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Abstract. The artificial bee colony (ABC) algorithm is well known and widely used optimization method based on swarm intelligence, and it
is inspired by the behavior of honeybees searching for a high amount of nectar from the flower. However, this algorithm has not been exploited
sufficiently. This research paper proposes a novel method to analyze the exploration and exploitation of ABC. In ABC, the scout bee searches
for a source of random food for exploitation. Along with random search, the scout bee is guided by a modified genetic algorithm approach
to locate a food source with a high nectar value. The proposed algorithm is applied for the design of a nonlinear controller for a continuously
stirred tank reactor (CSTR). The statistical analysis of the results confirms that the proposed modified hybrid artificial bee colony (HMABC)
achieves consistently better performance than the traditional ABC algorithm. The results are compared with conventional ABC and nonlinear
PID (NLPID) to show the superiority of the proposed algorithm. The performance of the HMABC algorithm-based controller is competitive

with other state-of-the-art meta-heuristic algorithm-based controllers in the literature.
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1. Introduction

The proportional-integral-derivative controller is the most com-
monly employed practical controller since it has simple imple-
mentation architecture and robustness [1]. The PID controller
has three controller parameters, namely proportional gain (K},),
integral time (7}), and derivative (7). The value of these gains
determines the servo and regulatory performance of a con-
troller. These value gains depend upon the process character-
istics [2]. In linear systems, determining these parameters us-
ing conventional tuning methods such as Ziegler Nichols (ZN)
or classical forced oscillation (CFO) may establish better servo
and regulatory performance. These conventional methods will
not provide better performance for nonlinear systems. Most of
the processes found in industries exhibit a nonlinear relation-
ship between input and output [3]. Hence, the controller design
for such systems using a conventional tuning method will not
provide good servo and regulatory performance [4]. tuning of
internal model control (IMC) controller for the nonlinear sys-
tem is presented in [5]. The other design procedures for the
nonlinear controller design available in the literature such as
nonlinear model predictive controller design [6], Fuzzy logic
controller design [7], and neural network-based model predic-
tive controller are very complex and involve heavy mathemati-
cal computations for determining the control action.
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To design a nonlinear controller for the CSTR process, linear
models at different operating regions are identified and the con-
troller parameters for the identified local linear model are found
using conventional tuning methods such as the ZN method,
IMC method, and these linear controllers are combined to form
a nonlinear controller [8]. The local linear controller designed
for the local linear region will not afford satisfactory set-point
tracking and disturbance rejection operation for the shifted op-
erating region. Therefore, in these shifted operating regions, the
controller has to change its parameters to adapt to the new re-
gion or the controller parameters must be optimized to handle
the shifted operating point. To design the optimal controller,
meta-heuristic approaches are used [9]. Some bio-inspired op-
timization techniques such as genetic algorithm (GA) and its
variants [10] differential evolution (DE), ant colony optimiza-
tion (ACO), particle swarm optimization (PSO) are also used.
Among all other heuristic approaches, the ABC algorithm is
widely adapted to find the optimal parameters [11].

Dervis Karaboga proposed a swarm-based meta-heuristic al-
gorithm ABC, which is an optimization that imitates honeybee
swarms foraging for food [12]. Currently, this ABC algorithm
is gaining popularity among researchers since it yields better
optimization performance, is simple and easily implemented.
A multi-colony artificial bee colony algorithm was proposed
in [13]. The number of algorithm parameters in this technique
is smaller than any heuristic optimization technique. The ABC
algorithm is also capable of optimizing nonconvex optimization
problems. For this reason, ABC is employed in all engineering
optimization problems [14]. A high nectar food source is iden-
tified by certain bees of ABC collectively. Normally, in a non-
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linear optimization-based problem, ABC may usually get stuck
in a local minimum as it is deprived of local searching ability.
To overcome these issues, a search scheme—-modified GA is de-
signed to improve the local searching ability.

