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and other non-cancerous lesions such as cysts are often diag-
nosed in the kidneys. Kidney diagnostics is based on insight-
ful and time-consuming analysis of CT images. Some help in 
the diagnostic process and can be obtained by using computer 
image analysis methods. Over the past few years, many solu-
tions for internal organs segmentation have been developed. 
Automatic kidney detection is one of the most important chal-
lenges for medical systems. results of segmentation based on 
deformable models are presented in [9]. Solutions based on 
deformable models are available [10]. Solutions based on fuzzy 
segmentation are still being developed [11].

Among the systems based on machine learning, solutions 
based on U-Net [3, 12‒17] should be considered. By using 
a convolutional network such as U-Net, it is possible to omit 
the feature extraction phase. The disadvantage of this type of 
solution is the limited possibility of parametrization of the 
learning data and high calculation requirements. Especially for 
medical data, the size of the network input data may be too 
large for a typical computer unit if the whole image is being 
loaded. This article presents a method of image partitioning into 
frames, thereby providing only a fragment of the image to the 
network input. The advantage of frame creation is the reduction 
in the amount of the learning data. The parts of the image for 
learning the network have been selected to achieve the best 
possible network generalization possibilities. The volumetric 
coherent area analysis technique is also presented in this work, 
which facilitates removing errors in the form of redundant areas 
generated by the neural network. The manuscript presents 2D 
and 3D volumetric analysis techniques. The results of numerical 
experiments of the analyzed solutions based on U-Net, Dense 
U-Net, and 3D volumetric analysis support are presented. The 
U-Net-based frames partitioning supported by volumetric anal-
ysis for kidney detection in tomographic images proposed in 
this paper is a novel solution, which can be considered in the 

1.	 Introduction

This paper presents the possibilities of U-Net application as 
a classifier task in the problem of kidney diagnosis based on 
images obtained from a CT examination. Convolutional neural 
networks (CNNs) were defined in the 1990s by Le Cun [1]. 
Solutions based on the modeling of mathematical structures 
that perform signal processing have been the focus of atten-
tion over the last decade as a major effective tool for machine 
learning. The development of the new GPU graphics cards has 
contributed to the possibility of wide application in prediction 
and classification tasks in a wide variety of scientific and indus-
trial fields. Today, neural networks are the subject of intense 
research, especially in the field of medical image processing 
[2‒5]. The U-Net was designed for medical image processing in 
the Computer Science Department at the University of Freiburg, 
Germany [6].

Nowadays, various types of pathomorphological kidney 
lesions constitute one of the most serious disease groups. 
Renal neoplastic lesions pose a great challenge in diagnostics 
and treatment. Kidney cancer is characterized by a very high 
mortality rate. Kidney cancer is detected in about 400,000 new 
cases worldwide, according to the data from 2018, with an esti-
mated mortality rate of 44% [7]. According to the World Health 
Organization (WHO) classification, kidney cancer includes the 
most common bright cell kidney cancer (65‒70% of all kidney 
cancers) as well as multicellular cystic kidney cancer, papillary 
kidney cancer, chromophobic kidney cancer, and other relatively 
rare types of cancer [8]. Also, oncocytoma, angiomyolipoma, 
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Abstract. This work presents an automatic system for generating kidney boundaries in computed tomography (CT) images. This paper presents 
the main points of medical image processing, which are the parts of the developed system. The U-Net network was used for image segmentation, 
which is now widely used as a standard solution for many medical image processing tasks. An innovative solution for framing the input data has 
been implemented to improve the quality of the learning data as well as to reduce the size of the data. Precision-recall analysis was performed 
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images, medical specialists in medical centers, especially for those who perform the descriptions of CT examination. The system works fully 
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Fig. 1. Example of a large variety of kidneys; the brightness of the images has been automatically adjusted

construction of the modern medical diagnostic computerized 
systems.

