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The Lepschy stability test and its application
to fractional-order systems

Daniele CASAGRANDE, Wiesław KRAJEWSKI and Umberto VIARO

It is shown how a stability test, alternative to the classical Routh test, can profitably be
applied to check the presence of polynomial roots inside half-planes or even sectors of the
complex plane. This result is obtained by exploiting the peculiar symmetries of the root locus in
which the basic recursion of the test can be embedded. As is expected, the suggested approach
proves useful for testing the stability of fractional-order systems. A pair of examples show how
the method operates. It is believed that the suggested geometric approach can also be of some
didactic value in introducing basic control-system tools to engineering students.
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1. Introduction

In the late 1980s and early 1990s, motivated by the renewed interest in the
robust stability analysis of uncertain linear systems, Lepschy and his cowork-
ers showed how the classic recursive algorithms for polynomial root location
and signal processing could be given a common framework [18, 19, 39] from
which new efficient stability-test and model-reduction procedures could be de-
rived [23, 25]. Their essentially geometric approach [24, 41] classifies the afore-
mentioned algorithms according to the shape of the root loci associated with
the basic recurrence relations that generates a sequence of polynomials of de-
scending degree from an original characteristic polynomial to be tested. For
instance, the classical Routh stability criterion [36], of which a numerically ef-
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ficient version has been proposed quite recently [5], recursively generates the
even and odd parts of the polynomials in the sequence starting from the even
and odd parts of the original polynomial, each polynomial having one part in
common with the preceding polynomial. As is well known, the rows of the stan-
dard Routh table are formed from the coefficients of the even or odd powers of
these polynomials. For didactic reasons almost all control textbooks still present
the Routh algorithm by referring only to the aforementioned component parts
of the polynomials and not to the complete polynomials. To use the terminol-
ogy introduced in [9, 10] and adopted in [26, 28] in a more general context,
such presentation corresponds to the split or three-term form of the algorithm
(which plays a role similar to that played by the simpler Liénard and Chipart
test [32] with respect to the computationally more demanding Hurwitz crite-
rion [14]).

However, a better insight into the mechanism of stability-test algorithms can
be gained by referring to their so-called two-term form [29, 30] by which every
complete polynomial in the sequence is related to the preceding complete poly-
nomial. For example, in the case of Routh’s algorithm, by denoting the ith degree
real polynomial in the sequence by

pi (s) = qi,i (s) + qi,i−1(s), (1)

where qi,i (s) and qi,i−1(s) are the even and odd parts of pi (s) if i is even, and vice
versa if i is odd, the two-term step-down recursion (on which a simple proof of
the test is based [13]) is

pi−1(s) = pi (s) − ri s qi,i−1(s), (2)

where ri is the ratio between the leading coefficients of qi,i (s) and qi,i−1(s). From
(2) it follows that qi−1,i−1(s) = qi,i−1(s) and qi−1,i−2(s) = qi,i (s) − ri s qi,i−1(s) (so
that the first subscript can be dropped in this case, which leads directly to the
standard three-term form of the test: qi−2(s) = qi (s) − ri s qi−1(s)).

The right-hand side of the recurrence relation (2) can be imbedded into the
locus described by the solutions of

pi (s) + k s qi,i−1(s) = 0 (3)

as parameter k varies over the reals (−∞ < k < +∞). Rewriting (3) as

qi,i (s) + qi,i−1(s) + k s qi,i−1(s) = 0 , (4)

shows that, for an s having zero real part, either qi,i−1(s) is real and qi,i (s) +
k s qi,i−1(s) is imaginary, or vice versa; in both cases, the only possibility for (3)
to hold is that both qi,i (s) and qi,i−1(s) are zero. As a consequence, if qi,i (s) and
qi,i−1(s) are coprime the root locus (3) cannot cross the imaginary axis, except
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for one branch that follows the real axis and crosses the imaginary axis at infinity
for ki = −ri (see, as an example, the bold line in Figure 1). Note that for k = 0 the
solutions of (3) coincide with the roots of pi (s), while for k = −ri they coincide
with the roots of pi−1(s) whose location with respect to the imaginary axis is
therefore the same as the location of i − 1 roots of pi (s). The remaining root
of pi (s) corresponds to the point from which departs, for k = 0, the only root
locus branch that crosses the point at infinity for k = ri. This root of pi (s) is
located in the same half-plane as the root approaching the point at infinity along
the aforementioned branch as k → ri from below for ri > 0 or from above for
ri < 0. Now, the position with respect to the imaginary axis of this (real) root of
large magnitude, say zi,M , is determined by the sign of the ratio of the coefficients
of the two highest powers in the polynomial (3) with k ' ri and k < ri if ri > 0
and k > ri if ri < 0. Precisely, by continuity, for k close to ri and, consequently,
zi,M close to the point at infinity

zi,M ' −
1

ri − k
, (5)

so that zi,M < 0, i.e., zi,M is in the left half-plane (LHP), if ri > 0 and zi,M > 0,
i.e., zi,M is in the right half-plane (RHP), if ri < 0. Therefore, by assuming that
pi (s) has ni,LHP LHP roots and ni,RHP RHP roots, for ri > 0 polynomial pi−1(s)
has ni−1,LHP = ni,LHP − 1 LHP roots and ni−i,RHP = ni,HHP RHP roots, while for
ri < 0 ni−1,LHP = ni,LHP and ni−1,RHP = ni,HHP − 1.