In the proposed HMABC, the suitable choice of nectar source
by a scout bee is performed by a modified genetic algorithm. A
scout bee is assumed to be present at an arbitrary nectar source
from where it is guided to travel to a new food source by us-
ing GA reproduction operators. This method results in a high
probability of identifying a nectar source of high quality by the
scout bee. The proposed novel algorithm is applied to design the
nonlinear PID for the CSTR system and a comprehensive study
is made with the basic tuning IMC methods, hybrid heuristic
tuning techniques GA-ABC. The developed algorithm perfor-
mance is verified based on the values of integral square error
(ISE), integral absolute error (IAE), and integral time absolute
error (ITAE). Only the ISE-based results are presented in this
paper.

The present research is structured as follows: Section 2 dis-
cusses the salient feature of the ABC algorithm; Section 3
presents the HMABC optimization method; Section 4 describes
the design of the HMABC-based NLPID controller; and finally,
Section 5 discusses the results obtained from the proposed con-
trol strategies. The conclusion of the research work is briefed in
the last part.

2. Artificial bee colony algorithm

Dervis Karaboga proposed the ABC algorithm based on honey
searching behavior for nonlinear optimization problems. The
optimization phases of ABC-employed bee, onlooker bee, and
scout bee are generally used. The bee starts a food search from
a random food source; once it finds the food, the employed bee
waves to and fro. On seeing the waggle dance, the on-looker
bees would select the nectar source and look for fresh varia-
tions of nectar sources. The variation of the existing food source
may consist of good nectar or could be worse than the previous
food source. This exhausted food source which has a low nec-
tar value is replaced by a random search conducted by the scout
bee. This cycle is repeated until a better food source is found.
The colony size (Cs) and maximum cycle count (Cpax) are ini-
tialized, and the following stages are conducted to mimic the
foraging behavior of the bee.

Step 1. Initialization Phase

The initialization of ABC parameters T, F,, and M, is done
first, where T, — trail value (max); F, — food source and M, —
number of the cycle.

The initial food source is randomly selected as shown in
Eq. (1)

Fyj=1by j+rand[0,1] x (up; j — 1b; j), (1)

where: i refers to the number of food source and j refers to the
dimension of the search (set as 3); /by ;, denotes lower limit
of i-th food source; up; j, denotes the upper limit of i-th food
source; rand|0, 1], represents a random value between 0 and 1.
These food sources are treated as controller parameters.

Step 2. Employed bee phase

These bees explore the neighboring nectar sources, E; ; ex-
pressed by (2). The identified nectar replaces the randomly se-
lected initial food source.

Eij=Fj+rand[=L 1| x(F;—F ), i#k ()

where

k={1,2...,F,},

Jj={1,2,3}, (number of parameters to be optimized),

Ft,j» denotes random food source.

Step 3. Onlooker bee phase

The onlooker bee selects a nectar source from the updated
fitness function done during the employed bee phase. Eq. (3)
expresses high nectar value selection by onlooker bee.

The onlooker bee searches for a better nectar source near the
available selected nectar source as in Eq. (2). For unimproved
nectar sources, the trail value of the bees is changed.

fitness(i)

NF : 3)
Zﬁtness(j)
j=1

pi=

Step 4. Scout bee phase

The employed bee which fails to identify better nectar
sources is (trail greater than the limit) transformed into a scout
bee and the total search colony is accessed randomly by the
scout bee looking for a new food source based on Eq. (1).

One scout bee per cycle is engaged to eliminate the multiple
random searches. The proper trail value determines the number
of scout bees. Once the scout bee phase ends, the search cycle
is incremented by one.

Step 5. Stopping condition

In this algorithm further searching for a new food source is
stopped as the maximum cycle is reached and the best food
source obtained as far as the optimized value of parameters is
concerned, or else Step 2 is repeated.

The ABC search algorithm has been modified by many re-
searchers to enhance its performance. The modification is done
by either hybridization of other known search algorithms or by
updating the equations. The hybridization of ABC with other
algorithms is a well-known approach to enhancement [15].

ABC hybridization is performed with differential evolution
(DE) [16], where the number of scout bees is changed by DE.
The ABC and the combination of midway disposal trip selec-
tion are discussed in [17]. ACO and harmonic search hybridiza-
tion with ABC are discussed in [18], which outperforms the
gradient search, PSO, ACO, and ABC, but takes more time for
completing one cycle. ABC with tabu search [19,20] and ABC
with PCO in [21] are used for optimizing the problem in het-
erogeneous wireless networks. Hill climbing optimizer algo-
rithm [22] and crossover operator [23] are executed for better
searching and data clustering. However, the ABC suffers from
ineffective exploitation [24].

