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About Some Problems Related to Determination  
of the E.G. Biot Coefficient for Rocks

Use of the poroelasticity theory by Biot in the description of rock behaviour requires the value of the 
e.g. Biot coefficient α to be determined. The α coefficient is a function of two moduli of compressibility: 
the modulus of compressibility of the rock skeleton Ks and the effective modulus of compressibility K. 
These moduli are determined directly on the basis of rock compressibility curves obtained during com-
pression of a rock sample using hydrostatic pressure.

There is also a concept suggesting that these compressibility moduli might be determined on the 
basis of results of the uniaxial compression test using the fact that, in the case of an elastic, homogeneous 
and isotropic material, the modulus of compressibility of a material is a function of its Young modulus 
and its Poisson ratio.

This work compares the results obtained from determination of the Biot coefficient by means of results 
of compressibility test and uniaxial compression test. It was shown that the uniaxial compression test 
results are generally unsuitable to determine the value of the coefficient α. An analysis of values of the 
determined moduli of compressibility shows that whereas the values of effective moduli of compressibility 
obtained using both ways may be considered as satisfactorily comparable, values of the relevant rock 
skeleton moduli of compressibility differ significantly. 

Keywords:	 poroelasticity, Biot medium, Biot coefficient, effective compressibility modulus, rock skeleton 
compressibility modulus

1.	B asic terms and definitions

During the physical and subsequent mathematical search for computational models of rocks, 
the rock is initially approximated as a single-phase, continuous medium, usually brittle-elastic. 
In the case of a more complex rock mass structure its anisotropy is considered (for example, 
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by introducing the e.g. transversal isotropy), as well as possible emergence of ductile behav-
iour (usually, by introducing the Coulomb-Mohr or the Hoek-Brown boundary balance con- 
dition). 

Thus, designed models fail when it becomes necessary to consider the fact that rocks are 
not continuous materials, and in addition to the e.g. solid phase, they also include voids of vari-
ous shapes and dimensions (pore space), which may be filled with pressurised pore fluid. In this 
case, a rock becomes a bi- or even a triphasic medium including a solid phase, namely the solid 
skeleton of rock (hereinafter the abbreviated term “skeleton” will be used), and fluid – liquid and/
or gas – filling the pore space. The interaction between the pore fluid and the rock may be purely 
mechanical, including stress/strain changes in the rock caused by rock fluid pressure variations, 
or physico-chemical and even chemical. In the most complex situation, we are dealing with an 
interaction being a combination of the aforementioned factors.

The subject of consideration presented in this work is a linearly elastic (i.e. subject to 
Hooke’s Law), isotropic and homogeneous, porous medium, the pore space of which is filled 
completely with pore fluid subjected to pore pressure pp. It is assumed that the medium is sub-
jected to macroscopic stress σij. It is postulated that relationships between stress and strains in 
the considered medium shall be formulated not for the quantity pair: macroscopic stress – pore 
pressure, but for a certain substitute stress σ’ij, hereinafter referred to as effective stress. It is also 
assumed that the effective stress is a certain function of the macroscopic stress and the pore 
pressure, namely that:

  , ,ij ij pf p    (1)

With thus formulated assumptions, Maurice Anthony Biot gave the e.g. poroelasticity 
equation system ([1,2]), used by Amos Nur and James D. Byerlee [3] to subsequently derive 
equation (1) in the form of:

 
, , 1, 2, 3ij ij p ijp i j        (2)

This equation, in which δij is the so called Kronecker symbol and α is a dimensionless factor, 
is called the effective stress equation (or law).

It is easy to notice that the key to practical use of equation (2) is to specify the value of 
the α coefficient, often referred to as the Biot coefficient in the literature. The aforementioned 
article [3] showed that in the case of a poroelastic medium, this coefficient may be calculated 
using the formula: 

 
1

s

Kα=
K

   (3)

where K is the e.g. effective modulus of rock volumetric compressibility (common name: bulk 
modulus of compressibility), and Ks is the modulus of volumetric compressibility of its skeleton 
(the following terms are used further in the text: K – modulus of rock compressibility, Ks – modulus 
of rock skeleton compressibility). The modulus of compressibility K is usually determined for 
a rock sample in an air-dry state, while when determining the modulus Ks, the pore space of the 
sample should be filled with an inert fluid.

