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Abstract. In the ceramic industry, quality control is performed using visual inspection in three different product stages: green, biscuit, and
the final ceramic tile. To develop a real-time computer visual inspection system, the necessary step is successful tile segmentation from its
background. In this paper, a new statistical multi-line signal change detection (MLSCD) segmentation method based on signal change detection
(SCD) method is presented. Through experimental results on seven different ceramic tile image sets, MLSCD performance is analyzed and
compared with the SCD method. Finally, recommended parameters are proposed for optimal performance of the MLSCD method.
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1. Introduction

Nowadays, modern ceramic tile companies are applying the
most sophisticated technologies of robotics and computer in-
formation to improve the step of automation. Therefore, almost
all production stages are completely automated, except for the
stage of visual inspection [1]. During ceramic tile production,
three products are made: green tile (body), biscuit tile (body
with decoration), and finally ceramic tile (finished product). Vi-
sual inspection on the production line can be carried out in all
three stages, and therefore reduce the number of defective fi-
nal products. Due to labor costs, most companies conduct only
visual inspection of the final product (ceramic tiles), which is
inefficient in terms of material recycling, energy consumption,
green economy, and financial efficiency [2].

Currently, quality control of the final product can be divided
into three phases. In phase one, the tile arc is measured by a lin-
ear planer. In the second phase, tile size is measured by stacker
and compared to ideal tile size. In the last phase, ceramic tile
surface defects are identified by human workers. Usually, the
quality of tiles is graded by a human operator according to ISO
10545-2 standard. However, problems like sickness, lack of at-
tention, eye fatigue, and lover repeatability often result in mis-
classification caused by human factors [3].

Automatic quality control of the biscuit/ceramic tiles con-
sists of several stages: image acquisition, image preprocessing
and segmentation, defect detection, and finally classification.
To develop a completely automated system for visual inspec-
tion, a deep analysis of the complex ceramic tile production
process needs to be conducted to determine which defects can
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be found in each stage of visual inspection. Nevertheless, in ev-
ery stage tile image segmentation is necessary as it affects the
performance of the subsequent methods for quality control. As
aforementioned, the complete production of the ceramic tile is
divided into three stages. Firstly, the green tile is formed using
a material powder mixture and a large press machine. Subse-
quently, the biscuit tile is formed by adding glazing and/or dec-
oration on the green tile. The biscuit tile can be easily damaged
during fabrication as it is not fired yet [4]. The last production
stage is the ceramic tile made by firing a biscuit tile in the kiln.
In this process, surface defects as depigmentation, spots, cracks,
blobs, edges, and pinholes are most common [1,5]. To better un-
derstand the complexity of ceramic tile production, a complete
production process is given in Fig. 1 [3].

The rest of this paper is organized as follows. Section 2
gives the literature overview of the paper topic. Section 3 is
divided in subsections where, signal change detection (SCD)
method is described in 3.1, new multi-line signal change dete-
cion (MLSCD) method is presented in 3.2 and proposed seg-
mentation method is given in 3.3. Experimental analysis of the
proposed segmentation method is given in Section 4. Finally,
Section 5 concludes the paper and provides remarks for future
work.

2. Related work

In the past decade, numerous papers are published in the field
of automatic visual inspection, as almost every branch of the
production industry demands some kind of visual inspection to
classify the final product. The complete process of visual in-
spection can be divided into three parts. First is the digitaliza-
tion of tested objects using some digital device such as cameras
or lasers. The second is image analysis, where image segmenta-
tion is a crucial part. Finally, the third step is the quality classi-
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Fig. 1. Ceramic tile production process

fication [6]. Nowadays, the focus is placed on the machine and
deep learning, whereas in the past it was on statistical and ana-
lytical methods. A combination of the both are still commonly
used in numerous real-world applications [7].