Currently, complete, and automatic diagnosis of kidneys, as 
well as further classification of neoplastic lesions based on CT 
scans, is a major research challenge.

2.	 Materials

The study presented in this paper was conducted with the use 
of data provided by the Military Institute of Medicine in War-
saw. The CT slices used in the study are very different. The 
data include images representing many renal pathologies such 
as kidney tumors and others, cystic fibrosis, hydronephrosis, 
etc. The effectiveness of the diagnosis of a pathomorphological 
lesion depends on the type of lesion, its location, and image 
quality. In Fig. 1 we can see different slices of CT, showing 
a large variety of changes in the kidneys.

The images used in the study were prepared in the process 
of CT examination with a contrast medium. As the contrast 
can absorb X-rays, it facilitates shading the image obtained 
in the examination, which significantly improves its readabil-
ity. Thanks to the use of a contrast medium, it is possible to 
visualize the details of the structure, both of whole tissues and 
individual organs. Despite the use of a contrasting medium, the 
automatic task is still difficult. Figure 1 shows six selected, dif-
ferent examples of slices, showing particular problems occur-
ring in the analysis of this type of image. Example A in Fig. 1 

shows the problem of the kidney (indicated by an orange arrow) 
touching the liver and highlights related difficulties in segmen-
tation. The appropriate contrast adjustment is important in this 
case. Example B shows an unusual shape of the kidney; exam-
ple C shows the final section of a small kidney; examples D 
and E show that the kidney is invisible or displaced. Example F 
shows both kidneys in the middle section with a regular shape 
and typical position.

The presented examples also show the differences in con-
trast intensity. It is also very difficult to precisely define the 
location of neoplastic lesions as well as the position of the kid-
neys in the whole CT image. Following the above observations, 
a scheme based on U-Net was proposed.

The study was performed with the collection of image data 
of patients from the Military Institute of Medicine in Warsaw. 
The data are anonymized and it is not possible to identify the 
individual patient based on the provided data. The image data 
is characterized by great diversity. Some cases are characterized 
by a different phase of contrast. The task of kidney detection is 
also difficult due to the major anatomical differences among the 
patients. The position of the kidneys may move within a certain 
range in the x, y, and z axes. The kidneys may also have differ-
ent positions from each other. Therefore, it is not possible to 
establish a single fixed kidney search area. To assess the effec-
tiveness of the kidney detection system proposed in this paper, 
30 different cases were analyzed. Every single case consists 
of a series of single slices as a raw CT image. The number of 
slices for one case may vary significantly.
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The resolution in the patient's Z-axis depends on the slice 
thickness parameter, which determines how many mm of the 
section is represented. This parameter can vary from 1.25 mm 
to 5 mm depending on the examination. Also, differences 
may arise since some of the kidneys may have tumors, which 
increases the number of necessary scans. Sometimes the dif-
ferences occur because of the anatomical structure, i.e. kidneys 
are never located at the same height.

3.	 Processing methods

This section presents the individual main stages of image pro-
cessing in the developed system for kidney detection. The main 
stages of which the system consists include initial brightness 
correction, preparation of the U-Net model applying frames 
partitioning, U-Net classification, and volumetric analysis of 
coherent areas.

3.1. Image brightness correction. A raw, single CT slice, 
analyzed on a computer, is a grayscale image with a bright-
ness range of about 4000 pixels. This is a number that cannot 
be visualized in the form of a typical image with a range of 
256 pixels. For data processing by using mathematical morphol-
ogy and U-Net techniques, this range is not narrowed because it 
would reduce the valuable information within the image. Only 
for the visualization of the output image for the presentation, 
the image is scaled to a range of 256. Typical automatic adjust-
ment techniques fail in the case of CT images because they 
rely on the analysis of the image intensity in the entire f ield of 
view. In the case of CT image analysis, it was decided to adjust 
the brightness of the image based on pixel intensity analysis 
in 80£80 pixel frames, whose upper left corner is located at 
points [x1, y1] = [110, 264] and [x2, y2] = [319, 282].