It should be noted here that equation (2) can be treated as an effective stress law also when 
the subject of the analysis is not the deformation of the entire medium but only its pore space. 
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Then, however – as it already has been showed in [3] – the Biot coefficient α is given by the 
relationship:

 
1

s

nK
K K

  


  (4)

where n is the porosity of the medium. The analysis of this particular relationship is not included 
in this work. 

2.	D efinitions of moduli of compressibility  
and their determination methods

The modulus of compressibility K is usually determined for a rock sample in air-dry state, 
while when determining the modulus Ks, the pore space of the sample should be filled with an inert 
fluid. We assume that while determining the modules K and Ks the following conditions are met:

a)	 the temperature T during the experiment is constant at any time t throughout the sample 
volume (T(t) = const.),

b)	 the pore space of the rock is open and completely filled with pore fluid (drained condi-
tions),

c)	 during the experiment, the changes in the pore pressure pp in the sample occur in such 
a way that it can be assumed that the pore pressure is the same at any point in the sample 
pore space,

d)	 it is assumed that the tested material is linearly elastic and the stress in the sample is 
a superposition of the residual stress in the skeleton and the pressure of the pore fluid.

In the studies described in this work, the K and Ks moduli were determined using two meth-
ods, named as “standard” and “computable” method.

2.1.	D etermination of moduli of compressibility through the results  
of compressibility test (hereinafter the standard method)

The standard method used to determine the modulus of compressibility of rock includes 
a test performed on a rock sample, an e.g. compressibility test. It includes compression of a rock 
sample using hydrostatic pressure, with simultaneous measurement of changes to its volume; this 
test has to be a drained one, which means that the porous space of the rock may not be isolated 
from the environment. The result is a curve depicting the relationship between the hydrostatic 
pressure p and the volumetric strain of the sample e. If we assume that: V0 – initial sample vol-
ume at time t0, V – sample volume at any time t and sample volume change ΔV = V – V0, then 
the volumetric strain e is given by the formula:

 0

Ve
V


   (5)

During the test used to determine the effective rock compressibility modulus K, the sample 
is separated from the medium providing hydrostatic pressure by using a flexible screen, while 
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the porous space of the rock is connected to air under atmospheric pressure. In this case, it may 
be stated (assuming that the filtration rate is high enough; the correctness of this assumption is 
not discussed in this paper) that any changes of volume of the porous space caused by rock de-
formation do not translate into a change of pore pressure pp, which remains constant and equal to 
atmospheric pressure. The compressibility curves obtained using this method are usually denoted 
by label “pp = 0”, because the air pressure can be neglected in comparison with applied confining 
pressures p. In this case modulus K may be defined as:

 , 0pt p

dpK
de 

   
 

  (6)

Taking into account the assumptions of Biot’s theory and the condition d) formulated above, 
it should be stated that the modulus K is determined for the rectilinear part of the relation p(e), 
i.e. that it can be written:

 , 0pt p

pK
e 

    
  (7)

However, if the compression test is used to determine the rock skeleton compressibility 
modulus Ks, the sample is placed in a high-pressure chamber without shields, such that contact 
between the porous space of the rock with the medium providing hydrostatic pressure is ensured. 
It is assumed in this case, that pore pressure within the sample remains equal to the confining 
pressure, and sample deformation is caused by deformation of the rock skeleton only, the porous 
space of which does not deform. Thus, the obtained compression curves are denoted by label 
“pp = p”. So, the Ks modulus may be defined in the following way:

 , p

s
t p p

dpK
de 

   
 

  (8)

and then, as it has already been mentioned above for the K modulus

 , p

s
t p p

pK
e 

    
  (9)

Now, three important methodological remarks regarding the pp = p test should be made:
1)	 The fluid used in these experiments must be an inert fluid, i.e. physicochemically indif-

ferent to the rock. It is important that the interaction between the pore fluid and the rock 
is only mechanical.

