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Slow flow past a weakly permeable spheroidal particle
in a hypothetical cell

The perspective of the current analysis is to represent the incompressible viscous
flow past a low permeable spheroid contained in a fictitious spheroidal cell. Stokes
approximation and Darcy’s equation are adopted to govern the flow in the fluid and
permeable zone, respectively. Happel’s and Kuwabara’s cell models are employed
as the boundary conditions at the cell surface. At the fluid porous interface, we
suppose the conditions of conservation of mass, balancing of pressure component at
the permeable area with the normal stresses in the liquid area, and the slip condition,
known as Beavers-Joseph-Saffman-Jones condition to be well suitable. A closed-form
analytical expression for hydrodynamic drag on the bounded spheroidal particle is
determined and therefore, mobility of the particle is also calculated, for both the case
of a prolate as well as an oblate spheroid. Several graphs and tables are plotted to
observe the dependence of normalized mobility on pertinent parameters including
permeability, deformation, the volume fraction of the particle, slip parameter, and the
aspect ratio. Significant results that influence the impact of the above parameters in
the problem have been pointed out. Our work is validated by referring to previous
results available in literature as reduction cases.

1. Introduction

In the increasing span of time, the evolution of fluid mechanics has raised
challenges for the researchers and the scientific community. The development in
the area of fluid mechanics is widely spreading due to the dependency of life on
fluids.

The low permeable problem generally deals with the flow bearing very low
permeability like motion in porous fluidization, the flow of a liquid mixture, motion
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in packed beds, sedimentation, fall of snow-flakes, etc. A sort of porous membrane
having low permeability that allows some particular kind of particles to permeate
through it is well known as a semipermeable membrane. They only let small
particles like ions and molecules of water pass through them. A kind of such
membrane is observed in plants and animals, through which the process of osmosis
happens. As a matter of fact, evaluating their analytical solutions is very significant
to know the nature of such flows.

To study the flow field, we generally adopt Stokes equations for the fluid
region and Darcy’s law [2] or Brinkman’s equation [3] for the porous region.
While handling low porosity problems Darcy’s law is chosen to be appropriate,
whereas Brinkman’s equation helps in studying problems with higher porosity.
The investigations on the flow problems in the area of porous media are being
paid attention for a long time [4-9] by considering different boundary conditions
at the porous interface, including no-slip and slip conditions [10, 11]. Moreover,
including the Saffman’s condition, the lubricating flow of a sphere nearing a porous
thin slab was analyzed by Khabthani et al. [12]. Furthermore, Lai et al. [13] carried
out the work discussing the simple projection technique to know the coupling of
Navier-Stokes along with Darcy’s flow by employing the Beavers-Joseph-Saffman
condition.

In the past few years, intensive research activities have been performed to
formulate the motion through a swarm of porous particles because of its appli-
cation in diverging areas like filtration of the membrane, sedimentation problem,
rheology of suspension, etc. On the contrary, the formulation of such problems
is very difficult, as it requires the complete analysis of the tangled interaction
between multiple particles to obtain the flow fields. To get rid of this difficulty,
Happel [14] introduced a unit cell model technique which is one of the most ef-
fective methods for analyzing the nature of intense scattered systems and porous
media. It involves the method of replacing the system of chaotic distributed par-
ticles with an array of particles confined in a fluid cell, i.e., the entire swarm is
divided into various identical cells with every particle to be surrounded by a cell.
Moreover, the cell volume is picked in a such a manner that the solid volume
fraction in the cell is similar to the solid volume fraction of the entire assemblage.
As in several practical applications, particles are never found to be in isolation,
and thus, it is significant to observe the effect of neighboring particles on the
motion of particles. At present, this technique is well-liked among the scientific
community and researchers as it reduces the study of assemblage to analyzing a
single particle and its bounded cell. Anyway, to study the effect of neighboring
particles, we have to focus on the boundary conditions at the cell surface in de-
tail. In this approach, the cell can be chosen to be of different geometry. Among
them, spherical, cylindrical, and spheroidal shaped cells are conventionally used.
Initially, Happel [15] and Kuwabara [16] forwarded the concept of cell method to
analyze the flow through an array of particles. However, both models adopt dif-
ferent conditions on the cell surface. In the Happel’s model, the no-slip condition
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is assumed on the inner particle and the vanishing of shear stress is considered
on the external cell envelope. He explained that seeing the inter-particle interac-
tions to be bounded to the fluid surface, the cells are non-interacting and hence
no work is done by the cell surface, keeping the cell boundary to be friction-
less. Further, in the Kuwabara’s model, the vanishing of vorticity is supposed to
hold good at the cell surface. Kuwabara’s model considers that no mechanical
energy is to be shared between the cell and the surrounding. Although both the
models are different in terms of boundary conditions, they yield almost similar
results.

