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Abstract. The optimum combination of blade angle of the runner and guide vane opening with Kaplan turbine can improve the hydroelectric 
generating the set operation efficiency and the suppression capability of oscillations. Due to time and cost limitations and the complex opera-
tion mechanism of the Kaplan turbine, the coordination test data is insufficient, making it challenging to obtain the whole curves at each head 
under the optimum coordination operation by field tests. The field test data is employed to propose a least-squares support vector machine 
(LSSVM)-based prediction model for Kaplan turbine coordination tests. Considering the small sample characteristics of the test data of Kaplan 
turbine coordination, the LSSVM parameters are optimized by an improved grey wolf optimization (IGWO) algorithm with mixed non-linear 
factors and static weights. The grey wolf optimization (GWO) algorithm has some deficiencies, such as the linear convergence factor, which 
inaccurately simulates the actual situation, and updating the position indeterminately reflects the absolute leadership of the leader wolf. The 
IGWO algorithm is employed to overcome the aforementioned problems. The prediction model is simulated to verify the effectiveness of the 
proposed IGWO-LSSVM. The results show high accuracy with small samples, a 2.59% relative error in coordination tests, and less than 1.85% 
relative error in non-coordination tests under different heads.
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1. Introduction

Hydropower accounts for a large proportion of the development
of renewable energy. It is necessary to keep a hydro turbine in
a state of high efficiency to the maximum. The efficiency of the
Kaplan turbine is closely related to the coordination relation-
ship of guide vanes and the setting of runner blades. However,
the incorrect combination of the coordination relationship leads
to a 2% to 8% drop in the unit efficiency, and even the main-
tenance cycle of the turbine can be shortened by 2 to 3 years.
Besides, the optimal combination of coordination relationship
can effectively suppress the abnormal vibration of the hydro
turbine unit and improve the stability and operating efficiency
of the hydroelectric system. Thus, further study is required to
obtain the optimal combination of runner blade angle and guide
vane opening under various operating conditions.

Many achievements have been attained in the research of
Kaplan turbine by scholars. Menarin et al. established the Ka-
plan turbine dynamic response model, in which the influence
of blades to flow rate and efficiency has been considered [1].
Shamsuddeen et al. discovered that installing a fin on the suc-
tion side tip of a Kaplan turbine can weaken the leakage cavita-
tion intensity. They simulated unsteady multi-phase cavitation
on a numerical Kaplan model on five on-cam conditions [2].
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Pennacchi et al. employed vibration measurements for insta-
bility detection in the Kaplan turbine [3]. Javadi et al. adopted
conventional and non-conventional URANS models to simulate
a Kaplan turbine at two operating conditions and successfully
captured the flow field structures [4]. However, it is impossible
to quickly obtain actual field test results considering the com-
plexity of the turbine model, the long period of data calculation,
the model design, and manufacturing [5–10]. A mathematical
prediction model should be established to effectively enhance
the data and information and find the optimal coordination re-
lationship. Besides, the mathematical model can save a lot of
economic and time costs.

The limited hydro turbine test results can be analyzed and
processed through the machine learning method, consisting of
a neural network, support vector machine, decision tree, and
other prediction methods. Quan et al. realized short-term load
and wind power forecasting by combining a neural network
with lower-upper bound estimation to construct the predic-
tion intervals [11]. Marano et al. employed the dynamic pro-
gramming (DP) approach to optimize the management of wind
and photovoltaic hybrid power plants [12]. Yang et al. uti-
lized a decomposed Newton-Raphson method to solve the non-
linear power equations in unbalanced radial distribution net-
works [13]. Park et al. adopted sequential convex program-
ming to increase power efficiency by 7.3% in wind farm power
production [14]. Ding et al. proposed a constraint relaxation
method-based exact penalty function to calculate the optimal
power flow [15]. Kebriaei et al. employed the nonsymmetric
penalty function to realize short-term load forecasting [16]. Es-
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eye et al. utilized particle swarm optimization (PSO) to opti-
mize the SVM parameters to achieve short-term photovoltaic
solar power prediction based on SCADA and meteorological
information [17]. However, PSO suffers from some shortcom-
ings like slow searching speed and low global searching ac-
curacy [18, 19]. Liu et al. employed the regularized extreme
learning machine, whose parameters are optimized by grey
wolf optimizer (GWO), for the wind speed multistep forecast-
ing [20].

In this paper, an improved grey wolf optimization algorithm
(IGWO) is proposed to optimize the least squares support vec-
tor machine (LSSVM) regression model to predict the coordi-
nation of the Kaplan turbine and non-coordination test data.
The prediction results are compared with LSSVM and PSO-
LSSVM. By sorting out the prediction results and judging the
optimal combination of the coordination relationship, it can
guide the parameter setting of the Kaplan turbine.

