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Abstract. Adsorption cooling and desalination technologies have recently received more attention. Adsorption chillers, using eco-friendly refrig-
erants, provide promising abilities for low-grade waste heat recovery and utilization, especially renewable and waste heat of the near ambient 
temperature. However, due to the low coefficient of performance (COP) and cooling capacity (CC) of the chillers, they have not been widely 
commercialized. Although operating in combined heating and cooling (HC) systems, adsorption chillers allow more efficient conversion and 
management of low-grade sources of thermal energy, their operation is still not sufficiently recognized, and the improvement of their performance 
is still a challenging task. The paper introduces an artificial intelligence (AI) approach for the optimization study of a two-bed adsorption chiller 
operating in an existing combined HC system, driven by low-temperature heat from cogeneration. Artificial neural networks are employed to 
develop a model that allows estimating the behavior of the chiller. Two crucial energy efficiency and performance indicators of the adsorption 
chiller, i.e., CC and the COP, are examined during the study for different operating sceneries and a wide range of operating conditions. Thus 
this work provides useful guidance for the operating conditions of the adsorption chiller integrated into the HC system. For the considered range 
of input parameters, the highest CC and COP are equal to 12.7 and 0.65 kW, respectively. The developed model, based on the neurocomputing 
approach, constitutes an easy-to-use and powerful optimization tool for the adsorption chiller operating in the complex HC system.
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Abstract. Adsorption cooling and desalination technologies have recently received more attention. Adsorption chillers, using eco-friendly
refrigerants, provide promising abilities for low-grade waste heat recovery and utilization, especially renewable and waste heat of the near
ambient temperature. However, due to the low coefficient of performance (COP) and cooling capacity (CC) of the chillers, they have not been
widely commercialized. Although operating in combined heating and cooling (HC) systems, adsorption chillers allow more efficient conversion
and management of low-grade sources of thermal energy, their operation is still not sufficiently recognized, and the improvement of their
performance is still a challenging task. The paper introduces an artificial intelligence (AI) approach for the optimization study of a two-bed
adsorption chiller operating in an existing combined HC system, driven by low-temperature heat from cogeneration. Artificial neural networks
are employed to develop a model that allows estimating the behavior of the chiller. Two crucial energy efficiency and performance indicators
of the adsorption chiller, i.e., CC and the COP, are examined during the study for different operating sceneries and a wide range of operating
conditions. Thus this work provides useful guidance for the operating conditions of the adsorption chiller integrated into the HC system. For
the considered range of input parameters, the highest CC and COP are equal to 12.7 and 0.65 kW, respectively. The developed model, based on
the neurocomputing approach, constitutes an easy-to-use and powerful optimization tool for the adsorption chiller operating in the complex HC
system.
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Nomenclature

Ac collector area, m2

ACANN Adsorption Chiller by Artificial Neural Networks
model

AdC Adsorption Chiller
AI Artificial Intelligence
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Networks
BTES Borehole Thermal Energy Storage
CC Cooling Capacity, kW
COP Coefficient of Performance, –
HP Heating Power, kW
HTBT High Temperature Buffer Tank, K
HTHP High Temperature Heat Pump, K
LTBT Low Temperature Buffer Tank (Ice Water), K
ML Machine Learning
MTBT Medium Temperature Buffer Tank, K
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NN Neural Network
VH Volume flow rate of hot water, dm3/min
VL Volume flow rate of ice-water, dm3/min
VM Volume flow rate of recooling water, dm3/min
T Temperature, K
THin Inlet temperature of hot water, K
THout Outlet temperature of hot water, K
TLin Inlet temperature of ice-water, K
TLout Outlet temperature of ice-water, K
TMin Inlet temperature of recooling water, K
TTES Tank Thermal Energy Storage

1. Introduction

Waste heat recovery is nowadays a common practice as such
heat source is available in large quantities at different temper-
ature levels worldwide, especially with low parameters gener-
ated as a by-product [1, 2]. According to Rezaie and Rosen,
the efficient and intelligent use of energy waste, including low-
temperature waste heat, belongs to the critical actions to address
energy and environmental challenges [3]. Roskilly and Al-Nimr
remarked that improving energy efficiency and reducing both
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energy demand and greenhouse gas emissions are significant
challenges nowadays [4]. The ability to use waste heat, but also
renewable and recycled heat from low-temperature sources, is
also set into the concept of the 4th Generation District Heating
(4GDH), defined by Lund in [5] and also mentioned in [6].