By successively applying this criterion to all pairs of consecutive polynomials
generated from an original polynomial pn(s) according to (2), it turns out that the
root distribution of pn(s) depends only on the sign of the n ratios ri, i = 1, 2, . . . , n
(Routh’s theorem [40, 41]). Since the pi (s), i = 1, . . . , n, are real polynomials
whose complex roots, if any, are in conjugate pairs, the root locus of (3) is
necessarily symmetric with respect to the real axis, but it is not so with respect to
the imaginary axis, as Fig. 1 shows. Instead, the Lepschy algorithm [23] can be
embedded into a root locus that is symmetric with respect to both axes [39, 41].
This characteristics makes it more suitable for determining the root distribution
of a polynomial with respect to a sector and, thus, checking the stability of a
fractional-order system, as we shall see in a while.

The rest of the paper is organised as follows. Section 2 briefly recalls the
main features of the Lepschy test. Section 3 shows how the test can be adapted to
determine the root distribution of a polynomial with respect to a sector straddling
the real axis and, in particular, to check the stability of a fractional-order system
(see, e.g., [17,34]). Section 4 applies the Lepschy criterion to a pair of examples
taken from the literature. Section 5 indicates possible directions of future research
on this evergreen subject.
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Figure 1: Complete root locus for (3) with qi,i (s) = q4,4(s) =
s4 + 75.5s2 + 31.5 and qi,i−1(s) = q4,3(s) = 15.3s3 + 126.3s.
Black line: direct locus (k > 0); grey line: inverse locus (k < 0)

2. The Lepschy test

The basic two-term step-down recursion of the Lepschy test (see, e.g., [39])
determines the polynomial pi−1(s) from the preceding polynomial pi (s) accord-
ing to

(s + 1) pi−1(s) = qi,i (s) + ρi qi,i−1(s), (6)
where qi,i and qi,i−1 are defined as in (1) and

ρi = −
qi,i (−1)

qi,i−1(−1)
(7)

which is the ratio between the sum of the even-order coefficients of pi (s) and the
sum of its odd-order coefficients if i is even, and vice versa if i is odd.

The right-hand side of the recurrence relation (6) can be embedded into the
locus described by the roots of

qi,i (s) + h qi,i−1(s) = 0 (8)

as parameter h varies over the reals (−∞ < h < +∞). This locus passes, for
h = 1, through the roots of polynomial (1) and, for h = −1, through those of

pi (−s) = (−1)i qi,i (s) + (−1)i−1 qi,i−1(s) (9)
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whose roots are symmetric to the roots of pi (s) with respect to the imaginary
axis. It follows that, according to the invariance property pointed out in [20], the
complete root locus for (8) is the same, except for graduation, as the complete
locus described by the roots of

pi (s) + g pi (−s) = 0, −∞ < g < +∞, (10)

and this locus is clearly symmetric also with respect to the imaginary axis, as
shown, e.g., in Fig. 2. Precisely, if the conjugate pair of points P1 ≡ (x, y) and
P2 ≡ (x,−y) belongs to this locus for g = gP also the conjugate pair of points
P3 ≡ (−x, y) and P4 ≡ (−x,−y) belongs to it for g = 1/gP. Indeed, recursion (6)
can be replaced by the alternative equivalent recursion

[
1 + (−1)iσi

]
(s + 1)pi−1(s) = pi (s) + σi pi (−s), (11)

where the constant [1 + (−1)iσi] at the left-hand side is simply a “normalisation
factor” whose task is to make polynomials pi (s), i = n − 1, n − 2, . . . , 0, monic if
pn(s) is so, and

σi = −
pi (−1)
pi (1)

. (12)

Remark 1 Quantities ρi and σi are not well defined if qi,i−1(−1) = 0 (see
equation (7)) or pi (1) = 0 (see Eq. (12)). However, these occurrences happenwith
zero probability zero and may be overcome by means of perturbation methods.

Figure 2: Complete root locus for (8) with qi,i (s) = q4,4(s) =
s4 + 75.5s2 + 31.5 and qi,i−1(s) = q4,3(s) = 15.3s3 + 126.3s.
Black line: direct locus (h > 0); grey line: inverse locus (h < 0)
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As observed in [23], the Lepschy test can be considered as the continuous-time
counterpart of the Jury–Blanchard test for discrete-time systems [16] (see, also,
the eminent precursors [8,33,37]) because the latter can be embedded into a root
locus that is symmetric with respect to the unit circumference of the z-plane [27].

The rationale of the Lepschy test can be detailed as follows:

(i) Since pi (s), and thus qi,i (s) and qi,i−1(s), are real polynomials, the entire
real axis belongs to the complete root locus associated with equation (8).
As a consequence, a real value ρi of h for which s + 1 is a factor of the
right-hand side of (6) certainly exists.

(ii) By assuming qi,i (s) and qi,i−1(s) coprime, branches of the root locus of (8)
may cross the imaginary axis only at: 1) the imaginary roots of qi,i (s), if any,
for h = 0, and 2) at the imaginary roots of qi,i−1(s), if any, and the point at
infinity for h = ±∞. Consequently, the root distribution of (8) with respect
to the imaginary axis may change only if the sign of h changes.