2. Kaplan turbine coordination relationship

The hydropower unit is mainly composed of a turbine and gen-
erator. The electromagnetic moment Me of the generator fluc-
tuates at any time due to the load change. To maintain the unit
frequency within the rated range, according to the runner mo-
tion equation of the hydropower unit

J
dω t

dt
= Mt −Me , (1)

where J is the moment of inertia; ω t is the unit’s angular speed,
and Mt is the mechanical moment of the turbine. It is neces-
sary to keep the difference of moments constant for realizing
the dynamic energy balance. The value of Mt is influenced by
adjusting the head H, as shown in (2)

Mt =
ρgQHε

ω t
, (2)

where ρ is the water density; g is the gravitation acceleration;
Q is the flow rate; ε is the turbine efficiency, and the change
of guide vane opening a directly affects the value of flow rate.
To expand the high-efficiency area of the turbine, a Kaplan tur-
bine was used, which is a double-regulated machine, due to the
possibility of adjusting the angle of the runner blades and the
guide vanes. As shown in Fig. 1, the high-efficiency zone of
the turbine efficiency curve is narrow when the runner blade
angle is fixed. However, the Kaplan turbine efficiency curve in-
cludes the outer lines of the curves in this set, expanding the
high-efficiency zone scope.

The curve of the coordination relationship is an essential ba-
sis for adjusting the governor parameters of the Kaplan turbine.
When the turbine leaves the factory, the manufacturer provides
the coordination curve under different heads. However, these
curves are obtained through model turbine tests without consid-
ering field factors, such as site reservoir topography and instal-
lation links. The coordination and non-coordination tests should
be performed to modify the coordination curves and meet the
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Fig. 1. Efficiency curve of blades

operating requirements of an actual field prototype Kaplan tur-
bine.

The coordination tests refer to the condition under the co-
ordination relationship where the runner blade angle ϕ and the
guide vane opening a have a non-linear one-to-one relationship.
These tests are performed when ϕ and a are not directly re-
lated, and their respective values can be adjusted independently,
which means that runner blade angle and guide vanes can be ad-
justed independently during the experiments. The coordination
or non-coordination tests are performed under the presence of
a constant head H. During the experiments, at first, the runner
blade angle ϕ is kept unchanged. Then the guide vane opening
a is gradually changed according to the schedule. Finally, the
tests are continued by considering a new fixed value. The dif-
ference between coordination and non-coordination tests is that
the former are performed using the “Combination unit” [21],
while in the latter, the “Combination unit” is removed, as shown
in Fig. 2.
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(a) coordination tests
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Hydraulic 
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Runner 
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Fig. 2. Explanation of the difference between “coordination tests and
non-coordination tests [21]”

Due to the substantial mechanical inertia of the turbine unit,
simultaneous adjustment of a and ϕ in the coordination tests is
expensive and time-consuming. Thus, relatively less data is ob-
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tained by the coordination tests than the non-coordination ones,
which are conducted by adjusting one of these parameters.

By studying the data of the coordination tests of a Kaplan tur-
bine, it is conducive to find the optimal combination of runner
blade angle ϕ and guide vane opening a, to attain the maximum
benefit of water energy conversion, ensure that the unit operates
in a high-efficiency area, and provide a practical basis for the
setting of turbine parameters. Considering the characteristics of
Kaplan turbine inputs, this paper employs a hybrid convergence
factor and static weight position updating to propose an IGWO
algorithm to optimize the LSSVM prediction model.

3. Least squares support vector machine

The LSSVM regression model is based on space vector trans-
formation, where samples are transformed into high-dimen-
sional space by non-linear mapping ψ , and linear regression
is constructed in high-dimensional space to realize the original
space non-linear relation between input and output, as shown
in (3)

y(x) =ωωωT ψ(x)+b , (3)

where ωωω is the normal vector, and b is displacement.
LSSVM regression is to solve the convex quadratic optimal

programming problem as presented in [22, 23]




J(ωωω,ζ ) = min

(
1
2
‖ωωω‖2 +

1
2

λ
n

∑
k=1

ζ 2
k

)
,

s.t. yk =ωωωTψψψ(xk)+b+ζk (k = 1, . . . ,n),

(4)

where λ is the relative weight; ξk is the loss function, and La-
grange multiplier lk is introduced to construct Lagrange func-
tion as

L =
1
2

ωωωTωωω +
1
2

λ
n

∑
k=1

ζ 2
k −

n

∑
k=1

lk
(
ωωωTψψψ(xk)+b+ζk − yk

)
. (5)

According to (3), the partial derivatives of ωωω , ξk, b, and lk are
calculated and their values are put to zero, as shown in (6)

∂L
∂ωk

=
∂L
∂ζk

=
∂L
∂b

=
∂L
∂ lk

= 0 , (6)




ωωω =
n

∑
k=1

lkψψψ(xk),

lk = λζk ,
n

∑
k=1

lk = 0 ,

ωωωTψψψ(xk)+b+ζk − yk = 0 .