A considerable amount of research [17-20] on the flow past beds of porous
spherical particles, using both Darcy and Brinkman model, have been conducted
in the last few decades. Salient observations from the aforesaid studies suggest that
the cell concept is a widespread technique and is currently on demand. Moreover,
the use of different available boundary conditions at the cell is observed to have a
prominent effect on the flow. Prakash et al. [21] formulated the flow over a clus-
ter of porous particles where they represented the bed of particles as a cluster of
uniform porous sphere wrapped by a spherical cell. In the process of solving the
problem, they took into consideration both Brinkman and Darcy’s law, and derived
the drag expression to predict the overall permeability of the cluster of porous
particles. Saad [22] implemented the cell method to analyze the steady motion of
the viscous fluid through an array of the porous spherical shell along with the stress
jump boundary condition. They provided the drag force expression and further, pre-
dicted that the normalized mobility of the particles relies on the permeability, the
volume fraction, and the coefficient of stress jump. Prakash and Raja Shekar [23]
executed the dynamic permeability of the cluster of spherical permeable particles
by accounting cell model. They imposed Darcy’s law for the permeable flow along
with the Saffman boundary condition. Motivated by the developments in this area
of research, recently numerous works addressing the problem concerning transport
in porous media have been explored. Applying Happel’s along with Kuwabara’s
boundary conditions, the MHD flow over a sphere containing fluid immersed in
a spherical cell was handled by Prasad and Bucha [24]. In the latest articles by
Prasad and Bucha [25, 26], an analytical study was made to examine the effect
of imposed magnetic forces on the motion through a weakly permeable spherical
and cylindrical particle in a cell, respectively. In their work, they adopted Darcy’s
law for handling the flow past a low permeable particle. Moreover, the Saffman’s
slip boundary condition was considered at the inner surface. They obtained the
analytical expressions for the drag, the hydrodynamic permeability, and also the
Kozeny constant influenced on the sphere. Using the cell technique, Khanukaeva
[27] examined the micropolar flow through a spherical cell comprising an imper-
meable core covered with a porous shield along with a fluid envelope. She allowed
different boundary conditions to be applicable at the cell surface and studied its
effect on the flow. Recently, Prasad [28] worked on finding the boundary effects on
an eccentric semipermeable sphere by using cell models.
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In the aforementioned literature, we speculate that the shapes of the particles
are considered to be of the simple spherical form. However, in numerous engi-
neering applications, particles often possess geometry of deformed shapes which
varies significantly from the sphere. The pioneering work of Stokes [29] provides a
sound knowledge about the drag force experienced by a range of shapes of particles
settling in stagnant media or held stationary in moving fluids. A spherical particle
represents the same projected area for the flowing fluid irrespective of its orien-
tation. But for non-spherical particles, the orientation is required for calculating
their terminal settling velocity or the drag force acting on them. On the other hand,
under appropriate condition, non-spherical particles have a propensity to attain a
preferred or most stable orientation irrespective of their initial orientation. All these
phenomena are strongly influenced not only by the shape of the particle, its size
and density, fluid properties, but also by the shape and size of confining boundaries
and the imposed fluid motion, etc. To acknowledge the possible effect of varying
shapes, the simplest geometry is that of a spheroid. It is slightly deformed from
the shape of a sphere. These spheroid particles can be described by the aspect ratio
(e = 1 - €), which can cover both plate-like (¢ < 1) and cylinder-like (& > 1)
shapes including spheres with € = 1 [30].

As a fundamental problem, obtaining the analytical solution of flow through
a spheroid is of much significance and has been carried out efficaciously by sev-
eral authors [31-33]. Earlier, Dassios et al. [34] implemented the cell technique
to explore the Stokes flow over a spheroidal particle immersed in a vessel. There
they derived the drag force executed on the particle. Ramkisson [35] included
the slip condition while examining the flow over an approximate spheroidal parti-
cle. Zlatanovski [36] applied Brinkman’s model to pursue the axisymmetric flow
through a porous prolate spheroid and also took into consideration the eigenvalues
together with the eigenfunctions for the stream function in the porous area. Deo
and Datta [37] presented the slip flow on a particle of prolate spheroidal geometry.
Vainshtein et al. [38] studied the creeping motion over and inside a permeable
spheroid. Ramkissoon and Rahaman [39] tackled the flow of fluid over an imper-
meable sphere immersed in a spheroidal vessel by assuming the no-slip condition.
Besides, the drag executed on the sphere covered by a spheroidal cell was evaluated.
Incorporating the slip condition, Senchenko and Keh [40] scrutinized the motion
of a distorted shaped sphere in an unbounded Stokes flow. Aiming to study the
motion through distorted particles, Srinivasacharya [41] executed the flow through
a Darcy porous shell of approximately spherical geometry by applying continuity
of normal velocity, Beavers-Joseph condition, and the continuity of pressure as
the boundary conditions. Chang and Keh [42] explored the translational and the
rotational motion of the deformed colloidal spheres having a slip effect. More-
over, Saad [43] inscribed the translational as well as the rotational movement of
the porous spheroid enclosed in a cell and also deduced the drag and the couple
influenced on the particle, for the prolate as well as oblate spheroidal cases. In view
of the significance of such flow, Saad [44] treated the motion of viscous fluid past
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a cluster of porous spheroids confined inside a spheroidal envelope by considering
different cell models. He derived the expressions for the drag and the normalized
mobility on the particle and further, observed its dependence of important flow
parameters by graphical simulation. Regarding the examination of the resistance
force, Srinivasacharya and Prasad [45, 46] presented a study of the motion of a
porous approximate sphere containing a solid core in both unbounded and bounded
medium, respectively. Further, motion of a porous approximate sphere contained
inside an approximate spherical container was studied by Srinivasacharya and
Prasad [47]. Chen [48] made an attempt to draw out liquid from a Darcy porous
medium of a slender permeable prolate spheroid. Employing the condition of
Beavers-Joseph-Saffman, Rasoulzadeh and Kuchuk [49] focused on extracting the
effective permeability for spherical and spheroidal vug of the porous medium com-
prising fracture inclusion. In an article by Yadav et al. [50], the steady flow over a
porous membrane consisting of impervious spheroid wrapped with a porous layer
is discussed, and thereafter, they evaluated the hydrodynamic permeability act-
ing on the membrane. Employing the condition of Beavers-Joseph-Saffman-Jones,
the viscous flow past a Darcy’s governed permeable spheroid was demonstrated by
Prasad and Bucha [51]. They employed the condition of balancing the normal stress
in the fluid area with the pressure in the permeable area of flow. Recently, Prasad
and Bucha [52] analyzed the effect of magnetic field on the flow past a porous
spheroid governed by Brinkman’s model and evaluated the drag force acting on the
particle.