2)	 The entire pore space of the sample should be filled with the pore fluid. To achieve this, 
it is best to pre-place an air-dry sample “under vacuum” to remove air and moisture from 
its pore space, then pour pore fluid over it and check the level of saturation by weight.

3)	 The rate of change of the confining pressure dp/dt must be selected so that the pore pres-
sure pp must be able to “follow” the confining pressure p. If the dp/dt is too high, some 
cracks may close prematurely and the condition of equal hydrostatic and pore pressures 
will not be met, which will make the obtained result worthless.
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Schemes of “pp = 0” and “pp = p” curves are shown in Figure 1. However, examples of 
compressibility curves obtained for both igneous and sedimentary rocks can be found in the 
following works: [4-7].

Fig. 1. Determination method of volumetric compressibility moduli K and Ks  
using compressibility curves; p0, n0 – crack closing pressure and crack porosity respectively [10],  

pC – pressure of rock consolidation ([8,9])

The desired rock compressibility moduli K and Ks are, respectively, tangents of β1 and β2 
angles of “e” slopes of the linear parts of curves, respectively, “pp = 0” and “pp = p” (Fig. 1). 
It is obvious that the Ks ≥ K relationship applies, wherein Ks = K is true, when rock porosity 
meets the condition of n = 0.

More detailed information related to execution of compressibility tests and to interpretation 
of their results may be found in the works of Jerzy Gustkiewicz ([6,8,9]).

2.2.	D etermination of moduli of compressibility through  
the results of uniaxial compression test  
(hereinafter the computable method)

The compressibility test – although not very complicated in theory – requires a high-pressure 
cell and adequate sensors to measure deformation inside the cell. Such equipment is usually 
expensive and difficult to access. Therefore, the question arises whether there is no other way to 
determine the values of the rock’s volumetric compressibility modulus.
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If the material under study is an isotropic and homogeneous Hooke material, it has four 
elastic constants characterising its deformation-related properties: modulus of volumetric com-
pressibility – K, shear modulus (Kirchhoff modulus) – G, longitudinal elasticity modulus (Young 
modulus) – E, and Poisson’s ratio – ν. In this case only two of these four constants are independent, 
which means that only two of them have to be determined (for example by means of laboratory 
tests), and the other two may be calculated using the relevant formulae. 

In particular, if Young’s modulus E and Poisson’s ratio ν are known, the volumetric compressi-
biliy modulus K is related to the constants E and ν by the following formula ([11] – page 108):

  3 1 2
EK =
ν

  (10)

except that – according to [12] (page 33) – the elasticity constants E and ν should be determined 
in the drained conditions at the pore pressure pp = 0 MPa.

Let us now assume that the formula (10) is universal, that is, it may be used both to calculate 
the rock compressibility modulus K and the rock skeleton compressibility modulus Ks. In this 
case the desired modulus of compressibility calculated using that formula depends on the method 
used to determine the Young modulus and Poisson’s ratio. These constants can be calculated from 
the results of the well-known uniaxial compression test, the methodology of which was finally 
ordered by [13] however in order to obtain both compressibility moduli (K and Ks), a significant 
change should be introduced in this methodology.

A diagram depicting a suitable uniaxial compression test is presented below (Fig. 2). The 
core of this test includes execution of an unload-load loop along the linear section of the stress-
strain relationship. The aim of this loop is as follows: it is assumed that, during the initial unload 
phase, sample cracks remain closed and the measured sample deformation includes deformation 
of its skeleton only. The tangent of angle γ2, between the x-axis and the linear part of the unload 
curve σ1 ~ ε1, is known as the intrinsic Young modulus (denoted as Eint), wherein the ratio of 
transverse deformation increase Δε3-int, determined for the linear part of the unload curve σ1 ~ ε3, 
to the longitudinal deformation increase Δε1-int, determined for the linear part of the unload curve 
σ1 ~ ε1, is known as the intrinsic Poisson’s ratio νint (see Fig. 2). Assuming, that formula (10) is 
universal – as it has already been mentioned above – we may define an intrinsic compressibility 
modulus as: 

  3 1 2
int

int
int

E
K





  (11)