These points were selected after analyzing 300 different 
slices to select a single frame that covers the largest part of the 
kidney. In the next step, the pixel values from both frames are 
averaged and scaled to a range of 1‒256. In this way, a gray-
scale image is obtained, which emphasizes as much as possible 
the differences in contrast between the kidney and other organs 
(Fig. 2).

3.2. U-Net in medical image segmentation. Kidney detec-
tion was performed using the U-Net. The U-Net is a multi-
layer network. In this network, the input layer represents the 
dimensions of the input data [18]. A typical CT image size is 
512£512 pixels. Trying to input the full image size into a U-Net 
network is not optimal for a typical computing unit because of 
the kidney size. Because the CT image is represented by the 
dimensions 512£512£1 (X size, Y size, and several channels) 
it was decided to divide the image based on patches that cover 
the selected kidney area to reduce the size of the learning data.

It was decided to select a set of 48£48 pixel frames from 
each slice belonging to the learning dataset. A mask was gen-
erated as a result of dilatation operation, using the structuring 
element of 4 px, from a mask created by an expert. Then, up to 
six frames were randomly selected, assuming that the distance 
between frames is 6 px and which region overlaps the mask.

Each layer is shown as a blue block and corresponds to the 
multi-channel representation of the output of the previous layer. 
The size (i.e. height £ width – H £ W) of the image representa-
tion is marked on the left side of the block, while the number 
of D channels is above the block. The white blocks correspond 
to the copied representation of the image from the deeper layer. 
Colored arrows mark the operations performed on the images 
and are described in the legend in the lower right corner of 
the diagram. The violet color indicates dropout operation, i.e. 
resetting randomly selected weights in the layer on which it was 
applied with 0.5 probability. The constructed model consists of:
●	 The input layer (single-channel image)
●	 Convolutional layers with ReLU activation function, filter 

size 3£3
●	 Sampling layers with a maximum 2£2 filter size operation
●	 Two layers of dropout
●	 Operations of copying output images from deeper layers
●	 Layers with sigmoid activation function, filter size 1£1
●	 Output layer (single-channel greyscale image)

U-Net was configured based on validation data according 
to the following parameters:
●	 The number of epochs: 20
●	 The learning algorithm: the stochastic gradient descent with 

momentum
●	 The minimum batch size: 256
●	 The gradient threshold: 0.05
●	 The initial learning rate: 0.05 (was changed between 0.05 

and 0.06)
●	 The L2 regularization: 0.0002 (was examined from the val-

ues of 0.0001, 0.0002, and 0.0003),
●	 The momentum 0.95 (was selected from 0.92, 0.95 and 0.98)

3.3. Frame pixel classification. The possibilities of general-
ization of the neural network depend on the correct selection 
of learning data. In the learning process, data sets have been 
prepared in which the structure (kidney) is sufficiently repre-
sentable. For this purpose, a binary mask was created, obtained 
in dilatation transformation using a 4-pixel radius disk struc-
tural element.

Pre-defined 48£48 pixel patches are randomly generated in 
a way that their centers are within the mask, with a minimum 

Fig. 2. A) Raw image scaled to a range of 0‒255; B) Image after 
applying brightness correction

A B
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distance between the patches of 6 pixels. Then, for each slice, 
six patches with an area of kidney greater than 500 pixels were 
selected. The final segmentation is a combination of patches 
representing the kidney. The algorithm is based on moving the 
frames horizontally and vertically every 6 px. For each pixel, 
which is a potential kidney fragment, the segmentation is per-
formed 64 times, which is a result of a specific selection of 
frame size and offset.

A graphical example of the selection of patches is shown 
in Fig. 3.

The next step of the algorithm is to perform a threshold. The 
result of the neural network is in the form of an image in gray-
scale. Each pixel represents the number of votes cast for the fact 
that there is a kidney at a given point. To select the appropriate 
threshold, a Precision-Recall analysis was conducted.