As far as we know, the work regarding the analysis of the impact of a slip on the
flow past a spheroidal particle within a cell by using BJSJ condition and pressure
balance with tangential stress has not been investigated earlier. The flow through
particle inside a cell is the basis for the study of heat and mass transfer phenomena
in swarms of spheroidal particles [34]. Moreover, such flows are considered as an
idealized model for capturing the particles in the filtration comprising of connected
pores. In various practical problems, the shape of the particle is not perfectly
spherical. Keeping in view the importance of study in porous flows, the purpose
pursued in the present work is to model the problem of flow past a deformed
permeable spherical particle contained inside a cell. In the present paper, the
low Reynolds flow through a permeable spheroid enveloped inside a spheroidal
cell is studied, adopting Darcy’s law for the motion is the permeable zone. As
the fluid porous interface condition, the conditions of conservation of mass, the
balancing of pressure in the permeable region to the normal stresses in the liquid
region together with the Beavers-Joseph-Saffman-Jones slip condition are treated
to be applicable. Moreover, Happel’s and Kuwabara’s cell models are employed
at the cell surface. A closed solution for the drag is derived and further, the
normalized mobility of the particle is also presented. Graphical and tabular results
for normalized mobility on significant parameters like permeability, deformation,
volume fraction, slip parameter, and aspect ratio, are obtained and discussed for
both the cell models.
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2. Mathematical formulation of the problem

As depicted in Fig. 1, the steady incompressible viscous flow past a permeable
spheroid confined inside a fictitious spheroidal cell assuming low permeability
is pursued. Stokes equation and Darcy’s law are applied to analyze the motion
in fluid and permeable region, respectively. Both the cases of an oblate and a
prolate spheroid are illustrated. The radius of the inner spheroid is denoted as
r = a[l + a,, 9,,({)] and outer cell spheroid is r = b[1 + a,, F, ()]

< C:_P -
."' yU \\‘ r
r=b[1+2¢ 92(§l','
r=b[1+2¢ 9,(¢)] Z r s
L R ;
et y U A !
o Viscous flow| AN H
c(1—¢) I"
A Permeable +
RegionIl *
Viscous ﬂogvf“
Region I
€>0
Oblate €<0
r=a[1+2¢ %,(¢&)] Prolate

Fig. 1. Physical situation of a permeable oblate or prolate spheroid in a concentric spheroidal cell

2.1. Flow field equations

Motion of the fluid flowing in the clear fluid region as governed by Stokes
approximation is

v.-3 =0, (1a)
VpD 4+ uvxvxs® =0, (1b)

Motion of the fluid flowing through the permeable medium is assumed to be
governed by Darcy’s law represented as

v-v® =, (2a)

VpQ%+%v@>:o, (2b)

with V, p, u, k as the velocity vector, the pressure, the viscosity coefficient and the
permeability of permeable region, respectively.

For the ease of pursuing the current work, the following dimensionless vari-
ables are introduced

. ¥=Uv9,  p="=p 3)
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in the governing equation (1) and (2), and later ignoring the tildes, we have

v-3M =, (4a)
VpD 4 vxvxi® =0, (4b)
V3@ =, (5a)

Vp® +a?3@ =, (5b)

2
where, we denote o = % as permeability parameter.
The spheroidal surface is supposed to be r = a[1 + f(8)] that differs a bit from
the sphere r = a. The orthogonality of the Gegenbauer functions 4,,(¢{), { = cos 6,

in general circumstances, allows the expansion f(8) = Z A ¥4, (L), where the
m=2
Gegenbauer function and Legendre function P, ({) are related as
Pn—Z(g) - Pn({)

() = = nz2 6)

The spheroid surface r, is now supposed to be r = a[l + Z O P (O)].
m=2
Also, we suppose the coefficients «,, are small enough to have negligible

effects of its squares and higher powers and hence can be ignored [14]. Therefore,
(r/a)’ ~ 1+ yany,3,(L), with y to be positive or negative.

2.2. Stream functions

Consider (r, 6, ¢) to represent a co-ordinate system in spherical polar form
along with unit vectors (&, €y, €5). According to the formulation, the flow is along
the meridian plane and axisymmetric in nature, leading to all the involved quantities
to be independent of ¢. Therefore, we can now consider the velocity vector as

FO =0, D(,0) 6+ (r,0) s, i=1,2. ™

Accounting the condition of incompressibility V - #) = 0, the stream functions

17/ ) (r, 0) are represented as follows

! v o1 9v® @®
r?sinf 06 o rsingd dr

Eliminating the terms containing pressure in Eqs. (4) and (5), and thereafter im-

plementing Eq. (8) in the simplified equations, we acquire

o =

E4l,0(1) — O’ (9)
E*y® =0, (10)
9% singd (1 0
i h E2 = — _ k k -
wit arz + r2 60 (sin@ (99) nown as StO €S operator
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3. Boundary conditions

Different boundary conditions are offered for studying flow past permeable
particles at liquid-porous interface. However, we have to specify the conditions
which are found appropriate from the physical as well as mathematical view.
For the low permeability problem, the interface condition at the spheroidal inter-
face r = a[l + a,, 9,,({)] are the continuity of normal components of velocity,
proportionality of the shear stress with the tangential velocity components, i.e.,
Beavers-Joseph-Saffman-Jones slip condition [7, 10, 11, 49, 51] and the normal
stress acting on fluid to be identical to the pressure in the permeable area, i.e., a
jump condition for pressures [49, 54].

At the spheroidal interface r = a[l + a,, 9,,({)], we propose the following
conditions

1. Continuity of normal velocity components

(¥ -2 -7 =0, (11)
2. Beavers-Joseph-Saffman-Jones condition

_/1\/% 3

with 7V to be the stress tensor of viscous fluid (Region I) and 4 to be the
dimensionless slip parameter which relies on the nature of porous media.
The value of A lies between 0.25 and 10 [1, 11, 54]. Moreover, in the case
with 4 = 0 together with extremely low permeability the proposed problem
reduces to the motion of fluid through a semipermeable spheroid.

3. Jump condition for pressures [49, 51, 54]

ior®.g= L g0.g (12)

ﬁ-T(l)-ﬁ=—p(2), (13)

Also, it = € —aml1 = {2 Pm-1({)€p, is the unit normal vector and § is the arbitrary
tangential vector at the interface of spheroid r = a[l + @, %, ({)].
Boundary conditions at infinity (r — o) for the motion in fluid area are

vﬁl) = —U cos @ and vél) = Usin@.