To improve the exploitation of ABC, the genetic algorithm
hybridization is proposed [25], where GA improves the per-
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formance of an onlooker bee. This hybridization is achieved
by incorporating ABC with an artificial fish swarm (AFS) al-
gorithm [26]. Various hybridization algorithms are discussed
in [27] and an improved dolphin swarm optimization algorithm
in [28], A nonlinear PID using a neural networks-like approach
is discussed in [29]. ABC with ACO for CSTR is applied in
[30]. Differential evaluation (H-ABCDE) algorithm [31] and
artificial immune system (AIS) [32] are combined with ABC to
enhance their performances. The enhancement of the scout bee
phase has not been dealt with in any of the earlier approaches.

To improve the scout bee performance, a novel hybrid ap-
proach is proposed, which is discussed in a detailed manner in
the next section.

3. Modified hybrid artificial bee colony
algorithm

The ABC convergence rate is improved by replacing unim-
proved food sources with a high nectar food source in the scout
bee phase. The ABC with a better convergence rate is used in
the optimization of controller parameters in many engineering
applications. In the proposed HMABC algorithm, genetic op-
erators are used in the scout bee phase to improve its intel-
ligence. In the HMABC, the scout identifies the best nectar
source through onlooker bees. If all onlooker bees share the
same location with the scout bee, along with this location the
scout bee generates other random locations. It starts applying
the crossover and mutation operators on the positions of the
food source to identify the new improved food source. This
search method improves the identification of the quality of the
food source identified by scout bees and makes the proposed
HMABC converge faster than a conventional ABC.

The proposed HMABC algorithm involves the following
steps:

/*Step 1 to Step 3 are similar to the conventional ABC opti-
mization method*/

Step 1. Initialization of ABC parameters.
Step 2. Employed bee phase.
Step 3. Onlooker bee phase.

Step 4. Scout bee phase — the onlooker bee determines the ini-
tial population.

Step 5. The food source is selected using a roulette wheel se-
lection based on nectar values.

Step 6. The selected food source is considered as parent chro-
mosomes pl and p2.

Step 7. The mutation is performed, and new food source loca-
tions are identified.

Step 8. The crossover is conducted by a two-point crossover
method.

Assign two points x_ptl, x_pt2.

The crossover kids c1 and c2 are derived as per the equations
below:

cl = [pl(l sx_ptl)p2(x_ptl + 1 : x_pt2)pl(x_pt2+1: CL)],
2= [p2(1: x_ptl)pl(x_ptl + 1 : x_pt2)p2(x_pt2 +1: CL)],
where CL is the chromosome length.

Step 9. The elite food source is identified.

Step 10. Group the mutation, crossover, and elite offspring into
the next generation population.

Step 11. The new food source locations are evaluated for the
nectar values. And the best nectar value food source is as-
signed as a fluctuated food source. If the maximum generation
is reached, then perform Step 12; otherwise repeat Step 5.

Step 12. Terminating the condition evaluation.
If the upper limit of iteration is reached, then perform
Step 13; otherwise, repeat Step 2.

Step 13. Terminate the algorithm and the best nectar source is
considered as the optimum result.

The flow chart of the proposed hybrid modified ABC is de-
picted in Fig. 1.

#»  Food Source location
from onlocker bee

| Select Parent chromosome |l

—————

Employed Bee
Phase

l

Onlooker bee

If all are
same

!
|

Crossover, Mutation

phase

Yes

New locations = Best food
source + randomly
generated food source

aseyd sag
028 PATJIPOR]

No

Fig. 1. Flow chart of hybrid modified ABC
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Table 1
Benchmark functions and their best values tested on ABC and HMABC