In a similar way, we can then determine the values of the effective Young’s modulus Eef 
and the Poisson’s ratio νef, the determination of which includes pore deformation. The effective 
Young modulus Eef is the tangent of angle γ1, an angle of slope measured towards the x-axis for 
the linear part of the σ1 ~ ε1 curve. On the other hand, the effective Poisson’s ratio νef is a ratio 
of (shown in Fig. 2) the deformation increase Δε3-ef to the deformation increase Δε1-ef, measured 
for linear parts of curves, respectively, σ1 ~ ε3 and σ1 ~ ε1. Having the values of the constants Eef 
and νef determined in this way, we can define the effective modulus of compressibility Kef as:

  3 1 2
ef

ef
ef

E
K





  (12)
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This work was created as an attempt at an experimental answer to the question if, in the 
case of rock, it can be assumed that:

 K = Kef and Ks = Kint (13)

where K and Ks as in Fig. 1 and Kef and Kint as in Fig. 2, and consequently, can we use to calculate 
the α coefficient the formula (3) in the form:

 
1 ef

int

K
α=

K
   (14)

3.	E xperimental procedures

3.1.	 Compressibility test

The compressibility tests, the results of which are discussed in this paper, were performed 
with the use of the GTA-10 device located in the Rock Deformation Laboratory of the Strata 

Fig. 2. Determination of effective and intrinsic material constants on the basis of an uniaxial compression test: 
Eef, Eint – elasticity modulus (effective and intrinsic respectively), νef, νint – Poisson’s ratio  

(effective and intrinsic respectively)
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Mechanics Institute of the Polish Academy of Sciences in Krakow. This device consists of 
a cell that allows the performance of conventional triaxial compression tests according to the 
methodology described by [14], a set of hydraulic hydrostatic and pore pressure amplifiers, and 
a power supply system which is based on high-pressure pump supplying the piston travel system 
and the amplifiers.

The maximum hydrostatic pressure obtained in the chamber and the maximum pressure of 
the pore fluid are equal and amount to 400 MPa. The maximum loading force generated by the 
piston is 1500 kN. The diagram of the GTA-10 device is shown in Fig. 3, and detailed information 
on how to use it is provided by [15] and [16]. Hydrostatic pressure and pore pressure are induced 
by kerosene, which for the tested rocks can be considered as an inert liquid.

The deformation of the sample was measured with a coreless inductive sensor (see [17]) 
attached to the bands placed at the ends of the sample. A sample with attached sensor is shown 
in Fig. 4. Examples of the results of relevant experiments for sandstones are shown in Fig. 5 
(corresponding curves for opuka stone are presented in chapter 5, Fig. 12). The volumetric  

Fig. 3. Diagram of the GTA-10 device: A1, A2, A3, A4 – valves controlling the movement of the press piston, 
B1, B4 – valves that control the flow of liquid in the high pressure cell, B2, B3 – valves controlling  

liquid pressure in a triaxial cell through a pressure amplifier with a ratio of 5:1, C1, C2, C3, C4 – valves  
controlling pore pressure in a sample through a low pressure amplifier with a ratio of 1:1 (on the right)  

and high pressure amplifier with a ratio 5:1 (on the left), D1, D2, D3, D4 – valves controlling  
the flow of pore gas to and from inside the tested sample
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deformation of the sample e was calculated from linear part of the measured deformation as-
suming homogeneity and isotropy of the tested material.

Fig. 4. The coreless inductive sensor attached to the rock sample (the “pp = p” test)
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Fig. 5. Compressibility test for sandstones, results of the pp = p and pp = 0 tests (an example);  

α – Biot coefficient, p – hydrostatic pressure, e – change of volume
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3.2.	U niaxial compression test

The uniaxial compression tests were carried out with the use of the Instron 8500 Rock 
Testing System hydraulic strength testing machine (see Fig. 6), located at the Rock Deformation 
Laboratory of the Strata Mechanics Research Institute of the Polish Academy of Sciences. This 
device consists of a frame with a very high stiffness (10 MN × mm–1) and a press actuator that 
enables the application of a maximum compressive force of 5 MN. The actuator control system 
is the e.g. feedback loop control system that allows to perform experiments with controlling the 
force loading the sample or its vertical or circumferential deformation.