(7)

By eliminating ωωω and ξk, the problem can be described with the
following linear equation

[
0 eT

e K+λ−1I

][
b
l

]
=

[
0
y

]
, (8)

where K is the n-dimensional matrix of the kernel function; I is
the identity matrix, and K, e, l are defined as follows




e = [1, · · · ,1]T ,
Ki j = K(xi,x j) = ψ(xi)

T ψ(x j),

l = [l1, · · · , ln]T .
(9)

In this paper, the following Gaussian radial basis function [24]
is utilized as kernel function

K(xi,x j) = exp

(
−
∥∥xi − x j

∥∥2

2σ2

)
, (10)

where σ is the kernel coefficient. By considering Γ=K+λ−1I,
the solution of (8) can be obtained as

[
b
l

]
=
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0 eT

e Γ

]−1[
0
y

]

=


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− 1

eT Γ−1e
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0
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I − e
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y . (11)

Simplified expressions for l and b are obtained as

[
b
l

]
=




eT Γ−1

eT Γ−1e
y

Γ−1(y− eb)


 . (12)

The LSSVM regression function can be described as

y(x) =
n

∑
k=1

lkK(x,xk)+b . (13)

The loss function and the kernel function significantly af-
fect the accuracy of model regression, and their corresponding
significant parameters are λ and σ2. In this paper, the mean
squared error (MSE) of the sample is considered as the fitness
function, and the IGWO algorithm is utilized to find the optimal
values of these parameters.

4. Grey wolf optimizer

GWO as a dynamic population algorithm inspired by the strict
hierarchy in the process of searching, following, and hunting
was proposed by Mirjalili et al. [25] in 2014.

4.1. Wolf hierarchy. Social levels of grey wolves are shown
in Fig. 3. As shown in Fig. 3, there are α , β , γ , and η levels
among wolves, and the leadership gradually decreases. α is the
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leader wolf, giving general orders to subordinates and leading
the wolves to hunt, β assists α in making decisions, γ is subor-
dinate to the decisions of the previous high-level wolf and acts
as executive commander for the grass-roots wolf η . The indi-
vidual level of a wolf changes over time, a new leader wolf can
appear among the wolves and social hierarchy turnover may
occur. The individual fitness value can describe this situation in
the GWO algorithm.

Fig. 3. Social levels of grey wolves

4.2. Wolf hunting. GWO corresponds the social level to the
best solution order of the algorithm. This means that the wolf
α is the optimal solution, and the wolf β is the sub-optimal
solution. The algorithm defines the following updating rules of
distance and position between individual an individual wolf and
the target

�D =
∣∣∣�C ·�XO(t)−�XW (t)

∣∣∣ , (14)

�XW (t +1) = �XO(t)−�A ·�D, (15)

where �XW and �XO are the wolf and target positions, respectively;
t is the current number of iterations; the vectors �A and �C can be
calculated as

�A =�τ · (2�r1 −1), (16)

�C = 2 ·�r2 , (17)

�τ = 2
(

1− t
tmax

)
, (18)

where �τ is the dynamic factor that decays linearly from 2 to 0
with the number of iterations; �r1 and �r2 describe the modulus
random, where their values are between [0, 1].

When the wolves search for prey, α leads β and γ to track and
approach the target prey from different directions. As shown in
Fig. 4, the grass-roots wolf η indicates the high-level wolf as
the target (analogous to “the prey”) and follows the superior
wolf to update its position, by the following relations




�Dα =
∣∣∣�C1 ·�Xα −�Xη

∣∣∣ ,
�Dβ =

∣∣∣�C2 ·�Xβ −�Xη

∣∣∣ ,
�Dγ =

∣∣∣�C3 ·�Xγ −�Xη

∣∣∣ ;

(19)




�X1 = �Xα −�A1 ·�Dα ,

�X2 = �Xβ −�A2 ·�Dβ ,

�X3 = �Xγ −�A3 ·�Dγ ,

(20)

where �Dα , �Dβ , and �Dγ represent the distances between η and
α , β , γ , respectively.