Test function Range Result (ABC) (HMABC)
. Best value 0.1936 0.1037
Bukin N 6 x1 € [-15,-5], x2 € [-3,3]
Worst value 0.1723 0.1129
Best value 5.380e-19 8.5792¢-20
Levy x; € [—10,10]
Worst value 3.98e-18 4.34e-19
Best value 1.8103e-19 1.5282e-19
Levy N 13 x; € [—10,10]
Worst value 1.323e-18 1.234e-18
. Best value 2.074e-07 1.1999e-07
Perm Function 0, d, 8 x; € [—10,10]
Worst value 1.923e-06 2.476e-06
o . Best value 6.516e-19 4.7396e-19
Rotated Hyper-Ellipsoid Function X; € [—65.536,65.536]
Worst value 2.987¢-9 8.348e-18
Best value 5.916e-19 5.5296e-19
Sphere xi € [-5.12,5.12]
Worst value 4.345e-17 3.478e-18
Best value 0.2925 0.292578
Schaffer N 4 x; € [—100,100]
Worst value 0.9846 0.6473
Best value 8.88e-16 8.881 e-16
Ackley x; € [—32.768,32.768]
Worst value 6.347e-15 7.896e-15

The efficiency of the conventional ABC and proposed
HMABC algorithm is tested in a few standard benchmark func-
tions [33-35] and the results are listed in Table 1. The results
clearly show that the proposed HMABC algorithm produces
better results than the conventional ABC. Different values are
chosen and tested and after multiple runs are done, the best val-
ues of parameters used in the algorithms for this test are pro-
vided in Table 2.

Table 2
The best value used for ABC and HMABC
Parameters ABC HMABC

Number of food sources 20 20
Dimension of the population 15 15
Maximum cycle 200 200
Trail limit 20 20
Population size of GA - 40
Crossover rate - 0.8
Number of crossover sites - 2

Mutation rate - 0.2
Elite Count - 2

Number of generations - 20
Chromosome length - 15

4. HMABC-based optimum controller for CSTR

To evaluate the performance of the proposed HMABC, it is
evaluated as shown in Fig. 2 to design an optimum controller
for the nonlinear CSTR process. CSTR is one of the bench-
mark problems considered by researchers in testing the con-
troller performance as is evident in [6,29,36].

. e

l C(t)LT(H)

ax

qe{t).T.r qe(t)

Fig. 2. CSTR process

The CSTR process exhibits a high nonlinear relationship be-
tween the inlet coolant flow rate (g.(¢)) and the concentration
C(t). The objective of the controller is to manipulate the inlet
coolant flow rate to maintain the concentration C(¢) of the out-
let [29].
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The process models described in (4) and (5) are nonlinear
equations of the state variables T'(7) and C(¢)

dTﬁc],’ E

=L a-10) ke (- o)

+ Kogelt) {1 _exp (_qii))] (Ty—TW0)., @

dC g

E
5~ v (G—=C0) —KoC(t) exp (_RT(t)) '

&)

The initial parameters of the CSTR are provided in Table 3 [29].

Table 3
Parameters of CSTR

Input flow, ¢; — 100 I/min Input temperature 7; — 350 K

Input concentration, Inlet coolant,

C;— 1 mol/l T.r -350K
Tank volume, V — 100 1 Energy (E/R), 10* K
K; = 1.44 x 10"3 Kl/min/mol || K, =0.01/1

K3 = 700 1/min Ko =7.2x10'0 min—!

The researchers reported several tuning techniques for the
PID controller design. A ZN-based PID controller for the CSTR
process is presented in [29]. IMC-based tuning for a PID con-
troller is used in [6]. The IMC tuning technique is considered to
be better than other classical methods due to its robust behav-
ior, i.e., it provides fewer oscillations and overshoot. The IMC
tuning formulae for the PID settings is given in (6)

28
@y ik

_ 28 _ 1
Oni’ & 26wy’

(6)

p.i = I i

where K, ; — proportional gain, 7,; — integral time, T ; — deriva-
tive time, § — damping factor, @, ; — natural frequency of oscil-
lation and k; — steady state gain. To determine the &, @, ; and
k;, the non-linear process is modeled using the Takagi—Sugeno
(T=S) fuzzy multiple model design approaches [6].