The subject of the experiments were samples with a diameter d equal to 32 mm and 35 mm 
and a height h equal to 64 mm and 70 mm, respectively. The samples were compressed in the 
axial strain control mode in such a way as to maintain the axial strain rate at level of 5 × 10–5 s–1. 
Longitudinal and circumferential deformations of the sample were measured by means of resis-
tive strain gauges with a measuring base length of 10 mm, glued in pairs, on opposite sides of 
the sample (see Fig. 7).

Fig. 6. Instron 8500 Rock Testing System hydraulic 
strength testing machine

Fig. 7. Rock sample in uniaxial compression test 
(an example)

The elasticity constants, which were then used to calculate the values of the compressibility 
modulus Kef and Kint, were determined on the basis of the uniaxial compression test results. An 
example of such a result is shown in Fig. 8. The test was performed according to the methodology 
described by [13] included in the collection of rock mechanics research methods recommended 
by International Society for Rock Mechanics and edited in [18].
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4.	E xperimental results

The studies were performed on samples made of three materials: two Polish sandstones – 
named “Brenna” and “Tumlin”, as well as for the rock obtained from the quarry in the village 
Bénatký near Litomyšl in Czech Republic and named opuka stone. The opuka stone is identified 
by Czech petrologists as “calcitic spongilite” or “marlstone” (see [19]).

Biot coefficient values were determined by means of standard method, on the basis of results 
of 11 compressibility tests: four for the “Brenna” sandstone (2 tests for K, 2 tests for Ks), three 
for the “Tumlin” sandstone (2 for K, 1 for Ks), and three for the opuka stone (2 for K, 1 for Ks). 
Test results are presented in Table 1.

During analysis of the values of the Biot coefficient presented in Table 1, it should be remem-
bered that determination of one α value requires the results of two – performed independently and 
for different samples – compressibility tests: one used to determine K (col. 2, Tab. 1) and one to 
determine Ks (col. 3, Tab. 1). Thus, values of α coefficients presented in column 5 of Table 1 were 
obtained by inserting K and Ks value pairs into formula (3), as described in column 5, Table 1. 
The meaning of the notation is as follows: if, in the case of the “Brenna” sandstone, the line cor-
responding to the B10 sample indicates a B10 & B30 notation in column 4, this means that the 
K value obtained for the sample B10 (19.0 GPa) and the Ks value obtained for the sample B30 
(53.4 GPa) were used in formula (3). The number of independently obtained (i.e. for different 
samples) K and Ks values allows four Biot coefficient values to be determined for the “Brenna” 
sandstone, two for the “Tumlin” sandstone, and two for the “Bénatký” rock.
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Fig. 8. Result of the uniaxial compression test with the unload-load loop (an example), sandstone “Tumlin”, 
sample no. PT-6; σ1 – axial stress, ε1 – axial/longitudinal strain, ε3 – transverse strain
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Table 1

Values of Biot coefficient determined by means of the standard method

sample
number

K
[GPa]

K s
[GPa]

a pair of 
samples


[   ]


average value

[   ]

1 2 3 4  

B10 19,0 B10&B30 0,64
B20 18,5 B10&B50 0,70
B30 53,4 B20&B30 0,65
B50 64,4 B20&B50 0,71
T30 21,8 T30&T50 0,54
T40 21,0 T40&T50 0,56
T50 47,8
O10 23,4 O10&O60 0,76
O20 23,7 O20&O60 0,76
O60 99,3op

uk
a

st
on

e

compressibility
modulus

Biot
coefficient

sa
nd

st
on

e

"B
re

nn
a"

0,68

"T
um

lin
"

0,76

0,56

Biot coefficient values were determined using the computable method, analysing the results 
of five uniaxial compression tests: two tests for the “Brenna” sandstone (samples PB-2 and PB-3), 
two for the “Tumlin” sandstone (PT-5 and PT-6), and one for the opuka stone (OL-7). In this 
case determination of the α coefficient required results of just one experiment, and the results 
were analysed according to the procedures described above in chapter 2.2. The values of the 
coefficient α were calculated using formula (14) and the calculations results are shown in Table 2.