Implementing the values of 7 and § in Egs. (11) to (13), we get

vﬁl) _ vﬁz) _ (vél) _ véz)) . /1 — 2P 1(0), (14)

a
7y +@m\[1=02 P10 (rﬁl)—r,;‘;)j(vg”wﬁ”am 1—;2Pm_1(4>), (15)

Tr(rl) _ 20m7’r($) /1 — 2P, () = _p(Z)‘ (16)
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At the cell surface r = b[1 + a,, ¥,,({)], we consider the two frequently used
models, referred as Happel’s and Kuwabara’s models. In both the models, the radial
velocity on the cell surface is supposed to be continuous, i.e.,

(1) +Ucosf =ay, ( 9(1) —Usin 0) sin O Py,—1 (L), (17)
* Happel’s model [15] i.e., vanishing of tangential stress
)+ am (55 = 14y)) sin 6P, ($) = 0, (18)
* Kuwabara’s model [16] i.e., vanishing of vorticity
curl ¥V = 0. (19)

All the aforementioned conditions expressed in the stream functions ;i = 1,2.
are presented below
At the surface r = 1 + a;,, 91, ()

oy ay@\ oy oY@
( 6{ - (9{ )—F(lum_l({)( ar - Oor )’ (20)
18yM 0 402D 6 gy
2r E(; or ) E“Y Y + 2am2(0) P l(g)( arol }"2 a¢
Pi() dy'D y oy
+rﬁ2(§) or ) ) ( or T (1 —§ YamPm-1(4) ¢ )’ D
am_ 2 [2090 %D
- 2 r 8¢ 0rde
2amPu-1() [2r£ (lalﬁ(l))_EZd/(l)] = —p?, (22)
r or \r Or
and at the surface r = 77_1 [1+am3n(d)], withny = %
(1) (D
gg +72c086 = ramPm-1() (algr - 2r192(§)), (23)

* Happel’s model:

1(9(//( ) )
2y — EZy M
or (r or ) v

Py 6w P dyh

4
+2"’"'92(5)[ 3rdl 12 07 rdad) or

:|Pm—l =0 24

e Kuwabara’s model:
E*yM = 0. (25)
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4. Solution part

Using the separation of variables method [14, 43, 44, 52], the solution for the
Egs. (9) and (10) in the viscous fluid (Region I) and permeable zone (Region II)
are as follows

yD = 92(2)

by
ar? + = + oot + dor
r

+ Z [Ani”n + Bnl"_n+1 + Cnl"n+2 + Dnr—n+3] ﬁn(§)7 (26)

n=3

y? = (62r2 + fzr_l) 92(4) + i (E"rn + F"r_nH) In(0). 27)

n=3

The stream function ¢ ® is finite in the region I and imposes the condition f» = 0
and F,, = 0 for n > 2. Pressure acting in regions I and II are expressed as

p(l) - _ (10C2+d—;)P1(§) _Z (4n+2)Cnrn_1 + (4n_6)Dnr_n n—l({):| 5 (28)
r n=3

n—1 n
r-

1

2) _ 2
=«
1

P Pur_1(9)] - (29)

n

exrPi({) +) En
n=3

Where ay, by, ¢, dy, and e, are unknown constants to be determined and they
contribute the solution of slow flow past a weakly permeable sphere in bounded
medium. A,, B,, C,, D,, and E,, for n > 2 are unknown constants to be de-
termined and they represent deformation part of the solution of slow flow past a
weakly permeable spheroid in bounded medium. Initially, we evaluate the solu-
tion corresponding to the boundary r = 1 + a,,¢,,({). The solution for the case

r=1+ Z amy,(£). Same method is adopted for each m to obtain the stream
m=2
functions for the flow regions.

S. Implementing to permeable spheroid

As a special case, flow through a prolate or an oblate permeable spheroid is

studied. The equation describing the surface of the spheroid in the Cartesian frame

(x,y,2) i . ,
XAy Z

c? c2(1—e)?

where ¢ to be the equatorial radius. Besides, € is supposed to be so small that its

squares and higher powers are ignored. In polar form, the equation describing the

spheroidal surface (30) is r = a[l + 2€,({)], with a = ¢(1 — €).

=1, (30)
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The spheroid behaves as an oblate spheroid for 0 < € < 1, and as a prolate

spheroid for € < 0. The condition of € = 0 describes the case of a sphere of
radius c. To utilize the above results, we choose m = 2; a,,, = 2¢€. Thus, the stream
functions are

yV = [(a2 + A))r? + (by + Bo)r™" + (e + Co)r* + (dy + Dy)r| 92(0)
+ [A4r4 + B4r_3 + C4I”6 + D4I’_1] 194(5), (31)

WP = (er + E2) P92 (0) + Ear*94(0). (32)

6. Hydrodynamic drag acting on the particle

On account of the viscous flow, a resisting force is exerted on the spheroidal par-
ticle inside a cell. To evaluate the drag, we adopt the following formula [14, 44, 51]

FD:f(ﬁ-T“))-/?ds, (33)

S

with 7 = &, — €sin2608y; dS = 271a>(1 + 2€sin®0) sinH do and k to be the unit
vector along the z direction.

On solving the above equation providing the stress components and stream
function given in Eq. (26) along with the surface r = 1 + € sin” 6, we obtain

Fp =4ruUa(d; + D»). (34)

Utilizing the values of d, D, obtained by solving the equations obtained from

boundary conditions, together with a = c(1 — €) and thereafter @ = a;(1 — €),

n =n1(1 — €) [44], the ultimate equations for both the cell models are reduced as
* Happel’s model

P Al (03] (60/1/1@31 - 27]?{52 - 3§3) € (A3/12 + Aqd + As) (35)
= + R
Hp =HTC 6M A + Ao 5 (AgA2 + A7 + Ag)
e Kuwabara’s model
1501 (2014 + a3 +4) € (5347 + 641 + 5)
Frv, = —4nuU + . (36
Ku = —ARpLC 65,1 + 0, 52 + 071 + 03 (36)

Where, a; = Lk and n; = IE) Also, the particle volume ratio of the unit cell is

assumed to be identical to the particle volume fraction y over the whole suspension.
3

Therefore, y = (%) ie,y = n?. Also, all the newly introduced variables are

mentioned in Appendix B.
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6.1. Some special results

Few significant results, evaluated in the limiting form as mentioned below,
validate the consistency of the current analytical study.
Bounded by hypothetical cell
Case 1: In absence of slip, i.e., 4 = 0 in Egs. (35) and (36), it acts as flow over a
semipermeable spheroid in cell model and the drag expression turns to