The possible local linear models are identified over its com-
plete operating regions and the multi-model is derived from
the local model through interpolation, using T-S fuzzy [6].
The NLPID is derived for the multi-model with fuzzy fusion
through the local model PID settings tuned from the IMC tun-
ing technique. The local model is expressed in (7)

x:fi(x7uava 9,’),
)
y= gi(y7w7 9i)7

where x, u, and v represent the state vector, input vector, and
disturbance vector, respectively; y and w represent the output
and noise vector, respectively; and 0 is the parameterized vector
used to describe the system dynamics. If the system operates
a wider range, then the interpolation of each operating point
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in the local model structure is needed to give the global model
structure, which is expressed in (8)

N
=Y filxuv,6) (o),
i=1

i=

®
N
y=Y gi(nw 6;)u(e),
i=1
where L; is the interpolation function expressed in (9)
w(g) =212 ©)
Y pile
j=1

where p; is the model validity function and it is designed such
that the value closes to 1 for a good model structure otherwise
equal to zero. A fuzzy nonlinear PID (F-NLPID) controller is
the interpolation of the local PID controllers to form the global
model structure.

The grade of the membership function should be y;: ¢ —
[0,1] is a normalization of the model validity function p; and

N
has the property Z wi(p) =1forall ¢ € d.
i=1
The NLPID controller output is expressed by (10)
T
ui(k) =K, ; {e(k) —e(k—1)+ —e(k)
’ T,
T, :
+%(e(k) —2xe(k—1) —|—e(k—2))} +ui(k—1), (10)
N
where T is the sampling time; K, ;, T,;, and Ty; values of
NLPID are derived from classical tuning approaches. The lo-

cal PID of the CSTR process derived through the IMC method
for various stable operating regions is listed in Table 4.

Table 4
CSTR operating regions and local PID settings

Operating point Kp.i T.i | T
Atgc; =97, Cy =0.077; T} = 443.46 |119.43/lamda |0.337|0.192
At gcy =100; Cp = 0.089; T, =441.15| 92.69/lamda |0.298|0.254
At gc3 = 103; C3 = 0.098; T3 = 438.77| 67.42/lamda [0.25 |0.360
At gcqg = 106; C4 = 0.111; Ty = 436.31| 43.28/lamda |0.188|0.580
At gcs =109; C5 = 0.126; T5s = 433.70| 19.18/lamda |0.103|1.312

The (gc;, C;, T;) represents the linearization point of the ith
local model. The stable region of CSTR is expressed by the
phase plane analysis shown in Fig. 3. From the response, it is
observed that CSTR exhibits nonlinearity behaviour when con-
centration ¢(¢) rises more than 0.13. Figure 3 shows the phase
plane analysis of a stable operating point. If the concentration is
raised more than 0.13, the phase plant plot becomes the saddle
point.
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35302
353915
35381

353505

Temperature T(t)

3538

353,505 [

09628 09628 0.9629 09629 0.9629 0.9629 09628 09630
Concentration C{f)

Fig. 3. Phase plane analysis — CSTR stable operating point

In the literature, it is derived that the classical tuning ap-
proaches are not sufficient to give satisfactory performance for
the complex nonlinear system. The recent optimization tech-
nique ABC is applied to calculate the best possible combina-
tions of the NLPID parameters. The various integral perfor-
mance criteria as shown in (11), (12), (13), and (14) can be

taken as cost functions. These Cost functions were minimized
by ABC and HMABC.

Integral absolute error

IAE:/|e(t)| dr. (10
0
Integral time absolute error
ITAE:/t|e(t)\dt. (12)
0
Integral squared error
ISE = /ez(t)dt. (13)
0
Integral time squared error
ITSE = / te*(r)dt. (14)
0

ISE can be considered as an objective function when the er-
ror value has large positive and negative values. IAE can be
considered when the error value has smaller positive and nega-
tive values. Time-weighted ISE and IAE can be considered as
objective when we need a lower steady-state error. In this paper,
controller performance based on ISE as an objective function is
discussed.

5. Simulation results

The algorithm parameters of ABC and HMABC are given in
Table 5 and HMABC results are related to ABC.