In the field of visual inspections and the classification of ce-
ramic tiles, authors use different methods. Wang et al. in [8] use
Mask region-based convolutional neural network for segmen-
tation and damage detection in historic glazed tiles with the
aim to develop an automatic periodic control system. Which
plays a crucial role in the maintenance and protection of the
existing infrastructure. In [9] authors use the K-means cluster-
ing method to detect the temperature of the firing zone to im-
prove flexural strength and fracture toughness of ceramic tiles.
Matic et al. in the paper [10] present real-time edge and cor-
ner defects detection systems. As the proposed system is based
only on white uniform tiles, segmentation is done by threshold
using Otsu’s method. A simple and efficient method for sur-
face defects is presented by Hocenski et al. in the paper [11];
the proposed method is also applied in uniform white ceramic
tiles, and for tile segmentation, authors use Sobel edge detector.
The proposed method is reused in paper [12] with three differ-
ent implementations: CPU, GPU, and FPGA to measure and
compare execution times for different computational platforms.
During computer vision inspection, the working environment
can drastically impact the performance of the algorithm. So
Zguang et al. in their paper [13] present a robust segmenta-
tion algorithm based on super-pixel. The proposed algorithm is
tested on several different industry vision inspection input im-
ages, one of which is the ceramic industry. Rahaman and Hos-
sain in paper [1] present automatic defect detection and classi-
fication system, similar to [11] they use Sobel edge detection
method. Zhou et al. proposed a new method for image segmen-
tation based on the least-square circle detection and entropy rate
super-pixel. Although the method is applied in the glass bottle
industry, a similar method has potential uses in the ceramic tile
industry [14]. Yan et al. in paper [15] present another similar
industry application of image preprocessing. In their paper, fast
and effective framework, applied on the hot round steel surface

is given, where they use parallel realization of the Sobel edge
detector for effective region extraction.

Quality inspection of ceramic tiles is conducted using an-
other approach, such as Chuna et al. use in their paper [16].
They proposed a non-destructive testing method based on two
different machine learning methods where input data is not an
image but rather its ceramic tile sound produced by the piston.

Matic et al. [17] proposed real-time biscuit tile image seg-
mentation (BTS) using SCD method. In their paper, the pro-
posed BTS method is extensively compared with eight different
biscuit tile segmentation methods (AEM-GC, OTSU, ACWE,
MCET, RF, HMRFEM, MET, GF), and the BTS method out-
performed them all. This information is used to further improve
the segmentation process and compare the results.

An improvement of the SCD-based BTS method is the main
motivation for writing this manuscript. In this work, a new sta-
tistical method for image segmentation of biscuit tiles based
on the SCD method is presented. Improving the existing SCD
method from single to multi-line calculation we create a new
multi-line SCD (MLSCD) method. The MLSCD method is im-
plemented and tested on seven biscuit tiles datasets and evalu-
ated using three different evaluation methods.

3. Proposed method

3.1. Signal Change Detection (SCD) method. In signal pro-
cessing, statistical methods are commonly used to detect ampli-
tude jumps. One of them is the SCD method. Authors in [17]
use the SCD method to find a single jump in a 1D signal of
pixels. The jump occurs from the background to the tile image
pixels.

Let x be the 1D stochastic signal, and x; is a single sample
of x, where i = 1,...,N is sample index, and N is the number
of samples. The SCD method return pairs of indices n; and am-
plitudes A; that approximates x. The proposed method can be
used to find unknown amplitude jump AA = A, —A; at an
unknown index n; [18].
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Let X be the approximated signal of x, to detect a single jump
from background pixel level to the tile pixel level AA = A; —Ap,.
The jump occurs in X at an unknown jump index #,. In this way,
an approximation X of 1D signal x is done with

~ Aba
X =
Ay,

In Eq. (1), the jump index n represents the result of proposed
segmentation method in a single signal. Two amplitude levels,
the background pixels average value Aj, and the tile pixels av-
erage value A;, are calculated with

i=1,...,n,

1
i=n+1,....N )

'y Ly
=-) X A= X . (2)
i3 N—n =,

In this work, the least square method is used to find the opti-
mal jump index 7 that minimizes the sum of two squared resid-
uals

VSCD(n):i(xi— + Y (xi—A) 3)