Table 2

Values of Biot coefficient determined by means of the indirect method

Biot
coefficient

sample
number

 ef
[   ]

E ef
[GPa]

 int
[   ]

E int
[GPa]

K ef
[GPa]

K int
[GPa]


[   ]

1  3  5 6 7 

PB-2 0,30 19,9 0,18 32,7 16,6 17,0 0,03
PB-3 0,25 19,3 0,18 33,9 12,9 17,7 0,27
PT-5 0,29 31,5 0,21 47,1 25,0 27,1 0,08
PT-6 0,21 23,9 0,13 38,7 13,7 17,4 0,21

OL-7 0,21 29,3 0,23 41,5 16,8 25,6 0,34

op
uk

a
st

on
e

"Brenna"

"Tumlin"sa
nd

st
on

e

compressibility
moduli

intrinsic
constants

effective
constants

The values of the calculated Biot coefficients presented in col. 8 of table 2 are significantly 
different from that obtained by means of compressibility test. Chapter 5 of this paper will be 
devoted to the analysis and discussion of these results.
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5.	 Analysis of obtained test results

A comparison of α values presented in Tables 1 and 2 shows that Biot coefficient determina-
tion methods described in chapter 2 yielded significantly different results. It is thus necessary to 
look for answers to two main questions:

–	 what caused the observed differences?
–	 which of the analysed Biot coefficient determination methods should be considered as 

correct?

The search for answers to these questions should begin with a deeper analysis of the labora-
tory test results recorded in Tables 1 and 2.

Firstly, it should be noted that formulas (3) and (14) used for calculating the α coefficient for 
standard and computable method respectively use the values of the volumetric compressibility 
moduli determined in different ways. A comparison of values for these constants obtained us-
ing both methods shows that whereas these values may be considered similar for the K and Kef 
moduli (see Tab. 1, col. 2 and Tab. 2, col. 6), the differences for the Ks and Kint moduli are quite 
substantial (cf. Tab. 1, col. 3 and Tab. 2, col. 7). Moreover, whereas in the case of the standard 
method, the differences between K and Ks are very clear – Ks ≈ (2 ÷ 3)K – the computable method 
yields Kint ≈ (1 ÷ 1.5)Kef. It thus seems that the main problem lies in the determination of the 
value of the modulus of compression of rock skeleton Ks or Kint.

In the case of the standard method, the Ks modulus is determined for a sample subjected to 
hydrostatic compression and fully saturated with a liquid. The pressure of liquid is identical inside 
the sample in the porous space and around the sample, inside the high-pressure chamber. It leads 
us to conclusion that the measured deformation of the sample includes only the deformation of 
its solid phase while the pore space of the tested sample, which is filled with pore liquid, is not 
deformed (this statement is correct for non-isolated pores. The, so called, isolated pores, namely 
pores that do not have contact with other pores and thus cannot be saturated with the pore liquid, 
of course may deform themselves).

During the uniaxial compression test, the pore space of the sample is filled with air under 
atmospheric pressure, which means that the pores can deform freely. In principle, isometric 
pores do not deform until the load capacity of the pore wall is exceeded and the rock skeleton is 
destroyed, which is accompanied by permanent deformations. On the other hand, cracks – due 
to their specific shape – “work”, i.e. they can close or open depending on the magnitude of the 
stresses induced by the load. This process is generally reversible and does not affect the rock 
skeleton, the structure of which remains intact, however it should also be noted that the material 
may contain cracks oriented with respect to the stress direction in such a way, that they do not 
“work” but their edges become stress concentrators inducing further fractures of the rock skeleton 
and ultimately permanent sample deformations. We can speculate that this orientation of cracks 
may significantly influence the results of deformation measurements in both directions in case 
of uniaxial compression test.

Those considerations show that in the case of the computable method, in which the sample 
is compressed uniaxially the sample deformations consist not only rock skeleton deformations 
but may also consist deformations of pore space and even permanent deformations caused by 
rock skeleton destruction. So in consequence, the Kint modulus could be “too small”. 