Adsorption cooling technology is one of the most effective
ways of cooling and potable water production [7–11]. A simple
configuration without moving parts, application of eco-friendly
refrigerants, the ability to low-grade heat recovery and utiliza-
tion, especially renewable and waste heat of the near ambient
temperature, including sewage water, underground resources,
solar heat, constitute the main advantages of adsorption chillers
[12–14]. On the other hand, unfavorable heat exchange condi-
tions in the porous sorbent bed and the resulting low coefficients
of performance (COP) are their main disadvantages, resulting in
numerous optimization works of these appliances [15–19].

A thermodynamic model of a three-bed adsorption chiller
with a cooling capacity equal to 90 kW is shown in [7]. Op-
timization of adsorption dynamics in adsorbent beds of loose
grains was performed in [20]. The dynamic optimization of ad-
sorptive chillers was demonstrated in [21]. Genetic algorithms
and neural networks were introduced for a cooling capacity
(CC) optimization study of a tri-bed, twin-evaporator adsorp-
tion chiller in [2]. A nonlinear model-predictive-control for
adsorption coolers was discussed in [22]. A detailed numeri-
cal model of a two-bed adsorption chiller developed to exam-
ine the effects of operating and geometrical parameters on its
overall performance is shown in [23]. A neuro-adaptive fuzzy-
inference system (ANFIS) approach, to optimize CC of a re-
heat, two-stage adsorption chiller in a wide range of both de-
sign and operating parameters, was developed in [24]. A dimen-
sional analysis to optimize adsorption performance for desired
operating conditions including adsorbent–vapor pair, adsorp-
tion duration, operational pressure, intercrystalline porosity, ad-
sorbent crystal size, and intercrystalline vapor diffusivity – was
carried out in [25]. A reallocation of adsorption/desorption cy-
cle times to optimize the performance of adsorption chillers is
discussed in [26]. A comparison of different kinds of heat re-
covery systems applied in an adsorption refrigeration unit is
shown in [27].

A state-of-the-art overview of modeling techniques of ad-
sorption cooling systems is demonstrated in [28]. The authors
underlined that further extensive research work is necessary to
optimize the performance of adsorption chillers, and more ad-
vanced models need to be developed.

Promising approaches allowing to address contemporary
problems is the AI methods, including artificial neural networks
(ANN) [29–31]. The ANNs have been widely used in differ-
ent areas, including modeling and optimization [32–35]. Dif-
ferent kinds of neural networks can be distinguished, including
e.g., deep and shallow neural networks, function fitting neu-
ral networks, generalized regression neural networks, cascade-
forward neural networks, feed-forward neural networks, RBF,
and Kohonen networks [36–38]. The ensemble of many neural
predictors are also interesting and promising alternatives [39].

Deep learning versus classical neural approach to mammo-
gram recognition was compared in [40]. A comprehensive com-

parative study of different state-of-art machine learning meth-
ods used for breast cancer diagnosis was conducted in [41].
A fast multispectral deep fusion network was developed in
[42]. The use of convolutional neural network AlexNet for
the detection of driver fatigue symptoms was depicted in [43].
The ANN-based approach was also implemented for computa-
tional gait analysis for post-stroke rehabilitation purposes [44]
and for modeling and the optimization of the effect of nozzle
type, spray pressure, driving speed, and spray angle on spray
coverage [45]. Decoupling control for permanent magnet in-
wheel motor using internal model control based on the back-
propagation neural network inverse system was shown in [46].
An assessment of wind energy resources using artificial neural
networks was performed in [47].

This paper deals with a neurocomputing approach in model-
ing a two-bed adsorption chiller (AdC) incorporated into an ex-
isting, combined heating and cooling (HC) system, using waste
heat as low-grade thermal energy from cogeneration.

The developed Adsorption Chiller by Artificial Neural Net-
works (ACANN) model is based on an artificial neural network
(ANN) approach and allows successfully estimating two cru-
cial energy efficiency and performance indicators of the adsorp-
tion chiller, i.e., cooling capacity (CC) and coefficient of per-
formance (COP) [23] for a wide range of operating parameters.
The training samples, necessary to develop the model, are taken
from experiments similar to the methods described in [2, 48].