In this way, the problem is represented as finding the minimum
variance before and after the jump index n. Finally, the opti-
mal jump index n, that minimizes the sum of two variances, cf.
Eq. (3) is defined with

ne = argmin Vscp(n). 4)
1<n<N-1

3.2. MLSCD method. Equations (3) and (2) describe the
problem of finding the jump index n,, cf. Eq. (4), in signal x;,
i.e. a single row of pixels. This paper generalizes the problem
of finding the jump index n, in 1D signal by considering mul-
tiple adjacent image rows at once as a signal x; ;. The method
is rotationally invariant and the same approach can be applied
to image columns. Therefore, Egs. (4), (3) and (2) are general-
ized with

ng = argmin  Vscp(n,K), 5)
Ke{2k—1: keW}
I<n<N—1
[K/2]
Vscp(n,K) = Z Z Xij— 2+
j==1K/2] =1
LK/2] N
+ Z Z Xij _At , (6)
—|K/2] i=n+1
and
1 U%?J i
Ab(K) = — )C,7 ,
L =t ’
@)
1 [K/2] N
At (K) = x,'_,j,
N=nK;_T&p)
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where K € {2k — 1: k € W} is the odd number of adjacent
neighbour rows that are considered at once. Row index j is
ranging from -|K /2| to |K/2] with values relative to 0. Rel-
ative index number j = O corresponds to the current row for
which the Egs. (6) and (7) are calculated. Subsequently, the first
and the last | K /2] image rows are discarded from the equation
since there are no adjacent neighbour rows available at the start
and at the end of an image. Brackets |.| denote the floor round-
ing operation.

Finally, to segment the background from the foreground, the
MLSCD approximates the signal x; ; with %;, i = 1,...,N, for
each row of the image. Indices j = —|K/2], ..., |K/2] are
considered to calculate the variance in the signal x; ; with its
neighbour image rows. The signal %; has two jump levels A,(K)
and A;(K), cf. Eq. (7). Jump levels A, (K) and A, (K) are defined
by the K number of adjacent neighbour rows, and by the mean
value of x; ;, before and after the sample n, respectively.

3.3. Biscuit tile image segmentation using MLSCD. In this
paper, MLSCD is used for offline segmentation purposes. In
the first step, an input image is converted from RGB to the
grayscale color space. MLSCD parameter N that represents the
total number of background pixels p, and tile pixels p; is de-
termined using Matic et al. [17]. The result of the SCD and
MLSCD methods depends on the number of total pixels N, and
on the necessary number of tile pixels p;. For a given N, p; must
fulfill the condition 0.2N < p; < 0.8N for the best segmentation
result. In this paper, N = 400 fulfills the given condition for all
images in the dataset.

In the next step, grayscale input image is divided in four
parts: Ileft, Itops Iright and Tporrom

px(1,1) px(N, 1)

Liesr = : : , (®)
px(1,H) px(N,H)
[ p(W =N, 1) pe(W, 1)

Iright: ’ 9)
px(W—N,H) px(W,H)
[ pa(1,1) px(W, 1)

hp=| | (10)
_px(lzN) px(WvN)
px(1,H—N) px(W,H—N)

Tportom = . s (1D
px(l,H) Px(W,H)

where py(column,row) represents the pixel location with the
origin in the top left corner of an image. Each image part is
processed independently with the selected N and K values.
The intermediate result is the list of ng indices for each image
part: ng jeft» UK right» K up a0d ng gown, Where ng represents the
found jump index for each row/column, cf. Fig. 2.



www.czasopisma.pan.pl P

N www journals.pan.pl

POLSKA AKADEMIA NAUK

F. Susac, T. Mati¢, 1. Aleksi, and T. Keser

(b)

Fig. 2. Example of used rows for MLSCD calculation of the left part
of the image: K =9 (a); K =21 (b)

After combining the list of indices ng for each image
part, a binary image is created with the following proce-
dure. In each row/column, a total of two jump indices is de-
tected. The background pixels are defined as B = B; g JBy p,
where the background pixels for image rows are Brpr =
[0,....nk 1eft| U [k right,- -, W], and the background pixels
for image columns are By p = [0,...,nk.up] U [nk down, - - - H|.
The output segmented binary image is formed in a way that the
background pixels B are set to the value 0 (black color), and the
rest of the image pixels correspond to tile pixels T = |B — 1|
with the pixel value 1 (white color). The result of the described
segmentation procedure is a black and white image. However,
after combining the results from both rows and columns, a sin-
gle large white region is produced, which represents tile pix-
els exclusively. Outliers are present in a form of small, pixel
size patches of white regions in the image corners, cf. Fig. 3a
red dashed rectangles mark the outliers. To discard those un-
wanted corner regions of the binary image, the largest con-
nected component is calculated for the created binary image
using the union-find algorithm [19]. Finally, the result of the

(b)

Fig. 3. Binary image with small white region (outliers) in the image
corners marked with red dashed rectangles (a); the final MLSCD seg-
mentation result (b)

proposed method is a binary image that consists of background
(black) and tile (white) pixels, cf. Fig. 3b.