Table 5
Algorithm parameters
Parameters ABC HMABC
Number of food sources (i) 20 20
Dimension of the population () 15 15
Maximum cycle 200 200
Trail limit 20 20
Population size of GA - 40
Crossover rate - 0.8
Number of crossover sites - 2
Mutation rate - 0.2
Elite count - 2
Number of generations - 20
Upper limit of Kp,i 200 200
Upper limit of Tr,i 0.3 0.3
Upper limit of Td,i 0.4 0.4
Chromosome length - 15
Cost function ISE ISE

The convergence characteristics of the ABC and HMABC
for minimizing the objective function value are shown in Fig. 4.
In the HMABC, the objective function value is reduced in ev-
ery cycle and displays a faster response than the conventional
ABC. In the HMABC, 183 cycles to reach the objective func-
tion amount to be 2.46, whereas the ABC uses 426 cycles.

Objective function value

180 200

Fig. 4. Convergence comparison of ABC and proposed HMABC

The designed nonlinear controller is applied to CSTR and
various performance characteristics are evaluated. The obtained
results are explained briefly in the following sections. Table 6
shows the numerical evaluation of the results such as standard
deviation, mean of convergence curve, and a detailed compar-
ison of the scout bee fitness value of the HMABC with ABC.
From the values, it is found that the HMABC scout bee is better
than a conventional scout bee.

Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e137348
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Table 6
Statistical evaluation of convergence characteristics curve

Standard deviation
0.2622
0.15

Mean
2.705
2.537

Type of optimization technique
ABC
HMABC

Table 5 shows that the mean of convergence characteristic
curves plotted in Fig. 4. From this table, it is clear that, in the
ABC-based optimization and with the objective function mini-
mization, the mean is 2.705, whereas, in the HMABC, the mean
is only 2.537. This indicates that the HMABC has a better op-
timization effort than the ABC. From Fig. 5, it is clear that the
maximum value of the cost function is lower than the value
obtained using a conventional ABC. This reduction in the max-
imum value shows that the HMABC produces a better solution
in each cycle compared to the ABC. Comparing the ABC, the
proposed HMABC has a low standard deviation and this indi-
cates that the HMABC reaches a minimum cost function value
in fewer cycles. From Fig. 5, it is clear that in all other statistical
comparisons, the HMABC is better than the ABC.

25

Magnitude
i w

=
=

min may mean sid. deviation

Fig. 5. Statistical evaluation of ABC and HMABC

The food sources identified by the scout bee to replace the
unimproved food source are monitored in each cycle of the
ABC as well as in the HMABC and depicted in Fig. 6, and the
values of the fitness function and the food source are given in
Table 7. Based on the results, it is decided that the HMABC per-
forms better as it increases the searching cabbalist of the scout
bee by three times.

30 T T T T T

ABC SCOUT BEE
HMABC SCOUT BEE 4

Obijective Function Value
@
T

0 20 40 50 80 100 120
Cycle

Fig. 6. Scout bee objective values of ABC and HMABC
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Table 7
Statistical values of scout bee fitness

Standard deviation
5.890
0.026

Mean
8.7549
2.4992

Type of optimization technique
ABC
HMABC

Figure 7 shows the comparison of results of HMABC-based
PID responses for the set-point variations with ABC-based
PID. The local PID parameters obtained through the ABC and
HMABC optimization methods are given in Tables 8 and 9, re-
spectively.

T T T T T T

. N Set point
= ——NLPID
g on E ——ABCPID
bl HMABC PID
kel
‘@ 01k =
=
[
2
5 009 .
)

0.08 ; A . ; . .

0 50 100 150 200 250 300 350

Time (seconds)

Fig. 7. Servo response of CSTR for HMABC PID

Table 8
ABC - PID settings
Operating point K, T, Ty i
Atgc; =97; Cy =0.077; T} = 443.46 | 200/lamda | 0.300 | 0.158
At gcy =100; Cp = 0.089; T, =441.15 | 200/lamda | 0.300 | 0.193
At gc3 = 103; C3 = 0.098; T3 = 438.77 | 200/lamda | 0.300 | 0.163
At gcqg =106; C4 = 0.111; Ty = 436.31 | 200/lamda | 0.300 | 0.345
At gcs =109; C5 = 0.126; Ts = 433.70 | 200/lamda | 0.291 | 0.100
Table 9
HMABC - PID settings
Operating point K, T | Ty
Atgcy =97;C; =0.077; T} =443.46 | 200/lamda [0.300{0.192
At gcy =100; G, = 0.089; T, =441.15| 200/lamda |0.300|0.178
At gc3 = 103; C3 = 0.098; T3 = 438.77| 66.32/lamda |0.300{0.290
At gcy =106; C4 = 0.111; Ty = 436.31 | 178.44/lamda | 0.300|0.370
At gcs =109; C5 = 0.126; Ts = 433.70| 193.26/lamda | 0.263|0.119

A lower value of the lamda provides aggressive control per-
formance. The lamda value and its effectiveness are presented
in Fig. 8. The performance of the HMABC is compared with
the ABC method to show its effectiveness.