The proposed approach can be treated as an alternative tech-
nique of data handling, considering the complexity of numeri-
cal and analytical methods and high costs of empirical experi-
ments [49–54].

2. The research object and methods

Experimental research related to the integration of an adsorp-
tion chiller with a high-temperature CO2 heat pump was carried
out on an innovative installation presented in Fig. 1.

Fig. 1. Schematic diagram of the Combined Hybrid Heating and Cool-
ing System: HTBT – High-Temperature Buffer Tank, AdC – Adsorp-
tion Chiller, MTBT – Medium Temperature Buffer Tank, LTBT –
Low-Temperature Buffer Tank (ice water), HTHP – High-Temperature
Heat Pump, BTES – Borehole Thermal Energy Storage, TTES – Tank

Thermal Energy Storage, PV – photo-voltaic module
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The adsorption chiller produces environmentally friendly
cooling energy from waste heat using water as the refrig-
erant and silica gel as the adsorbent. The most important
parts of the experimental installation are a high-temperature
buffer tank (HTBT), adsorption chiller (AdC), medium tem-
perature buffer tank (MTBT), high-temperature heat pump
(HTHP), borehole thermal energy storage (BTES), and tank
thermal energy storage (TTES). In the experimental installa-
tion, a high-temperature heat pump (HTHP) of CO2 produced
by MAYEKAWA (HWW-2HTC) was used as the desorption
heat source process. The device can recover waste heat stored
in TTES, gain energy from the boreholes and supply ice water,
as the overall system’s main task is to provide cooling for the
building. Significant differences in temperature level compared
to standard heat pumps result from the fact that the CO2 works
in supercritical conditions. The PV array generates electrical
energy, which causes that the supply of “free” electricity for the
HTHP drive is coherent with the demand for cold, which re-
duces the cost of cooling the building. Usually, the high-grade
heat from the HTHP would be disposed of, but thanks to the
AdC, it is partially recovered, and the waste heat temperature is
decreased.

The HTHP supplies ice water and simultaneously hot water
to regenerate AdC’s adsorption bed. The produced ice water
in the AdC is directly used to chill the building infrastructure,
or when the building is sufficiently cold, it is stored in LTBT.
The cooling water circuit of the AdC is connected to the MTBT
tank, where the heat carrier temperature is controlled by the use
of a loop connected with BTES via a manifold. The whole sys-
tem is assembled into one unit to provide controlled conditions
of the installation.

Regarding the considered AdC, three circuits can be distin-
guished: hot water circuit (driving circuit), recooling circuit,
and ice water circuit. The hot water circuit supplies the ther-
mal energy driving the adsorption chiller. The recooling circuit
moves the heat from the adsorption bed, cooling it during the
sorption stage. Finally, the ice water circuit removes heat from
the object being cooled (the building) as the AdC is designated
for using the waste low-temperature heat of industrial systems.

In the experiment, temperature and flow measurements data
was collected every second. For measurements of temperature
hot water, chilled water and cooling were used, the thermis-
tors Pt100 Ω (±0.2◦C) PT-1000 Ω (range from –80 to 150◦C),
±0.2◦C. Pressure sensors range 0–99 kPa, precision 0,5% FS,
4–20 mA, were used to measure the pressures in condenser,
evaporator, and beds. Electromagnetic flow meters 0,5% FS, 4–
20 mA were used to measure the flow rate of the heating water,
cooling water and chilled water.

A neurocomputing approach is applied to develop the
ACANN model. The method consists of the use of artificial
neural networks (ANN) as one of the most potent techniques
of machine learning (ML) and artificial intelligence (AI). The
ANNs can reproduce models from training samples and extract
knowledge from the data to determine complex relationships
between them [2,30,39,40]. The best generalization abilities an
ANN possesses when the ANN’s mapping represents the under-
lying systematic aspects of the data, i.e., complex relationships

between input and output variables, rather than capturing spe-
cific details, including noise contribution of the particular data
set [48, 55].