3.4. Extraction of contour and contour descriptor

3.4.1. Contour extraction. After the MLSCD segments the
tile pixels from background pixels, the segmented binary im-
age I is provided. To get some additional information about
the segmentation performance, it is necessary to find the con-
tour around the tile edge. This information can also be used
subsequently in edge and corner defect detection [20]. To find
the tile contour, firstly, a binary erosion operation is applied to
the image Is. The result is a binary image with a smaller tile
pixel area. The image Is is then subtracted from the eroded Is
to get the binary contour image Ic, i.e.

111
Ie=L—-|Lol|l 1 1 (12)
111
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As a result of Eq. (12), the contour image /¢ contains a pixel-
wide edge of the segmented tile image I [21]. The image I¢ is
used to extract the contour in its 2D vector form. To determine
the start position of the contour, the contour finding method
used in this work starts at the position in the first (leftmost) col-
umn, and at the center row, i.e. at p,(1,[H/2]), cf. Fig. 4a. The
first position of the contour is found by searching for the first
detected tile pixel edge in I¢, starting from the p,(1,[H/2])
to the right side of the image Ic. The first detected edge pixel
Dx(ce, [H/2]) is the start position of the contour, cf. Fig. 4b.
From the first contour position, a 90° direction is used to find
the next contour location. The next location is found by search-
ing the 8-neighborhood in the clockwise direction, starting from
arelative shift of —135° from the previous direction, cf. Fig. 4b.
This procedure is continued until the starting point is reached.
Finally, the contour positions are obtained as a vector of 2D
positions.

(@)

135°

180°

(b)

Fig. 4. Contour descriptor finding method starts from the p,(1,[H/2])

to the right direction (a); first detected edge with initial direction an-

gle set to 90°, and its 8-neighbourhood clockwise searching directions
from 225° (light-gray arrow) to 270° (black arrow) (b)

3.4.2. Contour descriptor extraction. The contour descrip-
tor is obtained from the contour positions by calculating the
set @ of absolute direction (angle) differences between the two
adjacent contour positions. The contour descriptor has 4 char-
acteristic angle differences of 90°, where each jump represents
one tile corner. Between two tile corners, along a tile edge, there
are many spikes of 45° angle difference, cf. Fig. 5. The spikes

Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e137121
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contour descriptor samples
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Fig. 5. Contour descriptor @ of Bianco Mat ground truth image

are caused by the following three reasons: tile alignment, edge
defects, and mostly by the image segmentation performance.
The first reason is caused by an alignment between a camera
and a tile, cf. Fig. 9a. The second reason indicates the pres-
ence of an edge defect. Finally, the third reason, with the largest
share in the total number of spikes, is the image segmentation
performance. Better performance results with a smaller number
of spikes, cf. Fig. 9.

4. Experimental results

4.1. Data acquisition and preparation. All biscuit tile im-
ages are acquired with a computer vision station (CVS) shown
in Fig. 6 [22]. The CVS is a device designed and produced for
a production line in the ceramic tile factory Keramika Modus
d.o.o. It is placed on the production conveyor line after the
decoration stage and before the firing stage. Ink-Jet printing

Light Light
source control

Biscuit

tile\

User

4 Conveyor
Interface

belt

Storage unit'

Fig. 6. Computer vision station prototype for biscuit tile image acqui-
sition
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technology is used for a raw tile decoration [23]. It is a non-
contact decoration method that facilitates the production of
high-quality prints using a wide range of materials. Main com-
ponents of the CVS are shown in Fig. 6. It consists of a metal
housing with air filtering fans, an LED light system, an area-
scan color camera, a storage (processing) unit, a tile detection
sensor, and a screen with a user interface. The used camera has
a maximum resolution of 2592 x 2048 pixels and a maximum
frame rate of 60 fps. The camera is connected to the process-
ing unit with the USB 3.0 protocol. All captured color images
are saved on the processing unit hard drives in compressed .jpg
format. Biscuit tiles are not affected in any way by the com-
puter vision station prototype. After a tile image is acquired, it
continues its way to the firing kiln.

