t ­ 0 and for x from some small neighborhood
D of the origin, namely,

x ∈ D := (a − 1/4, 1/4 − a). (48)

It is clear that g(t +ω, x) = g(t, x) for all t ­ 0 and x ∈ D. Under condition (48)
we have x + ŷ(t) ∈ (1/2, 1) for all t ­ 0. Therefore,

f (t, x) = p(x + ŷ(t)) − p( ŷ(t)) = 3/2 − (x + ŷ(t)) − (3/2 − ŷ(t)) = −x.

Let us check that the conditions of Theorem 4 are satisfied. Obviously, system
(47) is ω-periodic. The function f is of class C1 in x. There exist a matrix P(t)
satisfying conditions (4) and (5) for all t ­ 0 and x ∈ D, namely, P(t) ≡ P = 1.
Next, setW := D. Let t0 = 1 and ν = 1. Then N1(t0, x) = g(t0, x) = q(1, x +
ŷ(1)) = x + ŷ(1) = x + 3/4 + a , 0 for any x ∈ W . Hence, condition (32) is
satisfied. So, all conditions of Theorem 4 are fulfilled. Constructing G(t, x) by
(7), and û(t, x) by (8), we obtain

G(t, x) = 1 + q2(t, x + ŷ(t))/2,

û(t, x) =
2xq(t, x + ŷ(t))

2 + q2(t, x + ŷ(t))
. (49)
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By Theorem 4, feedback control (10), (49) ULA stabilizes the origin of sys-
tem (47).

Let us return to system (44) by using the reverse replacement y = x + ŷ(t).
Set ũ(t, y) = û(t, y − ŷ(t)). Then

ũ(t, y) =
2(y − ŷ(t))q(t, y)

2 + q2(t, y)
. (50)

By Theorem 4, feedback control (45), (50) ULA stabilizes the solution ŷ(t) of
the closed-loop system (44). The function (50) is ω-periodic.

4. Conclusion

In this paper, we have studied the problem of uniform global asymptotic
stabilization of the zero equilibrium for an affine non-stationary discrete-time
system with periodic coefficients. Assumption of existing the quadratic periodic
Lyapunov function is required that ensure Lyapunov (non-asymptotic) stability
of zero equilibrium of the free system. The damping control technique developed
earlier for autonomous discrete-time systems extends to periodic discrete-time
systems. For periodic discrete-time systems, sufficient conditions of uniform
global asymptotic stabilization are obtained generalizing similar conditions for
autonomous discrete-time systems. In addition, new sufficient conditions are
obtained that include controllability-like rank condition that is expressed in terms
of distributions and depends only on coefficients of the system.
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