Let us now look at the relationship between the axial stress and the corresponding strains 
obtained during uniaxial compression tests for the tested sandstones (Figs. 9 and 10).
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 Fig. 9. Uniaxial compression test: relationship between axial stress and longitudinal strain – σ1(ε1),  
transverse strain – σ1(ε3) and volumetric strain – σ1(e); sandstone “Tumlin”
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 Fig. 10. Uniaxial compression test: relationship between axial stress and longitudinal strain – σ1(ε1), transverse 
strain – σ1(ε3) and volumetric strain – σ1(e); sandstone “Brenna”
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The results of the experiments shown in these figures have some common features:
(i)	 all shown relationships between the stress in the sample σ1 and its volume change e are 

clearly nonlinear (the smaller range of the curves σ1(ε1) and σ1(e) for the PB-2 sample 
is caused by early destruction of the longitudinal strain gauge during the experiment),

(ii)	 the relationships between the axial stress σ1 and the transverse deformation ε3 of the 
specimen show a problem with clear identification of the linear section, which is re-
quired to determine the value of Poisson’s ratio,

(iii)	 the unload-load loops practically do not show the elastic hysteresis and their angle of 
inclination to the abscissa axis suggests the appearance of permanent deformations in 
the sample.

The above observations lead to the emergence of a fundamental doubt: is there a stress 
range for the studied sandstones for which the system of Hooke’s equations could be considered 
a constitutive equation? This doubt is important if we realize that the system of constitutive equa-
tions of Biot’s medium is in fact a system of Hooke’s equations supplemented with components 
taking into account the volumetric deformation of the pore space (see [1]). Therefore, it seems 
reasonable to expect that for a given material Biot deformation constants will be the same as 
Hooke’s deformation constants with the additional condition that they will meet the e.g. constitu-
tive equation of the pore fluid formulated by Biot.

In the case of opuka stone, the corresponding relationships, showed in Fig. 11 are slightly 
different. In all stress-strain curves, it is possible to distinguish linear sections, and the shape 
and slope of the unload-load loops to the abscissa axis practically exclude the appearance of 
permanent deformations. Therefore, it seems that the application of Hooke’s mathematical model 
in this case, and consequently Biot’s mathematical model, should not result in large errors. Un-
fortunately, it does not look so good, and the Biot coefficient for the opuka stone determined by 
this method is only about 50% of the value of the average Biot coefficient determined by the 
standard method (0,34 vs. 0,73).

It follows from the formulas (3) and (8) that the Biot coefficient is closely related to the values 
of the respective compressibility moduli, and these, may be calculated on the basis of the values of 
the effective and the intrinsic elasticity constants using formulas (11) and (12). The formulas (11) 
and (12) are rational functions of elasticity constants Eef, νef, Eint and νint wherein νef and νint are 
present in the denominator. Values of such a function are particularly “susceptible” to changes to 
variable values located near zero points of the denominator (small changes to the function argu-
ment result in large value changes, e.g. the y = tg(x) function near x = 0,5π, or y = x–1 near x = 0), 
which in this case means that small changes to the νef and νint values may cause large changes of 
Kef and Kint This is particularly important in the context of problems with correct determination 
of Poisson’s ratio values familiar to everyone performing laboratory tests on rocks.

At this point, it is worth returning to compressibility tests. Analysing the deformation 
process of a rock sample loaded by hydrostatic pressure Jerzy Gustkiewicz ([6,8,9]), following 
considerations of Rychlewski [20], pointed out, that hydrostatic load may induce in the rock 
skeleton deviatoric-state stress that may cause the destruction of the rock skeleton and, finally, 
its permanent deformations. Let’s look from this angle at the results of compressibility test car-
ried out for opuka stone (see Fig. 12).