(iii) From (ii) it follows that the root distribution of the right-hand side of (6),
i.e., qi,i (s) + ρi qi,i−1(s) (and, thus, also of its left-hand side) coincides with
that of pi (s) = qi,i (s) + qi,i−1(s) if ρi is positive, because in this case the
roots of both combinations of qi,i (s) and qi,i−1(s) belong to the same part of
the locus for (8) (either the positive locus or the negative locus depending on
the sign of the leading coefficient of qi,i−1(s)), whereas, if ρi is negative. the
root distribution of the right-hand side of (6) coincides with that of pi (−s)
whose roots are opposite to those of pi (s).

(iv) From (iii) it follows that, for ρi > 0, the number of RHP roots of pi−1(s) is
the same as the number of RHP roots of pi (s), whereas the number of LHP
roots of pi−1(s) is equal to the number of LHP roots of pi (s) minus 1, since
the left-hand side of (6) is forced to exhibit the factor s+ 1 corresponding to
the root −1 which lies in the LHP. The situation is the opposite for ρi < 0.

By recursively applying the previous considerations to all pairs of consecutive
polynomials successively generated according to recursion (6) from an original
polynomial pn(s), the root distribution of pn(s) can be determined only from
the signs of the n parameters ρi, i = n, n − 1, . . . , 1. In particular, the following
theorem can be proved [23].

Theorem 1 (Root distribution) Assuming that the sequence of all n polynomials
generated from pn(s) can be completed, the number of strictly LHP roots of pn(s)
is equal to the number of positive entries in the sequence



λi =

n∏
j=i

sgn(ρ j ), i = 1, 2, . . . , n


. (13)
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For the treatment of the critical cases, occurring when either qi,i−1(−1) = 0
in (7) or pi (1) = 0 in (12), the reader is referred to [23] and for a table-form
implementation of the test to [40]. In the following examples, however, to better
understand how the method operates, we do not use this table form; instead, we
write down explicitly all of the n + 1 polynomials in the sequence.

An immediate consequence of Theorem 1 is the following corollary.

Corollary 1 (Hurwitz property) Polynomial pn(s) is Hurwitz if and only if ρi >
0, i = 1, 2, . . . , n.

Example 1 Consider the polynomial

p4(s) = s4 + 15.3s3 + 75.5s2 + 126.3s + 31.5 (14)

whose even and odd parts are, respectively

q4,4(s) = s4 + 75.5s2 + 31.5,
q4,3(s) = 15.3s3 + 126.3s.

The root locus of the equation q4,4(s) + h4q4,3(s) = 0 is depicted in Fig. 2.
Polynomials p3(s), p2(s), p1(s), p0(s) generated from (14) according to (6) are
listed below together with the values of parameters ρ4, ρ3, ρ2, ρ1 computed
according to (7):

ρ4 = 0.76 , p3(s) = s3 + 10.67s2 + 64.83s + 31.5 ,
ρ3 = 1.56 , p2(s) = s2 + 15.66s + 49.17 ,
ρ2 = 3.20 , p1(s) = s + 49.17 ,
ρ1 = 0.02 , p0(s) = 1 .

Since all the values of ρi, i = 1, 2, 3, 4, are positive, according to Corollary 1
polynomial (14) is Hurwitz. Indeed, its roots are −0.3,−3,−5,−7.

Like the Routh test, the Lepschy test can by adapted to the determination of the
root distribution with respect to different straight lines. The case of lines parallel
to the imaginary axis can be accommodated easily by the change of variable

z = s − δ (15)

which corresponds to a horizontal translation of the imaginary axis to the right
if δ > 0 and to the left if δ < 0. The test can then by applied with no further
modifications to the real polynomial

p~

~

n(z) , pn(z + δ). (16)
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Instead, a rotation of the imaginary axis of an angle θ around the origin implies
the variable transformation

y = s e− θ (whence s = y e θ ) (17)

which corresponds to a counterclockwise rotation if θ > 0 and to a clockwise
rotation if θ < 0. The resulting polynomial in the new variable is

p̌n(y) , pn(ye θ ) = pn(y cos θ + y  sin θ) (18)

whose coefficients are no longer real. Therefore, the standard version of the test
cannot directly be applied to (18). However, by recalling that, according to de
Moivre’s theorem, (cos θ +  sin θ)n = cos nθ +  sin nθ, it is immediately seen
that the coefficients of the polynomial

p̌?n (y) , pn(ye− θ ) (19)

are conjugate to those of (18) and, thus, also the roots of p̌?n (y) are conjugate to
those of p̌n(y) (see, e.g., [33,42]). It follows that the standard test can be applied
to the real polynomial

P2n(y) , p̌n(y) p̌?n (y) (20)

which has twice as many LHP and RHP roots as p̌n(y).
The next section motivates the recent renewed interest for the determination

of the root distribution of a polynomial with respect to suitable contours of the
complex plane (cf., e.g., [6,31]), and then adapts the Lepschy test to the problem
of finding the aforementioned distribution with respect to the boundary of a
minor circular sector using standard root-locus concepts and elementary notions
of polynomial theory.