CVS is used for the formation of the image dataset used for
the experimental analysis. The dataset consists of 7 biscuit tile
image sets, where each set contains 6 biscuit tile images, mak-

Bianco Mat

Mirasol

Madielle Dark

Botticino

Sabuni Beige

ing the dataset with a total of 42 images. All dataset images rep-
resent biscuit tiles with no defects. Image examples of biscuit
tiles are depicted in Fig. 7. Tiles Botticinio, Vellagio, Sabuni
Beige, and Madielle Dark, cf. Fig. 7, consist of six similar but
different patterns. Tile design is not uniform for the aforemen-
tioned tiles.

Using GIMP 2.10.8 image editing software [24], a human
expert created a ground truth binary image for each image in
the dataset.

4.2. Segmentation evaluation. Segmented image with a
smaller number of misclassified pixels is perceived as connat-
ural to the ground truth image. The SCD image segmentation
method (MLSCD with K = 1) usually results with misclassi-
fied pixels at positions in the vicinity of tile edges, cf. Fig. 9.
To evaluate these misclassified pixels and overall segmenta-
tion results, three different measures for qualitative and quan-

Vellagio

Sabuni Mosaico

Fig. 7. One tile example from each set used for experimental analysis

[

Bianco Mat

Mirasol

1L 11

Sabuni Beige

Madielle Dark

[_|

Botticino

|

Vellagio

Sabuni Mosaico

Fig. 8. MLSCD results for K = 25 of the tile examples from Fig. 7

Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e137121



IS

www.czasopisma.pan.pl P N www.journals.pan.pl

Multi-line signal change detection for image segmentation with application in the ceramic tile industry

()

(b)

©)

(d)

(e

)

(2)

Fig. 9. Top edge part of one biscuit tile image from Mirasol image
set: input grayscale image (a); MLSCD segmentation image with K =
{1,7,15,19,25} (b—f); ground truth image (g)

titative evaluation are introduced in this paper: a new measure
number of small deviations (NSD), the pixel-based misclassi-
fication (PBM), and a new measure contour angles compari-
son (CACQ).

The first qualitative evaluation measure is a new NSD mea-
sure. It is defined as the number of small pixel deviations (cor-
responds to spikes on the Fig. 5) near the edge of the tile pixels.
It is calculated using the Algorithm 1 based on the contour de-
scriptor @, cf. Section 3.4.2.

Algorithm 1 Number of Small pixel Deviations (NSD)

1: procedure NSD(®)

2 count < 0

3 for i =2to |D| do

4: AP +— |D(i) —D(i—1)]

5: if (Ap =45 or A = 315) then
6: count < count + 1

7 end if

8 end for

9: end procedure

For results evaluation, two NSD values are calculated: Nor-
malized NSD (NNSD) given in Eq. (13) for each set indepen-
dently, where a = 1,...,6 represents the tile images in a cer-
tain set, and the b = 1,...,7 represents different sets of tile im-
ages, cf. Fig. 7. Total Normalized NSD (TNNSD) for each K is
given in Eq. (14). Table 1 gives NNSD results for all sets where
K =1 represents the NNSD results for SCD method. One can
observe that the NNSD decreases proportionally as K values in-

Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e137121

crease. The best NNSD values, bolded in Table 1 are mostly for
K =25. One should take into account that there is an increase in
the number of calculations as K values increase. From Egs. (5)
to (7) it is discernible that the number of calculations greatly
depends on the K value. It is necessary to leverage between
the number of calculations and the NNSD value because of the
algorithm performance hit with larger K values. The graph in
Fig. 10 depicts the cumulative TNNSD performance between
SCD and MLSCD for each of the tested K. From the graph it
is visible that the increase in the TNNSD performance between
two adjacent K is significantly reduced after K = 11.