These results differ from the curves for sandstone shown in Fig. 5. The pp = p curve shown 
in Fig. 5 (sample B30) is very close to the model curve from Fig. 1 and does not indicate the 
appearance of permanent deformations in the tested sandstone. The same curve in Fig. 12 
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(sample O60) shows that – however it is linear in whole range of applied hydrostatic pressure 
– the deformation of the sample is not an elastic one and shows the appearance of permanent 
volumetric deformations of the opuka stone skeleton. The same can be said for pp = 0 curves. 
The one shown in Fig. 5 (sample B20) corresponds well to the model curve from Fig. 1. The 
pp = 0 curves in Fig. 12 (samples O10 and O20) differ from the corresponding model curve in 
Fig. 1 in the shape of the part that reflects the loading process.
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Fig. 12. Compressibility tests, opuka stone;  
p – hydrostatic pressure, e – change of volume

The observed differences cannot be explained by an error in the measuring deformations 
method because this method was identical for all discussed cases. It is also necessary to exclude 
incomplete opuka stone sample saturation with kerosene (due to the large amount of isolated 
pores in the pore space), because in this case the pp = p curve would not be rectilinear and the 
linear shape of the load curves pp = 0 of the opuka stone samples suggests that the crack porosity 
of that rock is negligible.

Ultimately, it seems that the reasons for the appearance of permanent deformations should be 
found in the geological structure of the studied material. Either some minerals that are included in 
opuka stone (e.g. microfossils) was permanently deformed, or the calcite, which is a component 
of this rock, experienced a phase transformation into aragonite during loading, which was then 
resulted in local damage to the structure and permanent deformations.
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6.	 Concluding remarks

Professor Maurice Anthony Biot, formulating in the year 1941 – for the purposes of soil 
mechanics – his theory of an elastic porous medium, made the following assumptions:

“The following basic properties of the soil are assumed: (1) isotropy of the ma-
terial, (2) reversibility of stress-strain relations under final equilibrium conditions, 
(3) linearity of stress-strain relations, (4) small strains, the water contained in the pores 
is incompressible, (6) the water may contain air bubbles, (7) the water flows through 
the porous skeleton according to Darcy’s law.” [1].

Meanwhile, considering all that was written above (especially in chapter 5), it should be 
stated that:

a)	 to determine the appropriate modulus of compressibility of a rock (regardless of 
the adopted test method), the key is to correctly measure the deformation of the tested 
sample,

b)	 it is extremely difficult to select the stress range in which the rock can be considered as 
a material that meets the assumptions of Biot’s theory; in particular, stress concentrations 
caused by the structure of the material (e.g. granular nature of sandstones, local inho-
mogeneities) may cause deformations that cannot be considered “small” and reversible 
neither in the uniaxial compression test nor in the compressibility test,

c)	 the difficulties mentioned in point b) they are magnified by phenomena resulting from 
deformation of the rock pore space; they can contribute to the growth of both permanent 
deformation (destruction of isometric pores, material destruction at the edges of cracks) 
and reversible deformation (opening and closing of cracks),

d)	 the results of strain measurement (for transverse deformations in particular) during 
uniaxial compression tests depend on numerous factors – the number and type of de-
formation sensors, their measurement basis and the method of installation on the sam-
ple, the dimensions and precision of sample preparation for testing (parallel bases and 
sides), and, finally, on the method used to affix the sample inside the resistance testing 
machine (the presence or absence of a spherical seat, friction between the sample bases 
and the press plates). These are known issues, already described many times in scientific  
literature,

Considering all of that it seems reasonable to ask the question: Can the rock be treated as 
a Hooke/Biot material, and if so, to what extent? Of course, people performing measurements 
of rock mass deformation in situ are certainly able to provide many situations in which the 
forecast of such deformation prepared on the basis of Hooke’s model was adequately accurate, 
thus somewhat automatically undermining the purpose of the aforementioned question. Never-
theless, the conformity of calculation and measurement results does not necessarily mean that 
the accepted calculation method is physically correct. In view of the results presented above, 
however it should be mentioned that in the case of the rocks studied by the authors, the Hooke/
Biot physical model is an incorrect one, ergo, its deformation properties may not be described 
using the elasticity constants of this model. Of course, this result by no means disqualifies the 
usefulness of Hooke’s model in the rock and rock mass mechanics and only points out the dif-
ficulties inherently present in studies in this field.
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