* Happel’s model

—a) (38 + 2008, A
Figp = 4npuUc ( A 1) + g—AZ : 37)
¢ Kuwabara’s model
1501 (a? + 4 5
Fgy, = —4nuUc # + €% . (38)
02 03

For € = 0 in the above equations, the drag on the perfect semipermeable sphere is
obtained.
Case 2: If the deformation parameter € = 0 in Egs. (35) and (36), it reduces to flow
past a permeable sphere in cell model and the drag is

* Happel’s model

ay (6181 - 2}, - 383)
Fyp = 4nuUc AL A , (39)
* Kuwabara’s model
1501 (2014 + @} +4)
Fy, = —4nulUc 66,17 05 (40)

Case 3: If oy — oo in Egs. (35) and (36), it acts as a flow past a impermeable
spheroid in cell model and the drag is
* Happel’s model

277 +3 2¢

+
m-1 5

P 4ruUc
Hp — 3 5
= D>+ 1) (202 +n1+2)
3n] (4n$+9m+14)+37n?+32nf+63(n$+m+1)n$+3(1+11m) a
(m - D> i+ 1) (202 + 11 +2) ’
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* Kuwabara’s model
6rulc € (297} +58n3 +87n} +461, +5)
= +
=1 (n+3n3+6m+5) | (n=1) (3 +3n} +6n1 +5)

The above drag expression for both the models are in good agreement with the
work of Saad [44].
Case 4: If both € = 0 and @ — oo, it acts as flow past a impervious sphere. The
drag is

* Happel’s model

FKu

} . 42

2n1° +3
Fo, =4 U , 43
Hp = HTHE [Zﬂlﬁ-3nls4-3ﬂ1-'2] )
e Kuwabara’s model
5
Fx, = 6rucU . (44)
. a [ﬂ16—5ﬂ13+9n1—5]

which is in supports with Happel and Brenner [14].
In absence of cell surface

Case 1: As b — oo or 71 = 0 in Egs. (35) and (36), the problem turns to flow
through a permeable spheroid in an infinite expanse of flow, i.e., in unbounded
medium. The drag is now of the form

3(1’1 (20’1/1+a’%+4) 6_A5

Foo = —4muU +
T 6ar2 + 18) A+ 2413 + 91 Ae

) (45)

Case 2: If A = 0 in Eq. (45), the problem of flow over a semipermeable spheroid
is deduced and the drag is converted as follow

2 ((aqz + 12) (20'12 + 5) €e-5 (a/l2 + 4) (20/12 + 9))
5202 +9)?

Foo =6muUc ., (46)

Case 3: For the deformation € = 0 in Eq. (45), it transform into flow past a
permeable sphere and the drag is

403 + a1 (2a1% +8)
(6(1’12 + 18) A+ (1’1(2(1’12 + 9)

Foo = -6mulc ) 47)

Case 4: With A = 0 in Eq. (47), flow through a semipermeable sphere is derived
and the drag is

261’12 +8
20/12 +9

The above results are in support with the work of Prasad and Bucha [51].

Fo = —-6rruUc [ ) (48)
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Case 5: With flow through a impervious spheroid, derived by letting @y — oo
(permeability k = 0), the drag expression is

Foo = —61uUc

- g] (49)

It is alike as the Stokes drag over a impervious spheroid [14].
Case 6: If € = 0 in Eq. (49) the flow past a solid sphere is deduced with the drag as

Foo = —-6muUc. (50)
It is the famous expression for Stokes drag over a solid sphere [14].
6.2. Normalized mobility

The normalized mobility denoted by M, is the ratio of the drag experienced
by the spheroid in the unbounded medium to the drag exerted on the spheroid in
presence of cell surface [44].

Mathematically, represented as M = F—Oo
D
* Happel’s model
Using Egs. (35) and (45), we have
Feo
My, = — (51)
Hp FHp
* Kuwabara’s model
Using Egs. (36) and (45), we have
Fe
Mg, = 52
Ku FKu ( )

It is important to note, in the limiting case, when ; = 0 (i.e., b — o) the flow
past an bounded spheroid is deduced and in this case the mobility tends to M = 1 for
any value of € and a| with Fp = F. Moreover,0 < M < 1for0 < n; < 1[43,44]
where 11 = ¢ with ¢ < b. For @y — oo, we obtain the results for impermeable
solid spheroid bounded by a cell. Therefore, the expression for drag in unbounded
medium reduces as given in Eq. (49) and for cell case as represented in Eqs. (41)
and (42).

In this case, the particle mobility for both the models are obtained as

* Happel’s model

1
Myy = —————— [(1+ 3/2)y°? = 3/2)y'P -y
W= TR [(1+ 32y = 31277 - ¥?)
()/1/3—1)2 (y+2y23+3y13+(3/2)) (14973 +15y23+21)
+eyl/3 , (53)

15(1 +(2/3)y33)
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e Kuwabara’s model

My, = (1-9/5)y' P +y=(1/5)y%) +€ (9/5)y =3y +(6/5)y%) . (54)

The above expressions are in support with the results by Saad [44]. Moreover, for
the case of perfect sphere i.e., € = O the results for both the models coincides with
the results given by Vasin et al. [19].

7. Numerical representation and discussion

In this part, the dependence of normalized mobility M (Mp), is normalized
mobility for Happel’s cell model, Mk, is normalized mobility for Kuwabara’s cell
model) of the spheroidal particle on various influential parameters are illustrated
through the graphs in Figs. 2 to 7. The dimensionless parameters involved in the
analysis are permeability parameter ki, slip parameter A, particle volume fraction
v, deformation parameter €.