The equilibrium point between a true positive ratio TPR 
(sensitivity) (1) and a positive predictive value PPV (precision) 
(2) was equal to Th = 38, based on 10 cases of validation set 
data.

	 TPR =   TP
TP + FN

, � (1)

	 PPV =   TP
TP + FP

, � (2)

where,
●	 TP is the number of pixels defined as a kidney by the system 

as well as by the expert.

●	 FP is the number of pixels defined by the system as back-
ground and by the expert as kidney.

●	 FN is the number of pixels defined by the system as a kid-
ney and by the expert as a background.
Figure 4 shows the Precision-Recall curve of PPV and TPR. 

Based on the curve analysis, the threshold point was deter-
mined.

Fig. 4. Precision-Recall curve of TPR (Sensitivity) and PPV (Precision); 
based on the curve analysis the threshold point (Th) was determined

Fig. 3. The process of generating patches for the kidney; generated kidney patches are passed to the classifier input (1‒3), then, the frames 
(4‒5) are merged, the threshold is calculated and the final result is visualized (6)
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After the threshold is calculated, a binary image is obtained 
(Fig. 6). The result has errors of type I (false positive). To 
remove this type of error it is necessary to perform a volumetric 
analysis of coherent areas, described in Section 3.4.

3.4. Volumetric analysis of coherent areas. To eliminate FP-type  
errors, all coherent areas should be removed, leaving only the 
two largest ones (kidneys). The removal of coherent areas can 
be done in two dimensions (for each slice separately) or three 
dimensions (for all slices together).

ysis allows us to detect areas that are connected to the kidney 
in 2D space but are disconnected from the kidney in 3D space. 
The disadvantage of this solution is the need to calculate the 
results for all slices in advance.

3.5. The complete system of kidney detection. This section 
presents the concept of a complete kidney detection system 
in CT images. The first step is to construct frames covering 
the areas of kidney interest. Next, the U-Net model should be 
generated based on the frames. The next step is to perform 
a threshold, using a previously determined value. The last step 
is to analyze the consistent areas to remove redundant areas. 
A diagram of the major steps of the system is presented in 
Fig. 7.

Fig. 7. Diagram showing the four main stages of the presented kidney 
detection system

Fig. 6. A full 3D model using binary masks was obtained as a result 
of U-Net segmentation with threshold 38. The two largest areas are 
marked in green. The blue color shows the area to be removed. The 

black surface marks the slice visible in Fig. 5

Fig. 5. A) Example result returned by U-Net after binarization with 
threshold value 38; B) Result of removing coherent areas

A B

This type of analysis can also be performed in three-dimen-
sional space. The same case is presented in Fig. 6 in 3D space.

4.	 Results

To assess the quality of the system, numerical tests were per-
formed. The coefficients were calculated for each slice: TP, FP, 
FN, and F1-score (F1) (3).

	 F1 =   2 ¤ TP
2 ¤ TP + FP + FN

 ¢ 100% , � (3)

F1-score is a measure widely accepted and used in publica-
tions for the evaluation of the possibilities of the detection and 
segmentation of medical images. Also, the Hausdorff metric 
(dH) was calculated for each pair of expert and system-gener-
ated masks (4).

	 dH(X, Y) = max 	 sup	 inf	 d(x, y)
	x 2 X	 inf	 y 2 Y , 	 sup	 inf	 d(x, y)

	y 2 Y	 inf	 x 2 X � (4)

Both F1-score and dH were calculated in a pixel-wise way 
by comparing the kidney mask created by the expert (X) and 
the mask generated by the system (Y).

In the case of two-dimensional analysis, it is necessary to 
calculate the area of all consistent areas and remove all, leaving 
the two areas with the largest area. The result of this operation 
is shown in Fig. 5.