An artificial neural network constitutes a biologically in-
spired computational model with neurons grouped into lay-
ers [48,55–57]. This soft computing method can generalize ac-
quired knowledge [58]; thus, the discussed application deals
with approximation issues for optimal CC and COP perfor-
mance parameters.

Neural Designer software is employed to reproduce the ad-
sorption chiller operation from measured data [55]. It is a data
machine learning platform for advanced data analysis using ar-
tificial neural networks. It allows implementing deep NN archi-
tectures with an arbitrary number of perceptron layers for very
complex data sets, where deeper architectures of three, four, or
more perceptron layers may be required [55]. ANNs have uni-
versal approximation properties, enabling approximation of any
function in any dimension [55]. Since most neural networks,
even biological neural networks, exhibit layered structures, the
ANN consists of a group of interconnected neurons arranged
into layers [29, 59].

Three different subsets: training, selection, and testing, make
the total number of data employed while performing the model,
allowing to avoid the network’s ability to memorize solutions
and to make the network generalize the knowledge of the sys-
tem.

Training instances are the data for developing various ANN
models of different architectures and comparing their perfor-
mance. Selection instances are applied to select the model with
the best generalization abilities. Finally, to validate the func-
tioning model and test its capabilities, testing instances are nec-
essary. Thus the general design procedure covers the following
main steps:
• loading and preprocessing the data including splitting them

into training, selection, and testing sets),
• defining the NN structure, e.g., the number of layers and

neurons in each layer, activation function),
• training, testing, and deploying the model [55].

The assumed parameters used to develop the ACANN model
are described in the next sections.

3. Results and discussion

3.1. Application and validation of the ACANN model. The
operational data acquired during the measurement campaign al-
lowed us to develop and validate the ACANN model. A neural
network was trained based on a training data set consisting of
input-target training samples [2, 55]. Input variables represent
physical measurements of water temperatures and volume flow
rates during AdC operation. The following values: inlet volume
flow rate and temperatures of ice water (VL, TLin), recooling
water (VM, TMin), and hot water (VH, THin) are assumed as
input parameters. The data are presented in Table 1.

The above range of the input parameters was defined, con-
sidering the operating conditions of the considered combined
heating and cooling system.
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Table 1
The input parameters variables used in the study

Minimum Maximum

TLin, K 283 293

TMin, K 288 298

THin, K 331 358

VL, dm3/min 1 20

VM, dm3/min 70 80

VH, dm3/min 13 30

A total number of 3962 instances are employed to develop
the ACANN model. The random data splitting method with ba-
sic training, selection, and testing instance ratios of 0.60, 0.20
and 0.20, respectively, generated a training data subset, with
a total of 2378 samples and the selection and testing subsets
with 792 instances, each. A wide range of operating parameters
is considered in the study (Table 1).

The ice-water (TLout) and hot water (THout) outlet temper-
atures constitute the ACANN model’s outputs. They allowed to
easily derive the two fundamental energy efficiency and perfor-
mance indicators of the adsorption chiller, i.e., cooling capacity
(CC) and coefficient of performance (COP) [13].

Since an ANN operation depends on topology, including the
number of layers and neurons in each layer, different ANN ar-
chitectures were tested during the study [2, 57]. The best selec-
tion method allowed us to obtain a complex level model, which
is the most appropriate to produce an adequate fit of the data.
To avoid the two frequent problems in the design of NNs, called
underfitting and overfitting, and to achieve the best generaliza-
tion capabilities, the model’s complexity should be appropriate
to the problem studied. Underfitting and overfitting are the ef-
fects of a selection error increase caused by too simple or too
complex models, respectively.

Two powerful functionalities, i.e., order selection and inputs
selection algorithms, are implemented into the Neural Designer
platform. These methods help to find an optimal ANN with the
best generalization properties, i.e., with the lowest error on the
selection data. In other words, these innovative algorithms al-
low the automation of the model selection procedure, and find-
ing a neural network topology that minimizes the error on new
data, improving generalization performance [55].

The first algorithm, called the order selection task, is respon-
sible for finding the optimal, hidden perceptron number. During
this task, the neural network order is modified to obtain the op-
timum selection loss as the selection error is a measure of the
ANN’s ability to predict the results for new cases, unseen be-
fore by the network [55]. For this study, the incremental order
method was employed, as it is the most straightforward order
selection algorithm.