0.8 0.8 1
—— k;=0.0001 \ — k1 =0.0001
XN -=- k;=0.01

0.7 4 -=- k1 =0.01 0.7

\ —- k=01
0.6 i\
0.5
= 041
03

S p——
0.2 L P —

0.1

0.0 1

(a) e =-0.1 (b)e=0.1

Fig. 2. Plot of normalized mobility versus particle volume fraction with A = 3 for varying
permeability

In Fig. 2, the behavior of normalized mobility according to the change in
permeability and particle volume fraction for both Happel’s and Kuwabara’s model
are shown. It delineates My, and Mk, to be a decreasing function of y. The curves
in the graph Fig. 2a is the case for flow past a prolate spheroid (¢ = —0.1) whereas
Fig. 2b is for the flow past an oblate spheroid (e = 0.1). All the plots reveal
normalized mobility to be monotonically increasing with advancing permeability.
It is found that the effect of the particle interaction on mobility is more for the
smaller permeability. For, k; = 0.001, the normalized mobility is nearly close to
the case of a solid spheroid with a smaller value of v, i.e., the particles are far
from each other. But as the particle nears one another, their difference increases
significantly and further when they are very close, there develops a huge pressure
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gradient which in turn allows more fluid to flow through the permeable medium
[17, 44]. The curves suggest normalized mobility to be more for the Happel’s
model in comparison with the Kuwabara’s model. Fig. 3 depicts the impact of slip
(1) on the mobility of the particle against particle volume fraction. The graphs
indicate that both the models result in almost similar qualitative behavior but a
slight differing in magnitude. It may be noted that in the complete range of y, the
value of My, and Mk, enhances with the increasing value of slip. The curve for
A = 0 is the case having no slip and it represents the flow past a semipermeable
spheroid. Fig. 4 demonstrates the influence of deformation on the mobility with
varying particle volume fraction with the remaining parameters to have fixed values.
Mobility is observed to be advancing with an increasing €. Using the cell model
method, it is perceived that the mobility of the permeable sphere (¢ = 0) inside
a container of the identical equatorial radius is less than the mobility of an oblate
spheroid and higher than the prolate spheroid. It is so because, for € < 0, i.e.,
aspect ratio exceeds 1, the major portion of the fluid slip at the particle surface
occurs in the direction of the particle’s movement. For € > 0, i.e., aspect ratio is
smaller than one, the main component of the fluid slip at the surface of a spheroidal

0.8

0.8

0.7 —-- A=5 074

0.64 0.6\\"

0.5 1\\y 0.5

= 04 s 0.4
0.3 - My 034

0.2 0.2

0.1

S 0.17
:

0.0 0.0 1

03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09

(a) e =-0.1 (b) e =0.1

Fig. 3. Plot of normalized mobility versus particle volume fraction with k; = 0.001 for varying slip

Fig. 4. Plot of normalized mobility versus particle volume fraction
with 4 = 3 and k; = 0.05 for varying deformation
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particle is in the direction normal to the motion of the spheroid [55]. Thus, the
flow past a particle highly depends on the nature of fluid and shape of the particle,
deformation of the particle, i.e., aspect ratio, and the drag is different for different
shapes and fluids. A similar behavior of flow past a porous spheroid governed
by Brinkman media is observed by Saad [43]. Additionally, for a fixed €, the
mobility of the particle even doesn’t vanish for the case in which the neighboring
particles touch each other (as y — 1). All the graphs in Fig. 5 and 6 emphasize
the plots of mobility against permeability for varying y and A, respectively for
both Happel’s and Kuwabara’s models. As predicted, the graphs show the mobility
to be a decreasing function of y and an increasing function of A. In general, the
mobility is found to be comparatively larger for oblate spheroids (¢ = 0.1) than
the prolate ones (¢ = —0.1). From Fig. 7, one can speculate the characteristic
of the mobility of the particle depending on the aspect ratio (1 — €) for varying
permeability. It is evident from the plot that for the spheroid with a fixed aspect
ratio, mobility increases monotonically with increasing permeability for both the
models [44].

10 10
— y=001 T :iggl Myp Mgy
M; Mg, -=- y=03 =0.
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(a) e = -0.1 (b)e=0.1
Fig. 5. Plot of normalized mobility versus permeability with A = 3 for varying particle volume
fraction
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Fig. 6. Plot of normalized mobility versus permeability with y = 0.6 for varying slip
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Fig. 7. Plot of normalized mobility versus aspect ratio with y = 0.6 and A = 2 for varying
permeability

Numerical results are displayed in Tables 1 to 3, showing the dependency of
normalized mobility on the dimensionless parameters for both the cell models. In
Table 1, the quantitative values of mobility for altering deformation along with
permeability is shown. The table shows the inferred mobility to be an increasing
function of the permeability. Further, it is figured out that the mobility increases
with increasing deformity, and also, the values corresponding to € = O are the
results for the case of spherical particles. Moreover, mobility is observed to be
higher for an oblate spheroidal particle. Table 2 illustrates the influence of altering
particle volume fraction on the mobility versus permeability. We noted that the
mobility decreases by increasing y. Table 3 depicts the variation in mobility for
enhancing slip in relation to permeability. It is perceived that the mobility of the
particle with no-slip (1 = 0) condition is lower as compared to the mobility of the

Table 1.
Normalized mobility against permeability for flow past permeable spheroid for varying deformation
withy =0.15and 4 =5

k1 e=-03 e =-0.1 €e=0 e=0.1 €e=03
My,

0.001 0.08736 0.23395 0.30724 0.38053 0.52712

0.005 0.14089 0.28335 0.35457 0.42580 0.56826

0.01 0.17084 0.31015 0.37981 0.44947 0.58878

0.05 0.26936 0.39955 0.46464 0.52974 0.65993

0.1 0.33863 0.46307 0.52526 0.58748 0.71190

0.001 0.08187 0.19220 0.24736 0.30253 0.41285
0.005 0.12273 0.23216 0.28688 0.34159 0.45103
0.01 0.14610 0.25474 0.30906 0.36338 0.47202
0.05 0.23254 0.34025 0.39410 0.44796 0.55567

0.1 0.30123 0.40787 0.46119 0.51451 0.62115
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Table 2.