3. Root distribution with respect to a sector

Polynomial root clustering techniques have long history [3]. Today, the interest
in this kind of studies is justified by the need for efficient numerical algorithms
of root search [15] and for practical tools of stability and robustness analyses of
integer- and fractional-order systems [2,6,31,38]. Concerning the latter, resort has
sometimes been made to suitable variable transformations and mappings [4, 22]
which, however, are not well suited to the case of circular sectors which is of
particular relevance in the stability analysis of fractional-order systems. On the
other hand, the methods based on frequency sweeping and Nyquist diagrams
are useful but, often, not easily applicable to fractional-order systems with many
fractional powers [1, 6].
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Before presenting the aforementioned adaptation of the Lepschy test, we
briefly recall the essentials of fractional-order system stability analysis.

The transfer function of a continuous-time LTI strictly-proper system in
commensurate-order form (i.e. when all fractional powers of the independent
variable w multiples of the same fraction 1/q) can be written as

Ĝ(w) =
bmw

m
q + bm−1w

m−1
q + . . . + b1w

1
q + b0

w
n
q + an−1w

n−1
q + . . . + a1w

1
q + a0

, (21)

where q, m, n are positive integers, m < n, q ­ 1. The numerator and denominator
coefficients are assumed to be real. By the change of variable

s = w
1
q , (22)

function (21) is transformed into the following strictly-proper rational function
of s:

G(s) =
B(s)
A(s)

, (23)

where
B(s) = bmsm + bm−1sm−1 + . . . + b1s + b0, (24)
A(s) = ss + an−1sn−1 + . . . + a1s + a0. (25)

As shown, e.g., in [34], the denominator of (21), interpreted as a function from C
to C is, indeed, a multivalued function of w. For any integer k ∈ {1, . . . , q− 1}, in
fact, the point w̃ , we 2πk coincides, in C, with w; nevertheless, the denominator
of (21) maps it to

w
n
q e2π nk

q + an−1w
n−1
q e2π (n−1)k

q + . . . + a1w
1
q e2π k

q + a0

which, in general, is different from

w
n
q + an−1w

n−1
q + . . . + a1w

1
q + a0 .

However, the denominator of (21) becomes a single-valued function on aRiemann
surface consisting of q sheets with branch cuts along the negative real semi-axis.
The first, or principal, sheet contains the so-called physical poles of (21) [35].
The stability of the rational-order system depends on their location with respect
to the imaginary axis. Now, the right half of the first sheet, corresponding to the
“unstable region”, maps into the minor sector of the s plane defined by

S ,

{
s = µe φ : µ ∈ R+ , φ ∈

[
−
π

2q
,
π

2q

]}
. (26)
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Therefore it is important to check whether any root of (25) lies in this sector
which is symmetric with respect to the real axis. In [6] a condition based on the
argument principle has been provided for the absence of roots in such sector.
Essentially, checking this condition requires plotting the (generalised) Nyquist
diagram of a function with complex coefficients. An algebraic path based on the
analysis of equations (8) and (10) is followed here.

First, note that the current real parameter g on the root locus for (10) is related
to the current real parameter h on the root locus for (8) via

g = (−1)i 1 − h
1 + h

(27)

so that: a) for h = 0, g = +1 when i is even and g = −1 when i is odd, and b) for
h = ±∞, g = −1 when i is even and g = +1 when i is odd. In both cases, |g | = 1.
As already observed, the shape of the underlying complete root locus does not
change by changing the end points of the locus in the considered way [20]. In
the sequel, reference will be made to the alternative version (11) of the Lepschy
algorithm because the interval of interest of the current parameter g along the
root locus turn out to be centred at zero.

In Section 2 it has been shown that the Hurwitz nature of a polynomial can
be checked by evaluating the sign of the value ρi taken by the current parameter
h of (8) at s = −1 at any step of the recursive procedure. More precisely, in
conformity with Corollary 1, if all n values of ρi, i = 1, 2, . . . , n, are positive,
then pn(s) is Hurwitz. Based on the previous considerations, this conditions can
equivalently be expressed in terms of the value σi taken by the current parameters
g of (10) at s = −1.

Corollary 2 Polynomial pn(s) is Hurwitz if and only if |σi | < 1, i = 1, 2, . . . , n.

Note that if  ω with ω real is a solution of (10) for some (real) value g of g,
then also −  ω is a solution associated with the same value g since the coefficients
of pi (s) are real. Hence pi (−  ω) + gpi (  ω) = 0, i.e.,

pi (  ω) +
1
g

pi (−  ω) = 0 ,

so that g = 1/g, which means that either g = 1 or g = −1.
When pn(s) is not Hurwitz, the count of its LHP roots could be done in

terms of the values of σi’s, too, but would result in an expression that is more
cumbersome than the one given in Theorem 1 in terms of the ρi’s and is therefore
omitted.