The inputs selection algorithm selects a subset of inputs more
influential on a particular physical process, allowing to find the
optimal subset of inputs for the best loss of the model [55].

The genetic algorithm was applied in the input selection pro-
cedure as it is the most advanced instance of the model selection

algorithms, based on the mechanisms of natural genetics and bi-
ological evolution, implementing selection, crossover, and mu-
tation operators [55, 59].

The Hyperbolic Tangent activation function is selected for
hidden and output neurons as it is one of the most widely used
transfer functions when constructing neural networks [2, 55].

Mean squared error served as the error estimation method in
loss function expression during the training stage by the quasi-
Newton method algorithm. The following plot shows the losses
in each iteration (Fig. 2).

Fig. 2. The Quasi-Newton Losses Method History (the blue line ex-
presses the training loss, whereas the red one corresponds to selection

loss)

The trends in Fig. 2, show the good ability of the considered
ANN to train the process. Thus the training process was smooth
and effective. The initial and final values of training losses are
0.700 and 0.0771, respectively, while the initial and final values
of the selection losses are 0.6825 and 0.0865, respectively.

The optimal neural network, after the model selection task
[55], turned out to be [6–112] with two hidden layers composed
of one neuron in each layer, six inputs, and two output neu-
rons. The final testing error, after the model selection task, cor-
responding to the final network architecture, is equal to 0.0869.

Figure 3 shows a graphic representation of the final network
topology. The model also contains a scaling layer and an unscal-
ing output layer. The yellow circles represent scaling neurons,
the blue ones are perceptron neurons, and the red circles corre-
spond to unscaling neurons. The goal of the scaling procedure
is to keep all inputs within the range of 0–1. Thus, the scaled
outputs from a neural network should be unscaled to produce
the original units [55, 56, 60, 61].

Fig. 3. The Architecture of the ACANN model
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It is worth mentioning that this three-layered neural network,
including two hidden oneneuronal layers and one two-neuronal
output layer, can be reproduced as the industrial scale AdC op-
erating in the combined heating and cooling system. This ar-
chitecture meets the main requirements for neural networks, ac-
cording to which at least two neuronal layers are mandatory to
be capable of describing complex, nonlinear processes [29,62].

Finally, during the test stage, the comparison between pre-
dicted outputs and targets from the independent data set, called
“testing instances” is carried out [55].

A linear regression analysis between the scaled neural net-
work outputs and the corresponding targets for an independent
testing subset is a standard testing method. Figure 4 shows the
linear regression chart for the outputs TLout (a) and THout (b).

a)

b)

Fig. 4. Scatter Plots for Outputs: a) TLout and b) THout (the blue and
dashed lines indicate the best and perfect fits, respectively)

Table 2 demonstrates the three parameters resulting from the
linear regression, i.e., y-intercept, the slope of the best linear
regression for targets and scaled outputs, and the correlation
coefficient between them.

Since the y-intercept and the correlation coefficient are close
to 0 and 1, respectively, the model’s outputs are close to targets.

Thus, also considering the final loss values, the developed
ACANN’s model has good accuracy and is ready to be used for
making predictions and analyzing the influence of input vari-
ables on the AdC performance [55].

Table 2
Parameters of Linear Regression Analysis

TLout THout

Intercept –0.0283 0.0784

Slope 0.837 0.771

Correlation 0.914 0.889

3.2. Influence of operating parameters on the performance
of the AdC. An interesting issue is to see how a single input
influences the performance of the adsorption chiller. Such an
approach constitutes a cut of the neural network model along
some input direction and through a reference point [55]. A ref-
erence point for further calculations that correspond to the val-
ues usually found in the tested unit are listed in the captions of
the figures. However, the dependencies between input parame-
ters, i.e., TLin, TMin, THin, VL, VM, and VH, ought to be also
considered taking into account complex thermal and flow pro-
cesses that occur in the AdC operating in the combined heating
and cooling system.

It is essential to underline that the behavior of the AdC, in-
corporated into the hybrid heating and cooling system, differs
from the stand-alone mode, as each part of the loop influences
one another, and this also stands for one of the main contribu-
tions of the paper.