1τ
1C

2τ

2C

3τ

3C
Dα Dβ

Dγ

α
β
γ
η

Target 
prey

Fig. 4. The diagram of location update in grey wolves

4.3. Attack prey. The convergence factor �τ of the GWO al-
gorithm decays linearly with the number of iterations, and ac-
cording to (16), the value of �A varies in the range [−τ,τ]. When
|�A|> 1 the grey wolves resign from attacking the current target
and turn to search for more suitable prey. Thus, this process ex-
pands the global search ability of GWO and avoids a situation
when the algorithm falls into the local optimum. In contrast,
when |�A| ≤ 1, the wolves attack the prey, leading to the local
optimum, as shown in Fig. 5. A brief flow chart of the GWO
algorithm is presented in Fig. 6.
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Fig. 5. The hunting selection
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4.4. Improved grey wolf algorithm. Due to the linear decay
property of the GWO convergence factor, it is impossible to
simulate the actual search process. This paper proposes the fol-
lowing new non-linear convergence factor

�τ ′ =




2− 2t
tmax

, t ≤ tmax

2
,

2

1+ exp
[

R
(

2t
tmax

−1
)] , t >

tmax

2
,

(21)

where R = 9.903438. As shown in Fig. 7, the non-linear con-
vergence factor decays too slowly in the early iteration stage,
affecting the global search speed of the algorithm. Besides, the
decay rate of the linear convergence factor should be improved
when calculating the local optimum in the late iteration, which
differs from the accelerated attack process by the grey wolf.
However, the mixed non-linear convergence factor keeps lin-
ear decay in the early stage to improve the global optimization
speed. In contrast, it quickly decays in the later stage accord-
ing to a nonlinear relation and improves the computational effi-
ciency of the local optimization.

Fig. 7. Factors of mixed nonlinear convergence

In (21), the position weight between grass-roots wolves η
and α , β , γ is the same. Taha et al. employed the following
modified position updating the formula based on the weighted
distance to overcome this problem [26, 27]




�Xη(t +1) =

3

∑
i=1

ui�Xi

3

∑
i=1

ui

,

ui =

∣∣∣�Xi

∣∣∣
3

∑
i=1

∣∣∣�Xi

∣∣∣
.

(22)

However, this method neglects the absolute leadership of the
wolf α , and it should reflect the advantages under the large data
condition. Considering the characteristics of the small sample
data of the coordination and non-coordination tests, the follow-
ing static proportional weighting is introduced

�Xη(t +1) = µ1�X1 +µ2�X2 +µ3�X3 , (23)

where µ is the weight of each update direction. In this paper,
µ1 = 0.9, µ2 = 0.06, µ3 = 0.04 are considered. The simulation
results demonstrate that the static weight is more suitable than
the weighted distance under the condition of small samples of
the Kaplan turbine.

5. Simulation analysis

The data set is divided into training and prediction sets to sim-
ulate the actual prediction, as shown in Table 1. The training
set includes the input runner blade angle ϕ , guide vane open-
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where µ is the weight of each update direction. In this paper,
µ1 = 0.9, µ2 = 0.06, µ3 = 0.04 are considered. The simulation
results demonstrate that the static weight is more suitable than
the weighted distance under the condition of small samples of
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ing a, and Kaplan turbine output power P, which are provided
to IGWO-LSSVM for learning. Only ϕ and a are considered
in the prediction set, and the trained IGWO-LSSVM regres-
sion model gives the prediction value. The prediction results are
compared with backpropagation (BP) neural network, LSSVM,
PSO-LSSVM, and GWO-LSSVM methods [28–31] to evalu-
ate the effectiveness of the proposed model. To ensure the gen-
eralization of the model, a k-fold cross-validation approach is
employed, and k = 3 is chosen.

Table 1
Data of working with coordination tests

Training set Prediction set

No. ϕ a P No. ϕ A

1 44.2 6.62 3226.52 11 69.3 36.3

2 85.5 69.4 13466.38 12 78.3 52.4

3 88.4 77.0 14368.31 13 92.7 81.5
...

...
...