Performing an analysis of consistent areas in three dimen-
sions is a more complex operation. However, this type of anal-
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In the experiments, 30 cases were used for cross-validation 
tests. Cases were divided into 10 groups in which 27 cases were 
selected as the training data and 3 cases were selected as the 
testing data. Each case is composed of 23 to 92 slices. In total, 
1,447 slices were analyzed. The numerical results of the cal-
culated F1-score measure of the tests are presented in Table 1.

Table 1 
Numerical results of automatic kidney detection based on F1-score, 

standard deviation (SD), and confidence interval (CI)

Group Kidney detection

Average F1-score SD (CI) CI range dH

01 89.22 ± 14.74 (85.42‒93.03) 07.61 10.57

02 90.44 ± 06.78 (88.34‒92.54) 04.20 16.83

03 85.99 ± 13.57 (83.16‒88.81) 05.65 09.39

04 89.90 ± 11.50 (87.60‒92.21) 04.61 11.95

05 92.32 ± 06.66 (90.98‒93.65) 02.67 14.93

06 90.34 ± 11.54 (88.03‒92.66) 04.63 08.48

07 90.27 ± 11.61 (87.95‒92.60) 04.65 10.74

08 87.93 ± 13.82 (85.16‒90.70) 05.54 16.53

09 88.34 ± 15.31 (85.15‒91.53) 06.38 14.94

10 76.42 ± 09.23 (70.56‒82.28) 11.72 16.85

average 88.12 ± 11.48 (85.24‒91.00) 05.77 13.12

Fig. 8. Selected results showing the possibilities of kidney detection. The red color indicates a kidney boundary generated fully automatically 
by the system. The blue color indicates a kidney boundary generated by a human expert

The numerical results presented in Table 1 show that the 
average F1-score in kidney detection is 88.12. The standard 
deviation has also been calculated for each group, which varies 
from 6.66 to 15.31. Large values of the standard deviation result 
from the fact that the kidney area varies according to the Z-axis. 
The surface area counted in the middle section pixels is usually 
the largest, while the surface area of the end sections (e.g. first 
and last) is the smallest. When calculating the F1-score mea-
sure, even a small error (about a few pixels) results in a large 
decrease in the F1-score. To illustrate the results better, a confi-
dence interval measure (CI 95%) was added, rejecting outliers. 
The average CI range is 5.77 and most F1-score values are 
between 85.24 and 91.00.

The experiments were performed on a computer equipped 
with a MATLAB environment.

Tests were performed on a computer with Intel®Core™ 
i7‒7820HQ, 2.90 GHz, 4 Cores, 16 GB installed physical mem-
ory, and graphics card: NVIDIA Quadro M1200.

Figure 8 shows examples of kidney detection results. The 
red color indicates a kidney boundary generated fully automati-
cally by the system. The blue color indicates a kidney boundary 
generated by a human expert.

The possibilities of the system in kidney detection with 3D 
reconstruction are presented in Fig. 9. Image results were gen-
erated after removing all consistent areas and leaving the two 
largest ones. The results were compared with the kidney recon-
struction generated using masks created by a human expert.

The evaluation of the influence of volumetric analysis of 
coherent areas on kidney detection capabilities was examined 
by calculating the F1-score for both systems. Additionally, the 
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results were compared to an alternative architecture: Dense 
U-Net. The results of kidney detection for 10 cases are pre-
sented in Table 2.

Table 2 
Numerical results showing the impact of volumetric analysis of 

coherent areas on automatic kidney detection possibilities

System
F1-score

3D volumetric 
analysis

2D 
analysis

U-Net: 3D Volumetric analysis 90.84 87.85

Dense U-Net: 3D Volumetric 
analysis 88.48 84.73

U-Net: Without coherent areas 
analysis 85.39

Dense U-Net: Without coherent 
areas analysis 84.94

The implementation of volumetric analysis of coherent 
areas significantly improves the efficiency of kidney detec-
tion in both systems. Sometimes, however, areas connected by 
a “thin line” occur, as shown in Fig. 10. In such cases, the 3D 
coherent analysis fails. This error is not significant in the 2D 
analysis where each slice is treated separately.