3.2.1. Effect of the ice water inlet temperature and volume
flow rates. The effect of the ice water inlet TLin temperature
on the outlet ice and hot water temperatures TLout and THout,
respectively, are shown in Fig. 5. The increase in TLin leads to
an increase in its outlet temperature. Such behavior is the re-
sult of two mechanisms [63]. The increase in inlet temperature
causes the rise in heat flux between the ice water and the refrig-
erant in the evaporator, especially at the inlet area of the evap-
orator’s tubes. That is why the tubes pass arrangement in the
evaporator is a crucial factor influencing the entire system per-
formance [59,64,65]. However, the increase in the heat transfer
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rate is limited as the water vaporization in the evaporator cannot
transfer out the entire increased energy supply in the inflowing
warmer water stream, resulting in a higher outlet temperature
TL out (Fig. 5).

On the other hand, the increased heat flux in the evapora-
tor promotes higher vapor production. The higher amount of
adsorbed water vapor allows for the rise in the heat amount ex-
pelled in the desorption stage, leading to the increase in heat-
ing power and the decrease in the hot water output temperature
(Fig. 5).

Figure 6 shows the effect of ice water inlet temperature TLin
on the CC and COP. The increase in TLin leads to an increase
in both CC and COP. However, for TLin higher than 291 K,
at which the COP attains the maximum, the COP slightly de-
creases due to the high heating power generated in the adsorp-
tion bed during the desorption stage. Hence, taking into account
the results from Fig. 6, the value 291 K should be considered as
the optimum one as the COP reaches its maximum.

Fig. 6. Effect of the ice water, inlet temperature on CC, and COP of
the adsorption chiller (TLin = 283 K–293 K, TMin = 298 K, THin =

353 K, VL = 20 dm3/min, VM = 75 dm3/min, VH = 15 dm3/min)

The influence of the ice water volume flow rate VL on TLout,
THout, CC, and COP is shown in Figs. 7 and 8. The increase in
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the VL leads to a slight increase in output temperature TLout
(Fig. 7). Since the inlet ice water temperature is equal to 288 K,
the heat supplied together with the inflowing water stream can-
not be carried out by a limited increase in the heat transfer rate
for higher water velocities (Fig. 11).

Fig. 8. Effect of the ice water volume flow rates on CC and COP
of the AdC (TLin = 288 K, TMin = 298 K, THin = 353 K, VL =

1−20 dm3/min, VM = 75 dm3/min, VH = 15 dm3/min)

However, this increased heat transfer rate intensifies water
vapor production, which, accumulated on the inner surface of
the silica gel, expelled together with the heat from the bed dur-
ing desorption, leads to a slight decrease in THout. The above-
described effects are expressed in increased CC and COP val-
ues, as shown in Fig. 8.

3.2.2. Effect of the recooling water inlet temperature and
volume flow rates. Figure 9 shows the influence of recool-
ing water inlet temperature TMin on temperatures TLout and
THout. The increase in TMin simulates the heat recovery sys-
tem of the AdC, which is one of the most important methods of
improving the performance of the adsorption cooling systems.
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In this technique, a part of the heat released during bed cooling
can be partly used to heat the other bed instead of being conven-
tionally discharged into the environment as waste energy [18].
In other words, when a two-bed adsorption chiller employs the
heat recovery system, the heat generation in the first adsorber
during the phase of desorption is used to heat the second one
before desorption. In the next phase, the two beds will switch
the role of heating and cooling [18].

The considered AdC also uses the heat recovery system. The
return line of the adsorber, which is desorbed immediately fol-
lowing the adsorption, is routed to the recooling circuit. Such
operation leads to an increase in TMin, according to Fig. 9, and
allows better preparation of the adsorption bed to the consec-
utive desorption stage, resulting in a decrease in the ice water
outlet temperature TLout.

On the other hand, the increase in TMin causes a decrease
in temperature difference between the recooling and hot wa-
ter, leading to an increase in the hot water outlet temperature
THout, observed in Fig. 9 [66].

The obtained results are in coincidence with the observed ef-
fects of TMin on CC and COP, depicted in Fig. 10.