NSDa b K — min(NSDbA,K)

1 6
NNSDp x = — ) 13
b6 a; <max(NSD;,7K) — min(NSDb_’K)> (13

;

TNNSDg = % Z NNSD,, k) (14)
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

3 5 7 9 11 13 15 17 19 21 23 25
K

Fig. 10. Cumulative TNNSD performance between SCD and MLSCD
with different K values

The second qualitative measure is the PBM measure. To ad-
ditionally validate the segmentation results and give a compar-
ison to other methods, an evaluation method from [17] is used.
Authors in [17] compared the SCD-based BTS method with
eight other well-known segmentation methods. Three mea-
sures are used for quantitative evaluation: misclassification er-
ror (ME), relative foreground area (RAE), and modified Haus-
dorff distance (MHD) [25] given in Eq. (15) to (17).

|BRNB|+|TrN T

ME =1- , 15
|Br| + | Tx| =
Tx| — |T
] 16
Inax{|TR|,|T|}
MHD(T,T) = max (d (Tx,T) ,d (T, Tx) ),
a7

d(A, |A| me”a b|l.

In Egs. (15) to (17), Ty is the set of tile pixels and Bg is the set of
background pixels in the reference image (ground truth image).
For the test biscuit tile image, B is the set of pixels classified
as background, and T is the set of pixels classified as tile. The
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Table 1
NNSD results

K Bianco Mat Mirasol Madielle Dark Vellagio Botticiono Sabuni Beige Sabuni Mosaico TNNSD

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

3 0.59012 0.73733 0.81157 0.54751 0.78311 0.67184 0.63513 0.68237

5 0.40050 0.55960 0.57556 0.29169 0.58838 0.44109 0.40922 0.46658

7 0.27195 0.38234 0.45427 0.19173 0.49724 0.30277 0.29477 0.34215

9 0.28297 0.26267 0.34562 0.14309 0.38672 0.22295 0.21630 0.26576
11 0.25850 0.20308 0.26105 0.11461 0.24292 0.14282 0.15366 0.19666
13 0.22938 0.13908 0.22753 0.09404 0.17520 0.10409 0.11198 0.15447
15 0.16793 0.10839 0.17598 0.07630 0.12943 0.07360 0.07319 0.11497
17 0.12357 0.07530 0.13308 0.05560 0.13030 0.04441 0.05472 0.0881
19 0.07722 0.04902 0.09393 0.02803 0.08803 0.02102 0.04277 0.05715
21 0.04841 0.02732 0.06834 0.01527 0.04879 0.01305 0.02542 0.03523
23 0.01970 0.00656 0.02736 0.00649 0.02511 0.00168 0.00997 0.01384
25 0.00000 0.00099 0.00000 0.00000 0.00000 0.00596 0.00487 0.00169

cardinality of the set is denoted with | .|, while @ and b are pixels
from corresponding sets A and B, respectively.

Values of the ME, RAE and MHD results are in the range
[0...1], where smaller number represents better performance
[17]. Therefore, PBM is defined as

PBM = ME +RAE +~MHD. (18)
Average ME, RAE, MHD, and PBM results for dataset are pre-
sented in Table 2. According to PBM, the best overall perfor-
mance (bolded in Table 2) is for K = 23, where ME, RAE and
MHD are best for K =11, K =25 and K = 11, respectively.

Table 2
Normalised overall results for ME, RAE, MHD and PBM

K ME RAE MHD PBM
1 0.99946 0.85290 0.78903 2.64139
3 0.83160 0.72994 0.72934 2.29088
5 0.66152 0.63575 0.6197 1.91704
7 0.48622 0.56592 0.50523 1.55738
9 0.33325 0.50683 0.40391 1.24399
11 0.18194 0.42095 0.28036 0.88325
13 0.19180 0.36865 0.29018 0.85063
15 0.21842 0.29720 0.32098 0.83660
17 0.21896 0.28999 0.31894 0.82790
19 0.22502 0.26163 0.33698 0.82363
21 0.22546 0.22521 0.34086 0.79153
23 0.23361 0.19602 0.36059 0.79022
25 0.24224 0.19782 0.36343 0.80348

The third qualitative evaluation method is a new contour an-
gles comparison (CAC) method. The CAC evaluation is calcu-
lated with the Algorithm 2.