Fig. 9. Selected results showing the possibilities of kidney detection. 
The kidney area is marked in green. Examples A, C, E are generated 
using human expert data. Examples B, D, F are generated by an 

automatic system

Human expert

(A)

(C)

(B)

(D)

(E) (F)

Automatic system

Fig. 10. Examples of areas connected by a “thin line” where 3D 
coherent analysis fails

5.	 Discussion

This paper presents a kidney detection system for CT images. 
The system uses U-Net and morphological operations to gen-
erate a kidney boundary fully automatically. Processing all CT 
slices also facilitates the generation of a 3D model of the kid-
ney. The work presents four main stages of data processing: 
frame construction, U-Net model generation, thresholding, and 
volumetric analysis of coherent areas. The advantage of frame 
creation is the reduction of the size of learning data; however, 
it increases the complexity of the final detection process due 
to the necessity of a combination of patches representing the 
kidney. Another advantage of the proposed system is the ability 
to parallel the analysis of many images at the same time. Data 
processing can be performed in any order without the need for 
analysis of other slices. This is a significant difference from 
the earlier presented approach [19], in which some incorrectly 
recognized previous slices might result in deterioration of the 
analysis process. The proposed method facilitates avoiding this 
problem resulting from inappropriate data acquisition or trans-
mission failures.

Additionally, it was observed that slices, even for the same 
patient, could differ significantly in brightness and sharpness. 
An independent analysis of slices is an advantage in opposition 
to the system proposed in [19], which required pre-calculation 
of the previous slice to generate a mask response for the actu-
ally analyzed slice.

In the proposed system, instead of the whole image, only 
a fragment is passed to the network model. An important stage 
of systems based on neural networks is to choose the appro-
priate threshold value. In this work, a fixed threshold has been 
chosen based on the precision-recall analysis. Though the 
determined value is optimal from a global point of view by 
analyzing multiple slices, the calculated value is not always 
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optimal for a single slice. This is reflected in the FP-type errors. 
Elimination of this error has been realized by implementing the 
volumetric algorithm of a coherent area analysis. As a result, 
all consistent areas were removed from the image, leaving the 
two largest ones, i.e. two kidneys. The analysis of a coherent 
area can be done in 2D for every slice separately or in 3D. 
Numerical results confirm that a 3D volumetric coherent area 
analysis is more effective.

The limitations of the system are errors when using a 3D 
coherent analysis including “thin lines”. Such errors are not 
significant when removing the disconnected areas for each slice 
separately. In the future, consideration should be given to fusion 
combining the advantages of a 3D volumetric analysis and a 2D 
coherent area analysis.

Further work is also necessary, especially on the dynamic 
selection of threshold values, individual for each slice, which 
will reduce the FP errors. Computer image segmentation meth-
ods are currently one of the biggest challenges in medical tech-
nology [3, 9, 20]. Neural network solutions are a valuable direc-
tion for development. U-Net-based diagnostic support systems 
are characterized by high accuracy of 85‒95% [12, 21, 22].

The numerical results of the presented system confirm the 
high efficiency of kidney boundary recognition at F1-score: 
88.12 ± 11.48%.

It should be emphasized that the best results of medical 
image segmentation can be obtained only by combining neu-
ral network techniques with morphological image processing. 
Therefore, there is still a need to develop new techniques for 
medical image processing.

6.	 Conclusions

This study presents a system for automatic kidney detection 
for a set of CT images. The system can automatically generate 
a contour of the kidney and build a 3D model. The main idea 
of the system is based on semantic U-Net segmentation, frame 
partitioning, and volumetric coherent area analysis. The per-
formed numerical experiments confirm the high efficiency of 
the proposed solution. The presented solution can be applied 
in medical centers and can support radiologists and specialists 
involved in the image description.
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