Fig. 10. Effect of the recooling water inlet temperature on CC
and COP of the adsorption chiller (TLin = 288 K, TMin = 288 K–
298 K, THin = 353 K, VL = 20 dm3/min, VM = 75 dm3/min, VH =

15 dm3/min).

The increase in the recooling water temperature leads to an
increase in these two energy efficiency and performance indica-
tors of the adsorption chiller, i.e., CC and COP, as the recovery
system improves the ADS performance [18].

Lower ice water output temperatures (Fig. 9) favor lower
pressures in the evaporator, allowing an increase in the amount
of vapor produced and higher cooling capacity of the adsorp-
tion chiller [67]. Furthermore, due to an increase in THout, the
heating power HP of the AdC decreases. The simultaneous in-
crease in CC and a decrease in HP cause a further increase in
COP of the system, according to Fig. 10 [13].

The effects of the volume flow rates of recooling water VM
on TLout, THout, CC, and COP are shown in Figs. 11 and 12.

The increase in the recooling water volume flow rates slightly
influences the output temperatures, causing a small rise and
a decrease in THout and TLout, respectively, by ca. 1–2 K. The
observed changes are results of slight heat transfer improve-
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Fig. 12. Effect of the recooling water volume flow rates on CC and
COP of the AdC (TLin= 288 K, TMin= 298 K, THin= 353 K, VL=

20 dm3/min, VM = 70−80 dm3/min, VH = 15 dm3/min)

ment in the heat exchanger of the adsorption bed for higher
fluid velocities. Such conditions lead to an increase in CC [68].

However, the increase in VM means a decrease in temper-
ature difference between the recooling and hot water due to
the recovery system applied in the considered AdC aggregate,
discussed in the previous section. Thus the increase in the re-
cooling water volume flow rates leads to lowering the heating
power HP of the chiller. The simultaneous increase in CC and
a decrease in HP cause an increase in COP reported in Fig. 12.

It is also worth noting that, based on the training sample, the
developed ACANN model accurately identified the beneficial
effects of the heat recovery system, improving the waste ther-
mal energy management in the chiller.

That is why the AI models, which are capable of reproducing
a process or an object behavior without specific knowledge, are
sometimes deemed to be tools that can overcome the shortcom-
ings of the programmed computing approach and the experi-
mental procedures [2, 48, 59].
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Lower ice water output temperatures (Fig. 9) favor lower
pressures in the evaporator, allowing an increase in the amount
of vapor produced and higher cooling capacity of the adsorp-
tion chiller [67]. Furthermore, due to an increase in THout, the
heating power HP of the AdC decreases. The simultaneous in-
crease in CC and a decrease in HP cause a further increase in
COP of the system, according to Fig. 10 [13].
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However, the increase in VM means a decrease in temper-
ature difference between the recooling and hot water due to
the recovery system applied in the considered AdC aggregate,
discussed in the previous section. Thus the increase in the re-
cooling water volume flow rates leads to lowering the heating
power HP of the chiller. The simultaneous increase in CC and
a decrease in HP cause an increase in COP reported in Fig. 12.

It is also worth noting that, based on the training sample, the
developed ACANN model accurately identified the beneficial
effects of the heat recovery system, improving the waste ther-
mal energy management in the chiller.

That is why the AI models, which are capable of reproducing
a process or an object behavior without specific knowledge, are
sometimes deemed to be tools that can overcome the shortcom-
ings of the programmed computing approach and the experi-
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3.2.3. Effect of hot water inlet temperature and volume flow
rates. Figure 13 shows the effect of hot water inlet tempera-
ture THin on the outputs TLout and THout. As the THin in-
creases, the ice water output temperature from the evaporator
TLout slightly decreases. Higher hot water temperatures cause
an increase in bed temperature. These conditions allow better
preparing the bed for the adsorption phase by expelling to the
condenser more refrigerant, previously accumulated on the in-
ner surface of the silica gel. Such a well-prepared adsorption
bed has a higher capacity to absorb more water vapor and fa-
vors adsorption processed, leading to a decrease in TLout [63].
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However, since not all of the heat input, supplied with hot
water, can be carried out in the vapor steam expelled to the con-
denser, the increase in hot water inlet temperature THin leads
to the increase in its output temperature THout (Fig. 13).

The effects of THin on CC and COP are the results of two
opposing mechanisms shown in Fig. 14. The cooling capacity
of the adsorption chiller increases with the increase in THin.