To determine the root distribution of pn(s) with respect to the boundary of
a sector (26), it is necessary to find the values of |g | on the radii delimiting the
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sector. Clearly, these values are no longer equal to 1 nor are they the same on all
locus branches. However, due to the locus symmetry, two conjugate branches of
the positive or negative root locus enter or leave the considered sector “simul-
taneously”, i.e., they cross the aforementioned radii for the same value of g, as
was the case for the intersections of two conjugate branches with the imaginary
axis. Now, the intersections with the sector radii, if any, occur on the half-lines
defined by

s = µ e± ψ = µ(cosψ ±  sinψ), µ ∈ R+ , (28)

with ψ = π/2q. By substituting µe+ 
π

2q for s in the root locus equation (10), the
following equation in the new variable µ is obtained

ci,u(µ) , pi
(
µe+ 

π
2q

)
+ g pi

(
−µe+ 

π
2q

)
= 0 (29)

whose left-hand side is a polynomial in µwith complex coefficients. To the present
purpose, it is necessary to find the real values of g, if any, for which (29) admits
at least a positive finite real solution, say µi. Clearly, due to the locus symmetry
with respect to the real axis, for the same values of g also the equation

ci,` (µ) , pi
(
µe− 

π
2q

)
+ g pi

(
−µe− 

π
2q

)
= 0 (30)

admits µi as a solution. If no such g exits, the sector boundary is traversed only
at the origin of the s-plane where |g | = 1.

The aforementioned problem can be solved fairly easily by observing that, if
(30) admits the positive real solution µi, then the polynomial

ci,` (−µ) =
1
g

c?i,u(µ), (31)

where the?at exponent denotes again complex conjugate, admits−µi as a solution
for the same value of g and, therefore, the polynomial with real coefficients

C2i (µ) , ci,u(µ) c?i,u(µ) (32)

admits, for that value of g, the pair of solutions ±µi that are symmetric with
respect to the origin. In this way, the problem of finding the values of g at the
intersections of the root locus with the sector boundary becomes that of detecting
the presence of roots of (32) that are symmetric with respect to the origin. As
is well known, this situation corresponds to the presence of an all-zero row in
the Routh table for (32). An alternative way to find the intersection of a complex
root locus with the imaginary axis has been suggested in [11, 12] where use is
made of either the complex Hurwitz test or a system of two equations obtained
by separating the locus equation into the real and the imaginary parts and finding
values of the locus parameter for which real solutions exist for µ.
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The rules for counting the roots of pn(s) outside and inside (26) can be
formulated with reference to the values σi in (11) as well as to the values ti
taken by g at the intersections with the sector boundary in all the n steps of the
recursive procedure leading from pn(s) to p0(s). As may be expected, however,
these rules are more intricate than those based on the sequence (13) for finding
the root distribution with respect to the imaginary axis. Therefore, we prefer to
illustrate how the root distribution with respect to a sector can be determined by
means of the examples in Section 4 instead of stating the aforementioned rules in
formal terms.

The general criterion is that of proceeding backwards from the last polynomial
p0(s) = 1 in the sequence up to the starting one pn(s). At any step, given the
root distribution of pi−1(s), the distribution of the preceding polynomial pi (s) is
determined from the knowledge of σi and the value ti of the current parameter of
the root locus at the transition, if any, of a pair of its branches from the outside to
the inside of the sector, or vice versa, through its delimiting radii. Precisely, the
value σi taken by the current parameter gi on the root locus at s = −1 determines
the root distribution of pi−1(s) with respect to the imaginary axis (see point (iii) in
Section 2), whereas the comparison of σi and ti indicates whether the RHP sector
radii have been crossed on passing from the roots of pi (s) to those of pi−1(s) and
point −1.

Remark 2 If there are no intersections of pairs of root-locus branches with the
upper and lower radii of the sector, locus branches may enter or leave the sector
only through the origin and the point at infinity along the real axis, where g = ±1
(as for all points on the imaginary axis – see note after Corollary 2).

4. Examples

Example 2 Consider the monic polynomial

p4(s) = s4 + 3s3 − 2.75s2 − 5.75s + 7.5

and its root distribution with respect to the boundary of

S ,
{

s = µe φ : µ ∈ R+, φ ∈
[
−
π

4
,
π

4

]}
. (33)

Note that polynomial (2) is certainly non-Hurwitz because not all of its coeffi-
cients are positive like the leading coefficient. Polynomials pi−1(s), i = 4, 3, 2, 1,
generated from p4(s) by recursion (11) are listed below aligned with the corre-
sponding σi-values:

σ4 = −2.83 , p3(s) = s3 − 7.27s2 + 4.52s + 7.5 ,
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σ3 = 0.92 , p2(s) = s2 − 177.94s + 182.47 ,
σ2 = −65.43 , p1(s) = s + 182.47 ,
σ1 = −0.99 , p0(s) = 1 .

The values ti at the crossings of the sector boundary (through either the sector
radii or through the real axis) turn out to be (by inspection of the associated root
locus): t4 = −1, t3 = −0.4 and −1, t2 = −1 and 0.81, t1 = −1. Proceeding
backwards, we may argue, with some understandable redundancy, as follows:

(i) polynomial p0(s) = 1 is obtained from polynomial p1(s) + σ1p1(−s) by
deleting an LHP root (the root at −1); since |σ1 | = 0.99 < 1, the root
distribution of p1(s)+σ1p1(−s) is the same as that of p1(s) itself; it follows
that the only root of p1(s) lies in the LHP;