Normalized mobility against permeability for flow past permeable spheroid for varying particle
volume fraction withe =0.1and 1 =5

ki vy =0.01 y=0.1 y=0.3 vy=0.6 y=0.8
Mpp
0.001 0.75055 0.45826 0.22963 0.07716 0.02801
0.005 0.76908 0.49859 0.28052 0.11821 0.05460
0.01 0.77858 0.51944 0.30849 0.14513 0.07587
0.05 0.81065 0.58963 0.40761 0.25834 0.18400
0.1 0.83384 0.64001 0.48019 0.34760 0.27633
Mk,
0.001 0.69308 0.37610 0.17266 0.05678 0.02158
0.005 0.71480 0.41371 0.21015 0.08381 0.04096
0.01 0.72607 0.43419 0.23270 0.10373 0.05848
0.05 0.76502 0.51085 0.32976 0.20899 0.16503
0.1 0.79362 0.56997 0.41012 0.30339 0.26472

Table 3.

Normalized mobility against permeability for flow past permeable spheroid for varying slip with

e=0.1andy =0.15

kq 1=0 A=1 1=2 1=7 A1=10
Mg,
0.001 0.31020 0.32932 0.34529 0.39718 0.41597
0.005 0.31209 0.35118 0.37835 0.44378 0.46149
0.01 0.31436 0.36680 0.39925 0.46664 0.48269
0.05 0.32931 0.43278 0.47757 0.54417 0.55644
0.1 0.34245 0.48340 0.53425 0.60120 0.61256
Mgy
0.001 0.24318 0.25952 0.27305 0.31625 0.33157
0.005 0.24605 0.27952 0.30242 0.35615 0.37033
0.01 0.24948 0.29461 0.32198 0.37725 0.39008
0.05 0.27190 0.36455 0.40356 0.46002 0.47020
0.1 0.29134 0.42181 0.46760 0.52641 0.53620

particle with some slip effect. In all the tables, it is clearly described that the value of
normalized mobility is higher for the Happel’s cell model. It is due to the vanishing
of vorticity in the Kuwabara’s model, which produces a larger energy dissipation in
the cell as compared to the Happel’s model, which is due to the vanishing of shear
stress. Further, in Kuwabara’s model, an exchange of mechanical energy between
the cell and the environment takes place but in Happel’s model no such exchange
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of mechanical energy is seen. However, the difference between both the models is
VEry narrow.

From the above discussions, one can speculate that the dimensionless units
possess a substantial impact on the flow of the permeable spheroidal particle.
Further, the effect of slip is found to be dominant while pursuing problems using
low permeability.

8. Conclusions

In this article, a detailed inspection of flow past a deformed permeable spherical
particle surrounded by a cell is performed analytically using Stokes and Darcy’s
law. We have derived an analytical drag expression on the considered deformed
particle possessing low permeability for both Happel’s and Kuwabara’s models.
Several results corresponding to reduction cases matching with earlier work are
included for validating the present work. The behavior of normalized mobility
according to varying deformation, permeability, particle volume fraction, slip, and
the aspect ratio, are illustrated through graphs and tables.

The following conclusions are made from the ongoing analysis:

* The normalized mobility of the permeable spheroidal particle in a spheroidal
vessel is found to be larger for an oblate spheroid than the prolate spheroid
and a sphere inside a spherical vessel of the equal equatorial radius. But, the
mobility for the prolate spheroidal particle is lower than the sphere inside a
vessel.

* The numerical value of mobility for the Happel’s model is observed to be
higher than that for the Kuwabara’s model. However, they possess almost
similar qualitative behavior.

* Mobility is perceived to be an increasing function of permeability, deforma-
tion, slip and it decreases with increasing values of particle volume fraction.

* The current work is capable of capturing the slip effect on the flow charac-
teristics of a low permeable spheroidal particle.

A. Appendix

On applying the Eqgs. (20) to (25) up to the first order of «,, and neglecting the
other terms, we derived the equations below [52, 55]

(ay + by +cr+dy—e2) Pi({) + ap(2ay — by +4cy + dp — 2e2) [0 () P1(0)

+ 192({)Pm—1(§)] + Z(An + Bn + Cn + Dn - En)Pn—l(‘;) = 0’ (55)

n=3
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[2a az + (64 + @)by + 2(34 — 2a)c; — @ da]92()
—am [Qaax + 2094 + @)by = 12(2 - @)c2) I () D2(0)
—QRaay+2091 +a) by —2(64 — @)cz + 2(31 + a)d2) $2({) P1({) Pm-1({)]

+ i [(2n(n —-DA—an)A, - (2(1 — A+ a(l - n)) B,

n=3

- (20 =M+ a(n+2)) Gy = 2n2 = n) A + @3 = 1) Dy | 94({) =0, (56)

(6by + 6¢) + 3ds + %) P1() + am[—12b5 + 18¢s — 6ds + aer ]9 () P1(L)

— R2am(b2 + c2)[92() Pn-1() + (O P1(D] + Z [22-n)A, +2(n+ 1)B,

n=3

—pn2 2 - §
+(M) Cn+(M) Dn+( @ 1)E] Pui(D) =0, (57)

n n n—

(n_zaz +nby + n_4cz + T]_Idz - 77_2) Pi(0) + a/m(2n_2a2 —-nby + 47]_4C2

+ 17 dy = 207 ()P (L) + D2(0) Pr1 ()]

# D T A+ " By T2 C, + T DIP(0) = 0, (58)
n=3

(67762 + 6n72¢2) 92(0) + @ [(=187° by + 12022 B (D) B2(L) + 2097 by

60722 + 3nd2) 02 (O P L) P ()] + ) [2n(n = 2)m "2 A,

n=3

+2(n* = D™ B, +2(n? = Dy ™"Cp + 2n(n = 20" ' D, 19,(0) =0, (59)

(10772c2 = 20d2) 92(0) + @ [20072c2 + 27 | 9,0 () B2(£)

[

+

n

[(4n +2)n7"Cpy — (41— 6)7" ' D18, (L) = 0. (60)
=3

The leading terms of the above equations are equated to zero and we have

a+by+cy+dy—ey =0, (61)
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—2aay+ (64 + a)by + 2031 -2a)cr —ady =0, (62)
6by + 6¢5 + 3dy + a’es = 0, (63)
n2ay+nby+n e+ ldy -7t =0, (64)
6n°by + 6n7%c; = 0, (65)
10n™2¢, — 2nd, = 0. (66)

Solving these system of equations, the values of ay, b, ¢2, d», and e, are obtained.
Now, Egs. (55) to (60) are