Fig. 14. Effect of the hot water, inlet temperature on CC, and COP
of the AdC (TLin = 288 K, TMin = 298 K, THin = 331 K–358 K,

VL = 20 dm3/min, VM = 75 dm3/min, VH = 15 dm3/min)

Since the bed regeneration process is more complete, due to
better thermal conditions corresponding to higher hot water in-
let temperatures THin, the refrigeration circulation increases
with the increase in the amount of desorbed refrigerant and the
equilibrium uptake of water vapor is higher for the thorough
regenerated bed. Such conditions improve the cooling capacity
CC [66,69–71]. On the other hand, as CC improves, the heating
power HP of the AdC also increases, leading for THin higher
than 356 K to the decrease in COP (Fig. 14).

Figures 15 and 16 show the effects of the hot water volume
flow rate on the TLout, THout, CC, and COP of the adsorption
chiller. The increase in VH slightly improves heat transfer in
the tubes of the heat exchanger.
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Fig. 16. Effect of the hot water volume flow rates on CC and COP of
the adsorption chiller (TLin = 288 K, TMin = 298 K, THin = 353 K,

VL = 20 dm3/min, VM = 75 dm3/min, VH = 13−30 dm3/min)

This favors the desorption process, allowing to increase the
vapor uptake during the adsorption stages. Such conditions
cause a slight decrease in ice water output temperatures TLout,
increasing CC.
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The highest COP = 0.65 can be obtained for the ice water input 
temperature TLin = 291 K, the recooling water inlet tempera-
ture TMin = K, the hot water inlet temperature, THin = 353 K, 
the ice water volume flow rate, VL = 20 dm3/ min, the recooling 
water volume flow rate VM = 75 dm3/ min, the hot water vol-
ume flow rate VH = 0.15 dm3/min.

The developed ACANN model constitutes an easy-to-use 
and powerful optimization tool of the adsorption chiller, inte-
grated into a combined, multigeneration system.
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VL = 20 dm3/min, VM = 75 dm3/min, VH = 15 dm3/min.
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Table 3
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Parameter CC COP
(horizontal axis) (vertical axis) (vertical axis)

Ice water inlet temperature,
TLin, K

Cooing water inlet temperature,
TMin, K

Heating water inlet temperature,
THin, K

Ice water volume flow rate,
VL, dm3/min

Recooling water volume flow rate,
VM, dm3/min

Hot water volume flow rate,
VH, dm3/min

The cooling capacity CC of the AdC, incorporated into the
considered combined heating and cooling system, can be inten-
sified by the increase in all inputs.

The highest CC, equal to 12.7 kW can be reached for TLin =
293 K, TMin = 298 K, THin = 353 K, VL = 20 dm3/min,
VM = 75 dm3/min, VH = 15 dm3/min.

On the other hand, the highest COP = 0.65 may be ob-
tained for TLin = 291 K, TMin = 298 K, THin = 353 K, VL =
20 dm3/min, VM = 75 dm3/min, VH = 15 dm3/min.

4. Conclusions

The paper deals with one of the most effective cooling produc-
tions via an adsorption chiller, utilizing waste low-temperature
and operating in an existing combined heating and cooling
system. A two–bed AdC is considered in the study. Artificial
neural networks are used to develop a unique, non-iterative
ACANN model, allowing conducting the performance opti-
mization study of the chiller. For the considered range of in-
put parameters of the adsorption chiller, the highest CC equal
to 12.7 kW can be obtained for TLin = 293 K, TMin = 298 K,

THin = 353 K, VL = 20 dm3/min, VM = 75 dm3/min, VH =
15 dm3/min.

The highest COP = 0.65 can be obtained for the ice wa-
ter input temperature TLin = 291 K, the recooling water
inlet temperature TMin = 298 K, the hot water inlet tem-
perature, THin = 353 K, the ice water volume flow rate,
VL = 20 dm3/min, the recooling water volume flow rate
VM = 75 dm3/min, the hot water volume flow rate VH =
0.15 dm3/min.

The developed ACANN model constitutes an easy-to-use and
powerful optimization tool of the adsorption chiller, integrated
into a combined, multigeneration system.
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