(ii) polynomial p1(s) with 1 LHP root is obtained from polynomial p2(s) +
σ2p2(−s) by deleting an LHP root (the root at −1); it follows that p2(s) +
σ2p2(−s) has 2 LHP roots (the one of p1(s) and the one at −1); since
σ2 = −65.43, so that |σ2 | > 1, the root distribution of p2(s) is opposite to
the root distribution of p2(s) + σ2p2(−s) and, thus, p2(s) has 2 RHP roots.
To understand whether the three roots are inside or outside the sector (33)
we need to check if, when varying from σ2 to zero, g2 assumes the value t2,
i.e. if t2 ∈ I2 , (−65.43, 0). It is immediate to check that the value t2 = 0.81,
which might be associated with a pair of complex conjugate roots, does not
belong to I2 while the value t2 = −1 belongs to I2. Hence at least one root
enters the sector through the origin and remains inside it; the same must
happen for the other root. In conclusion, p2(s) has 2 RHP roots inside (33);

(iii) polynomial p2(s) with 2 RHP roots is obtained from polynomial p3(s) +
σ3p3(−s) by deleting the LHP root at −1; it follows that p3(s) + σ3p3(−s)
has 2 RHP roots (the 2 RHP roots of p2(s)) and 1 LHP root (the one at
−1); since |σ3 | < 1, the root distribution of p3(s) is the same as the root
distribution of p3(s) + σ3p3(−s) and, thus, also p3(s) has 2 RHP roots
and 1 LHP root; furthermore, neither of the two values of t3 belongs to the
interval I3 , (0, 0.92) hence no root crosses the boundary of the sector
(33); in conclusion, p3(s) has 2 RHP roots inside (33) and 1 LHP root;

(iv) polynomial p3(s) with 2 RHP roots and 1 LHP root is obtained from poly-
nomial p4(s) + σ4p4(−s) by deleting the LHP root at −1; it follows that
p4(s) +σ4p4(−s) has 2 RHP roots and 2 LHP roots (the 2 RHP and 1 LHP
root of p2(s) and the additional LHP root at −1); since |σ4 | > 1, the root
distribution of p4(s) is opposite to the root distribution of p4(s) +σ4p4(−s)
and, thus, also p4(s) has 2 RHP roots and 2 LHP root; the sector boundary
is crossed only for g4 = t4 = −1 ∈ I4 , (−2.83, 0) at the origin and the point
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at infinity but the two corresponding branches never intersect the upper and
lower sector radii; in conclusion, p4(s) has 2 RHP roots inside (33) and
2 LHP roots.

Example 3 Consider the monic polynomial

p4(s) = s4 + 3s3 + s2 + 13s + 30

and its root distribution with respect to the boundary of (33). Polynomials pi−1(s),
i = 4, 3, 2, 1, generated from p4(s) by recursion (11) are listed below aligned with
the corresponding σi-values:

σ4 = −0.33 , p3(s) = s3 + 5s2 − 4s + 30 ,
σ3 = −1.19 , p2(s) = s2 − 1.43s − 2.57 ,
σ2 = −0.05 , p1(s) = s − 2.57 ,
σ1 = −2.27 , p0(s) = 1 .

The values ti at the crossings of the sector boundary (through either the sector
radii or through the real axis where gi = ±1) turn out to be: t4 = −1 and 1.253,
t3 = −0.67 and −1, t2 = −1, t1 = −1. Proceeding backwards, we may argue as
follows:
(i) polynomial p0(s) is obtained from polynomial p1(s)+σ1p1(−s) by deleting

an LHP root (the root at −1); since |σ1 | = 2.27 > 1, the root distribution of
p1(s) + σ1p1(−s) is opposite to that of p1(s); it follows that the only root
of p1(s) lies in the RHP (necessarily inside (33));

(ii) polynomial p1(s) with 1 RHP root is obtained from polynomial p2(s) +
σ2p2(−s) by deleting an LHP root (the root at −1); it follows that p2(s) +
σ2p2(−s) has 1 RHP root (the one of p1(s) ) and 1 LHP root (the deleted
root at −1); since |σ2 | = 0.05 < 1, the root distribution of p2(s) is the
same as that of p2(s) + σ2p2(−s) and, thus, p2(s) has 1 real RHP root
(necessarily inside (33)) and 1 LHP root;

(iii) polynomial p2(s) with 1 RHP root and 1 LHP root is obtained from
polynomial p3(s) + σ3p3(−s) by deleting the LHP root at −1; it fol-
lows that p3(s) + σ3p3(−s) has 1 RHP root (the RHP root of p2(s))
and 2 LHP roots (the one at −1 and the LHP root of p2(s)); since
|σ3 | = 1.19 > 1, the root distribution of p3(s) is opposite to the root
distribution of p3(s) + σ3p3(−s) and, thus, p3(s) has 2 RHP roots and
1 LHP root. Since both t3 = −0.67 ∈ I3 , (−1.19, 0) and t3 = −1 ∈ I3, two
branches enter the sector through the upper and lower radii for t3 = −0.67
and one branch leaves the sector through the origin for t3 = −1: it follows
that the two RHP roots of p3(s) are outside the sector; in conclusion, p3(s)
has 1 LHP root and 2 RHP roots outside (33);
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(iv) polynomial p3(s) with 2 RHP roots and 1 LHP root is obtained from poly-
nomial p4(s) + σ4p4(−s) by deleting the LHP root at −1; it follows that
p4(s)+σ4p4(−s) has 2 RHP roots (the 2 RHP of p3(s)) and 2 LHP roots (the
LHP root of p2(s)) and one LHP root at −1); since |σ4 | = 0.33 < 1 the root
distribution of p4(s) is the same as the root distribution of p4(s)+σ4p4(−s)
and, thus, also p4(s) has 2 RHP roots and 2 LHP roots; the sector boundary
is never crossed in the interval I4 , (−0.33, 0), therefore, p4(s) has 2 RHP
roots outside (33) and 2 LHP roots.