D Ayt By + Cy + Dy = Ey) Pyt (£)

n=3

+ @ [Fn(OP1(Q) + 92() P-1(£)] =0, (67)

i [(2n(n —DA—an)A, - (2(1 —nHA +a(l - n)) B,

n=3
- (2(1 — 1A+ an+ 2)) C,— 2n(2 =) + a3 -n)) Dn] 9 (0)
+ & [0, (0)92(0) + Q392()P1({) Pm-1({)] =0, (68)

Z [2(2 —n)Ap +2(n+ 1)B, + Cy
n=3

2 _ 2
+(M)Dn+( ¢ 1)E] Pui(0)

n n—

+ Qs (O P1(0) = amCu[92(8) Pm-1(0) + Fm(HP1(] =0, (69)

(2(3n -n?+ 1))
n

DT A+ " B+ 0TG4 D1 Pa (£)

n=3

+ Q[P (O P1({) + F2()Pr-1(£)] = 0, (70)

Z [2n(n=2)n7"2 Ay +2(n* =)™ By +2(n* = 1)~ Co+2n(n=2)1""' D, | 9,(£)

n=3

+ @y [ () T2(0) + 2Q802 () P1 () Prm-1({)] = 0, (71)

D [@n+2m7"C = (4n = 6)1" " Dy | 90(0) + @mQoBm(P2(£) = 0. (72)
n=3
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where

.Ql = 2612 - b2 + 462 + d2 — 262, Qz = —(2(1 ay + 2(9/1 + a’)bz — 12(/1 — (1)6‘2),
Q3 =20 ar + 2091 + @)by — 2(61 — a)ca + 234 + @)ds, Q4 = 12a; + 1205,
Qs = —12bs + 18¢y — 6dy + @?es, Qg =257 2ar — by + 4% + 7 dy — 2072,
Q7 = —187°by + 12n7%¢s, Qg =9’y — 6572y + 3nds, Qo = 2007>¢s + 2nds.

In order to calculate the arbitrary constants A, B,,, C,, D, and E,,, we require the
following identities

(m-2)(m-73) m(m—1)

Fm()P2({) = T3am = D = 3)ﬁm—z({) T amt Dm = 3)0m(§)

(m+1)(m+2)
T 2em=D@mt 1 (73)

-2 -3
B ©PIE) + Pt (D2(0) = =50 =B, 2 (0)
m(m —1) (m+1)(m+2)

Femrnan-3 OG- nam s @ 09

-1 -2 -3
PUODAOPcr(§) = =5 D20, )

m(m—1) m(m+ 1)(m+2)
tamrnan=3""9* 2@ nams o 09

_ (m—2) 1
ﬂm(g)Pl(g) - (2m— 1)(2m_3)Pm—3(§) + (2m+ 1)(2m_3)Pm—1(§)
(m+1)

CQm-1DQm+ 1)

Prni1(0). (76)

Solving Egs. (67) to (72) using the above identities, we see that the values of A,,,
B,,C,,D,and E, =0forn+m—-2mm+2.
For n = m — 2, m, m + 2, the following expressions are derived

A,+B,+C,+D,,—E,+Q,a, =0, 77

Qn(n-2)A—an) A, - (2(1 —nHA +a(l - n)) B,
- (20 -+ a(n+2)) Cy— 202 = n) A + a3 = n)) Dy
+Qa, +Q3b, =0, (78)
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2Q-nA, +2(n+1)B, + n n

_ 52 2 _
(2(311 n +1))C +(2(n +n 3))D
n n

o>
+ (n— 1)E,,—Q4En+§256n =0, (79

N7 An + 0" By +n7"2C, + "Dy + Qe = 0, (80)

2n(n - 207" %A, +2(n* — D™ B, + 2(n® - Dp™"C,

+2n(n — 2)77"_an +Q7a, +2Q3 b, =0, (81)
4n+2)n™"C, — (4n - 6)77”_1Dn + Qg a, =0. (82)
where
_ nn-Da, - nn-1a, _ ap

= on+2n-3" " 22n+1)2n-37 T 2n+H)@n-3)

Solving Egs. (77) to (82), the individual values of A,, B,, C,, D,, and E, are
determined forn = m — 2, m,m + 2.

B. Appendix
The expression for the variables mentioned are below:

E=n -1, G=a’-6 &H=a’+4 E=a’+2 &=a’+3,

b =20 +9, &H=a’-15 &=n’-2 &=6n-1 £&o=ar’+6,
En=a’+24, fn=a’+12, &3=20%+5 &u=a" +397 - 54,
fis=art —2la? +216, &6 =ay* + 1917 +36, €17 =3& -2 &,

G =m*Eu+3a’ b, £19=3 (36 -2m"0 &) + 502 & £

£20 =39m° = 20m1 2 - 24, & =24& -4 (e +39) 1 =5 (5a0” +22) i,
& =Ta* +64a,% + 168, &3 =a* + 12a1% - 300,

=3l + 342017 + 1440, &5 = 29017 (a)” - 2) - 936,

b26 =983+ 120 &2 = 1001 €10, é27 = é24 = 301 Ens,

b3 =301 & =510, A= (012771 - §5),

Ay =y (56 +1 (37714-_’54 -3& -2y ,52)),
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As = =361 (~ar? & +m° (& - 617 1) & - 15),

Ay = 120 (2@12 m €19 — 21° €18 + 316 —1° 515)7

As=ay’ (6771 26 &3+ 801° Ex a5 — 2117 7 + 302 513) . Ag=36A1%

A7 = —12a1 Ay (~€6 = 3m° &4+ 3m1 & +2m° &),

As=ar? (<& -3 &+ 3mE+mO&), 1 =a® (m—6m +5)+15
02 = @y (556 - 2m (94"3 +n & - 5U12§10)), 83 = 36a; (5§7 + a7 7 fzo),
04 = =360 (0112771 & + 5516),

85 = —3a;? (72771 &2+ 211 €25 — 20m1° Exp + 5612 613),

86 =3651%  67=—12a161 (=566 + 1871 & + 2 & — 1071° £1p).

2
85 = ar? (=56 + 1871 &5 + 201 & — 10m1° £10)
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