Algorithm 2 Contour Angles Comparison

1: procedure CAC(®, d)’)

2 Dgr @, Pyrscp P

3 Error <0

4 if length(®gr) # length(Ppyrscp) then

5: Error < abs(length(®gr) — length(Pprscp))
6

7

8

9

®yrscp < RezizeVectorToMatch(®gr)
end if
for i = 1to length(®gr) do
if @y (i) # Pprscp (i) then
10: Error < Error+1
11: end if
12: end for
13: end procedure

The CAC value is the absolute difference between the ground
truth contour descriptor ®, cf. Section 3.4.2, and the one ob-
tained with the proposed MLSCD method @'. The CAC val-
ues for all images in the dataset are shown in Table 3. Values
TCACk are total CAC evaluation results for all images in a sin-
gle set, and for all sets in the database for a certain K. The CAC
and TCAC values are represented in percentages with

D, x— D
CAC,; = ('”(;M“K') 100, (19)
a,
1 7
TCACk = 7 Y CAC, k. (20)
b=1
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Table 3
CAC relative values
K Bianco Mat Mirasol Madielle Dark Vellagio Botticiono Sabuni Beige Sabuni Mosaico TCAC
1 5.40% 6.60% 197.15% 5.48% 12.51% 23.61% 11.57% 37.47%
3 4.68% 5.64% 175.96% 4.25% 10.77% 15.54% 7.67% 32.07%
5 4.78% 4.89% 152.74% 3.83% 8.96% 9.56% 6.50% 27.32%
7 4.20% 4.41% 134.92% 3.53% 7.00% 6.04% 5.55% 23.67%
9 3.59% 4.04% 129.88% 3.36% 6.04% 5.13% 4.96% 22.43%
11 0.20% 3.75% 127.57% 3.03% 4.88% 4.50% 4.24% 21.17%
13 2.16% 3.71% 124.88% 3.23% 4.17% 4.33% 4.02% 20.93%
15 4.28% 3.65% 116.25% 3.28% 3.95% 4.27% 3.82% 19.93%
17 4.39% 3.53% 114.29% 3.27% 4.00% 4.16% 3.73% 19.63%
19 4.75% 3.46% 113.01% 321% 4.01% 4.11% 3.74% 19.47%
21 4.76% 3.43% 108.81% 3.16% 3.88% 4.06% 3.70% 18.83%
23 491% 3.30% 105.82% 3.13% 3.77% 4.03% 3.68% 18.38%
25 5.05% 3.31% 104.30% 3.06% 3.77% 4.02% 3.67% 18.17%

From CAC results given in Table 3, it is obvious that the seg-
mentation of the biscuit tiles in set Madielle Dark has poor per-
formance, while for other sets MLSCD segmentation method
can be successfully applied. Similar to TNNSD performance
increase, cf. Fig. 10, TCAC values show that greater K value
results in better segmentation performance. After K = 11 per-
formance improvement is not notable, cf. Fig. 11.

40%
35%
30%

25%

20%

15%

10%

5%

0%
1 3 5 7 9 11 13 15 17 19 21 23 25

K

Fig. 11. TCAC performance depending on the K value

Overall results, presented in Table 4, are calculated as a sum
of the three evaluation methods, TNNSD, PBM and TCAC,
where each method is normalized in the range from O (lowest
performance) to 1 (highest performance) for each of the tested
K using
Xk — min(X)

Xk =1-
K max(X) —min(X)’

2

where X present overall results for each evaluation method in-
dependently.

Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e137121

Experimental analysis shows that higher K results in bet-
ter segmentation performance according to each evaluation
method, except PBM where the best result is achieved with
K =23, bolded in Table 4. Nevertheless, the performance im-
provement is notable for K ranging from 1 to 11, while higher
values of K do not significantly affect the performance. Results
presented in Table 4 show that for K = 25 MLSCD method
shows the best segmentation results.Values for K > 25 are not
given in the experimental analysis because there is no signif-
icant increase in the overall segmentation performance. Addi-
tionally, from Table 4, it is visible that there is a small increase
in the overall performance after K = 21.