For a smaller value of lamda, the value of K, will be higher.
Thus, setting a smaller value for lamda provides a more aggres-
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Fig. 8. Servo response of CSTR from 400 sampling instant to 1000 for
various controllers

sive control action and more overshoot. The following diagram
shows the servo response of the implemented controllers from
the sampling instants 400 to 1000.

The cost-function ISE values are shown in Table 10 obtained
for various controllers and HMABC-PID at various sampling
instants to show the effectiveness of the proposed one.

The results show that the proposed HMABC performs much
better than the other conventional methods for nonlinear pro-
cesses. At sampling instants between 101 and 150, HMABC
— PID exhibits ISE value as 1.2344e—7, whereas ISE value of
conventional ABC is 5.7433e-7. The regulatory performance
of the designed controller is verified by injecting a variation in
the feed temperature of the CSTR. At sampling instant 120, the
feed temperature “T” is raised to 440 K. This abrupt change
introduces a great dynamic in the system. The designed con-
troller can reject that change and brings the system to stabil-
ity with minimum overshoot. The ISE values obtained during

the regulatory operation are presented in Table 11, in which the
ISE values during the sampling time 101 to 151 seconds of the
ABC-based PID is 1.5732e-3, whereas in the HMABC-based
PID controller the ISE value is only about 1.0947e-3. The com-
parison of regulatory action of the HMABC controller is de-
picted in Fig. 9. The feed temperature change is regulated by
the HMABC-based PID controller with a low ISE value com-
pared to the ABC-based PID controller.
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Fig. 9. Regulatory response of CSTR for HMABC PID
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Fig. 10. Control action during the regulatory response of CSTR

Table 10
Sampling time in seconds and ISE values for servo response
PID tuning method Sampling time in seconds & ISE
0to 50 51 to 100 101 to 150 151 to 200 201 to 250 251 to 300 301 to 350
IMC 7.3086e—6 7.3933e-3 6.5555¢e-3 4.3560e-3 4.0491e-3 1.9648e—6 1.7321e-6
ABC 5.8054e-7 8.2912¢—4 5.7433e-7 1.3918e-3 4.0855¢-9 3.2581e-4 8.004e-10
HMABC 1.6517e-7 6.1247e—4 1.2344e-7 1.4140e-3 1.3630e-9 3.0262e-4 1.5593e-9
Table 11
Sampling time in seconds and ISE values for regulatory operation
line time i ISE
PID tuning method Sampling time in seconds & IS
0 to 50 51 to 100 101 to 150 151 to 200 201 to 250 251 to 300 301 to 350
ABC 6.7338e—4 4.2315e-4 1.5732e-3 5.9475e-8 7.8730e-18 3.7585e—4 1.1316e-13
HMABC 6.6400e—4 4.1654e-4 1.0947e-3 6.1824e-8 7.5370e-18 3.8105e—4 1.7453e-13

Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e137348
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6. Conclusion

In this manuscript, the authors have presented an effortless and
uncomplicated strategy that improvises the searching capabil-
ity of the ABC, which provides the optimum NLPID control
parameters. These NLPID values are tested on a nonlinear
reactor process to show the effectiveness of its performance.
The simulation responses obtained, clearly prove the superi-
ority of the proposed control algorithm by its good servo and
regulatory performance capabilities at various operating points.
The proposed algorithm is compared with well-known conven-
tional optimization algorithms for the same process. From the
results, it is determined that HMABC — PID helps to reduce the
number of cycles that are needed to obtain optimum controller
gain values for good servo and regulatory action. The proposed
HMABC-based optimization can be considered as a substitute
to basic old optimization algorithms.
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