... 14 49.6 12.4

9 50.2 13.1 4388.89 15 93.0 87.0

10 60.0 23.8 6467.69 16 89.5 80.5

5.1. Prediction of coordination tests. The coordination test
data are acquired from a hydropower station in Guangxi, China,
and the test head H = 6.0 m. The first above 65% of the data is
utilized for training, and the last above 35% is utilized for test-
ing. The optimization parameters of each algorithm are shown
in Table 2. The hyperparameters of each algorithm are pre-
sented in Table 3. Considering the limited number of samples,
the swarm size is chosen as 3, the number of iterations is con-
sidered 50, the PSO inertia factor is selected as 0.4, and PSO ac-

Table 2
Parameters of the optimization algorithms

Algorithm
Parameter

λ σ2 Iteration number

PSO 2.0590e6 30.1 50

GWO 5.7902e6 30.01 50

IGWO 9.7435e6 30.01 50

Table 3
Hyperparameters of each algorithm

Algorithm
Parameter

Swarm size Inertia factor c1 c2

PSO 3 0.4 1.4 1.1

GWO 3

IGWO 3

celeration factors c1 = 1.4, and c2 = 1.1. Since the data samples
in this paper are not normalized, the LSSVM parameters have
large values; the λ optimization range is [8.038e4, 9.7435e6],
while the σ2 search interval is [30, 206].

The prediction effect of each method is shown in Fig. 8. Be-
sides, the root mean square error (RMSE), relative error (RE),
and mean absolute error (MAE) are chosen as evaluation in-
dices of the prediction, as shown in Table 4.

Fig. 8. Effective diagram of prediction with coordination tests

Table 4
Evaluation indices of the prediction of coordination tests

Meethod
Indicator

RMSE RE MAE

BP 2163.286 17.56% 2101.60

LSSVM 828.657 5.20% 622.39

PSO-LSSVM 621.457 4.28% 512.50

GWO-LSSVM 467.491 3.23% 386.82

IGWO-LSSVM 413.454 2.59% 310.25

Since the input is small sample data, the BP neural net-
work learning degree is insufficient, and its error is significant.
LSSVM can guarantee relatively general prediction accuracy
under the small sample condition. Compared with GWO and
PSO algorithms, the prediction accuracy of IGWO-LSSVM is
significantly improved to 2.59%.

5.2. Prediction of non-coordination tests. The multi-head
non-coordination tests data are collected from a hydropower
station in Guangxi, China, in which its corresponding set heads
are H = 4.1 m, H = 5.0 m, and H = 6 m, respectively. The
first above 80% of the data are employed for training, and the
last above 20% are employed for the testing. These data are as
shown in Table 5.
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Table 5
Data of working with non-coordination tests

H = 4.1 m H = 5 m H = 6 m

Training set Prediction set Training set Prediction set Training set Prediction set

No. ϕ a P No. ϕ a No. ϕ a P No. ϕ a No. ϕ a P No. ϕ a

1 9.69 50.9 1893.04 21 26.8 62.0 1 50.0 76.1 8451.27 21 74.9 90.3 1 80.8 90 15473.77 26 23 63.4

2 38.7 78.0 5520.28 22 38.7 82.0 2 30.5 77.7 6026.65 22 20.1 51.7 2 13.6 42.2 4074.97 27 69 79.1
...

...
...

... 23 16.5 67.9
...

...
...

... 23 20.1 64.5
...

...
...

... 28 35.5 62.5

19 16.5 51.9 2550.00 24 38.7 86.0 19 74.9 86.3 10667.59 24 30.5 70.1 24 80.8 84.3 15031.14 29 80.8 91.4

20 9.69 58.8 1949.61 25 26.8 66.0 20 9.27 58.7 2783.74 25 30.5 74.5 25 35.5 75.3 8678.40 30 13.6 56.4

Table 6
Evaluation indices of prediction with non-coordination tests

Test head H = 4.1 m H = 5 m H = 6 m

Indicator Method RMSE RE MAE RMSE RE MAE RMSE RE MAE

BP 824.27 15.92% 686.01 1292.82 18.73% 1192.15 380.42 3.52% 332.64

LSSVM 166.57 3.14% 135.43 221.05 2.84% 180.70 287.06 2.28% 214.88

PSO-LSSVM 139.12 2.69% 115.92 156.82 1.81% 115.07 245.46 1.99% 188.02

GWO-LSSVM 101.91 2.03% 87.47 119.61 1.51% 96.30 210.25 1.67% 157.28

IGWO-LSSVM 90.48 1.83% 79.03 110.88 1.48% 94.79 193.51 1.51% 142.41

The prediction effect of non-coordination tests is shown in
Figs. 9–11, while the best fitting to the actual value is obtained
by the IGWO-LSSVM algorithm. The evaluation indices show

Fig. 9. Effective diagram of prediction with non-coordination tests for
H = 4.1 m

that the proposed IGWO-LSSVM prediction model can still
maintain high accuracy in the multi-head condition, as shown
in Table 6.

Fig. 10. Effective diagram of prediction with non-coordination tests
for H = 5 m
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