Table 4
Overall segmentation evaluation results
K TNNSD PBM TCAC Overall
1 0.00000 0.00000 0.00000 0.00000
3 0.31763 0.18935 0.27976 0.78673
5 0.53342 0.39130 0.52584 1.45055
7 0.65785 0.58559 0.71525 1.95868
9 0.73424 0.75487 0.77928 2.26839
11 0.80334 0.94975 0.84474 2.59783
13 0.84553 0.96737 0.85704 2.66994
15 0.88503 0.97495 0.90887 2.76884
17 0.91186 0.97965 0.92452 2.81603
19 0.94285 0.98195 0.93264 2.85745
21 0.96477 0.99930 0.96584 2.92991
23 0.98616 1.00000 0.98918 2.97534
25 0.99831 0.99284 1.00000 2.99115




www.czasopisma.pan.pl P N www.journals.pan.pl
=

POLSKA AKADEMIA NAUK

F. Susac, T. Mati¢, I. Aleksi, and T. Keser

10
0,9 L%

0,8 \
07
0,6
0,5
0,4
0,3
0,2
0,1
0,0

Normalized overall performance

Normalized overall performance
Normalized calculation time

1 3 5 7 9

1 13 15
K

17 19 21 23 25

Fig. 12. Cost-effective relationship of the MLSCD
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®

Fig. 13. Edge and corner defects example from Bianco Mat image set:
input grayscale image with edge defect (a); MLSCD segmentation of
the image (a) for K = {1,25} (b-c); input grayscale image with corner
defect (d); MLSCD segmentation of the image (d) for K = {1,25} (e-f)
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Implemented MLSCD method has linear time complexity,
where K is the dependent argument. Figure 12 shows the re-
lationship between calculation time and performance results.
To present data in a more generalized form, all values are nor-
malized. For normalized calculation time and normalized over-
all performance, 1 represents the best and O the worst possi-
ble value. All execution times for sequential MLSCD imple-
mentation are measured on a personal computer using a single
CPU core. From the presented graph, it is clear that the perfor-
mance and calculation time are in an inversely proportional re-
lationship. The crossing point for the tested dataset occurs when
K =7, which presents the best cost-effective performance. For
the sequential implementation of the MLSCD method, consid-
ering the complexity, segmentation performance, and resources,
desired K should be selected.

In [17] SCD-based BTS method outperforms AEM-GC,
OTSU, ACWE, RF, HMRFEM, MET, and GF segmentation
methods. Therefore, from the presented segmentation evalua-
tion results we can conclude that the MLSCD method outper-
forms the aforementioned methods.

In the rare case along the convey line biscuit tile can be phys-
ically damaged, which results in large edge and/or corner de-
fects, cf. Figs. 13a and d. Currently, the available dataset has
only a few images with edge and/or corner defects. Therefore,
only non-defected images of biscuit tiles are considered in this
work. As it is shown in Fig. 13 the MLSCD method can suc-
cessfully segment defected biscuit tiles. Depending on the se-
lected K value, the edge defect is slightly mitigated but it is
not lost.

5. Conclusions

In this paper, MLSCD statistical segmentation method is pre-
sented. It is based on the application of the SCD method on
K adjacent rows/columns. MLSCD method is applied to im-
ages acquired on a computer vision station prototype for bis-
cuit tile to segment biscuit tiles from their background. Cap-
tured images are saved as .jpg with a maximum resolution of
2592 x 2048 pixels. Dataset is formed with seven different im-
age sets, where each set contains six images.

Experimental results are evaluated using three different eval-
uation methods, NSD, PBM, and CAC. NSD is the number of
edge pixel jumps on the segmented images, PBM is pixel-based
statistical evaluation measure and CAC is the contour evaluation
measure. Results show a significant performance increase of the
MLCSD method compared to SCD where an increase of adja-
cent rows/columns results in greater segmentation performance.
Best overall results were obtained using the highest selected K,
in our case K = 25. The complexity of the calculation is pro-
portional to performance, so a cost-effective analysis should be
considered.

MLSCD method can be successfully applied to various bis-
cuit tile designs without using the image preprocessing step.
Only exception are high contrast designs where additional pre-
processing is necessary. Future work will include implementing
a preprocessing step in the presented MLSCD method for the

Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e137121
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possible increase of segmentation performance on high contrast
designs. Moreover, additional image sets are required to test the
proposed method and show invariance to any type of biscuit
tile design.
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