5. Conclusions

The Lepschy test seems to be a valid alternative to the Routh test from the
operative and conceptual points of view. The interpretation of its basic recursion
by means of a root locus allows us to better understand how the the roots of
the polynomials generated by the algorithm deploy in the complex plane. The
original Lepschy test was conceived for determining the root distribution of a
polynomial with respect to the imaginary axis, but it can easily be extended to
find the root distribution with respect to any straight line and, at the expense of
an increased computational effort, even to sector boundaries, making it a suitable
tool for checking the stability of fractional-order systems. Note that the alternative
Routh-type test suggested in [31] for the same purpose is not computationally
simpler.

In these authors’ opinion, the adopted geometric approach exhibits remark-
able didactic advantages over alternative more formal approaches for testing the
stability of linear systems and can be considered as an interesting application of
basic notions taught in introductory control courses, such as root loci and stability
criteria.

Possible directions of future research comprise: (i) the derivation of more
systematic rules for the evaluation of the root distribution with respect to sector
boundaries, and (ii) the use of the polynomials of descending degree recursively
generated by the Lepschy algorithm in the approximation of complex fractional-
and integer-order systems [7].

References

[1] J.J. Anagnost, C.A. Desoer, and R.J. Minnichelli: Graphical stabil-
ity robustness tests for linear time-invariant systems: Generalizations of
Kharitonov’s stability theorem, Proceedings of the 27th IEEE Conference
on Decision and Control (1988), 509–514.



160 D. CASAGRANDE, W. KRAJEWSKI, U. VIARO

[2] A.T.Azar,A.G.Radwan, andS.Vaidyanathan, Eds.:Mathematical Tech-
niques of Fractional Order Systems, Elsevier, Amsterdam, The Netherlands,
2018.

[3] R. Becker, M. Sagraloff. V. Sharma, J. Xu, and C. Yap: Complexity
analysis of root clustering for a complex polynomial,Proceedings of the 41th
ACM International Symposium on Symbolic and Algebraic Computation,
(2016), 71–78.

[4] T.A. Bickart and E.I. Jury: The Schwarz–Christoffel transformation and
polynomial root clustering, IFAC Proceedings 11(1), (1978), 1171–1176.

[5] Y. Bistritz: Optimal fraction–free Routh tests for complex and real integer
polynomials, IEEE Transactions on Circuits and Systems I: Regular Papers
60(9), (2013), 2453–2464.

[6] D. Casagrande, W. Krajewski, and U. Viaro: On polynomial zero ex-
clusion from an RHP sector, Proceedings of the 23rd IEEE International
Conference on Methods and Models in Automation and Robotics, (2018),
648–653.

[7] D. Casagrande, W. Krajewski, and U. Viaro: Fractional-order sys-
tem forced-response decomposition and its application, In Mathematical
Techniques of Fractional Order Systems, A.T. Azar, A.G. Radwan, and
S. Vaidyanathan, Eds., Elsevier, Amsterdam, The Netherlands, 2018.

[8] A. Cohn: Über die Anzahl der Wurzeln einer algebraischen Gleichung
in einem Kreise, Mathematische Zeitschrift 14, (1922), 110–148, DOI:
10.1007/BF01215894.

[9] Ph. Delsarte and Y. Genin: The split Levinson algorithm, IEEE Trans-
actions on Acoustics, Speech, and Signal Processing ASSP, 34(3), (1986),
470–478.

[10] Ph. Delsarte and Y. Genin: On the splitting of classical algorithms in
linear prediction theory, IEEETransactions onAcoustics, Speech, and Signal
Processing ASSP, 35(5), (1987), 645–653.

[11] A. Dòria–Cerezo and M. Bodson: Root locus rules for polynomials with
complex coefficients, Proceedings of the 21st Mediterranean Conference on
Control and Automation, (2013), 663–670.

[12] A. Dòria–Cerezo and M. Bodson: Design of controllers for electrical
power systems using a complex root locus method, IEEE Transactions on
Industrial Electronics, 63(6), (2016), 3706–3716.

https://doi.org/10.1007/BF01215894


THE LEPSCHY STABILITY TEST AND ITS APPLICATION TO FRACTIONAL-ORDER SYSTEMS 161

[13] A. Ferrante, A. Lepschy, and U. Viaro: A simple proof of the Routh test,
IEEE Transactions on Automatic Control, AC-44(1), (1999), 1306–1309.

[14] A. Hurwitz: Ueber die Bedingungen, unter welchen eine Gleichung nur
Wurzelnmit negativen reellen Theilen besitzt,Mathematiche AnnalenBand,
46 (1895), 273–284.

[15] R. Imbach and V.Y. Pan: Polynomial root clustering and explicit deflation,
arXiv:1906.04920v2.

[16] E.I. Jury and J. Blanchard: A stability test for linear discrete systems in
table form, I.R.E. Proceedings, 49(12), (1961), 1947–1948.

[17] T. Kaczorek: Selected Problems of Fractional Systems Theory, Lecture
Notes in Control and Information Sciences, 411, Springer, Berlin, Germany,
2011.

[18] W. Krajewski, A. Lepschy, G.A. Mian, and U. Viaro: A unifying frame
for stability-test algorithms for continuous-time systems, IEEE Transactions
on Circuits and Systems, CAS-37(2), (1990), 290–296.

[19] W. Krajewski, A. Lepschy, G.A.Mian, and U. Viaro: Common setting for
some classical z-domain algorithms in linear system theory, International
Journal of Systems Science, 21(4), (1990), 739–747.

[20] W. Krajewski and U. Viaro: Root locus invariance: Exploiting alternative
arrival and departure points, IEEEControl SystemsMagazine, 27(1), (2007),
36–43.

[21] B.C. Kuo: Automatic Control Systems (second ed.), (1967), Prentice-Hall,
Englewood Cliffs, NJ, USA.

[22] P.K.Kythe:Handbook ofConformalMappings andApplications, Chapman
and Hall/CRC Press, London, UK, 2019.

[23] A. Lepschy, G.A. Mian, and U. Viaro: A stability test for continuous
systems, Systems and Control Letters, 10(3), (1988), 175–179.

[24] A. Lepschy, G.A. Mian, and U. Viaro: A geometrical interpretation of the
Routh test, Journal of the Franklin Institute, 325(6), (1988), 695–703.

[25] A. Lepschy, G.A. Mian, and U. Viaro: Euclid-type algorithm and its
applications, International Journal of Systems Science, 20(6), (1989), 945–
956.

[26] A. Lepschy,G.A.Mian, andU.Viaro: Splitting of some s-domain stability-
test algorithms, International Journal of Control, 50(6), (1989), 2237–2247.



162 D. CASAGRANDE, W. KRAJEWSKI, U. VIARO

[27] A. Lepschy, G.A. Mian, and U. Viaro: An alternative proof of the Jury-
Marden stability criterion, Control and Computers, 18(3), (1990), 70–73.

[28] A. Lepschy, G.A. Mian, and U. Viaro: Efficient split algorithms for
continuous-time and discrete-time systems, Journal of the Franklin Institute,
328(1), (1991), 103–121.

[29] A. Lepschy and U. Viaro: On the mechanism of recursive stability-test
algorithms, International Journal of Control, 58(2), (1993), 485–493.

[30] A. Lepschy and U. Viaro: Derivation of recursive stability-test procedures,
Circuits, Systems, and Signal Processing, 13(5), (1994), 615–623.

[31] S. Liang, S.G. Wang, and Y. Wang: Routh-type table test for zero distri-
bution of polynomials with commensurate fractional and integer degrees,
Journal of the Franklin Institute, 354(1), (2017), 83–104.

[32] A. Liénard and M.H. Chipart: Sur le signe de la partie réelle des racines
d’une équation algébrique, Journal of Mathématiques Pures et Appliquée,
10(6), (1914), 291–346.

[33] M. Marden: Geometry of Polynomials [2nd ed.], American Mathematical
Society, Providence, RI, USA, 1966.

[34] I. Petráš: Stability of fractional-order systemswith rational orders: a survey,
Fractional Calculus & Applied Analysis, 12(3), (2009), 269–298.

[35] A.G. Radwan, A.M. Soliman, A.S. Elwakil, and A. Sedeek: On the
stability of linear systems with fractional order elements, Chaos, Solitons
and Fractals, 40(5), (2009), 2317–2328.

[36] E.J. Routh: A Treatise on the Stability of a Given State of Motion, Particu-
larly Steady Motion, Macmillan, London, UK, 1877.

[37] J. Schur: Über Potenzreihen, die im Innern des Einheitskreises beschränkt
sind, Journal für die reine und angewandte Mathematik, 147, (1917) 205–
232, DOI: 10.1515/crll.1917.147.205.

[38] R.Tempo: A Simple Test for Schur Stability of a Diamond of Complex
Polynomials, Proceedings of the 28th IEEE Confewrence on Decision and
Control (1989), 1892–1895.

[39] U. Viaro: Stability tests revisited, In A Tribute to Antonio Lepschy, G. Picci
and M.E. Valcher, Eds., Edizioni Libreria Progetto, Padova, Italy, pp. 189–
199, 2007.

https://doi.org/10.1515/crll.1917.147.205


THE LEPSCHY STABILITY TEST AND ITS APPLICATION TO FRACTIONAL-ORDER SYSTEMS 163

[40] U. Viaro: Twenty–Five Years of Research with Antonio Lepschy, Edizioni
Libreria Progetto, Padova, Italy, 2009.

[41] U. Viaro (preface by W. Krajewski): Essays on Stability Analysis and
Model Reduction, Polish Academy of Sciences, Warsaw, Poland, 2010.

[42] R.S. Vieira: Polynomials with symmetric zeros, arXiv:1904.01940v1
[math.CV], 2019.


	Daniele Casagrande, Wiesław Krajewski, Umberto Viaro: The Lepschy stability test and its application to fractional-order systems

