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1. INTRODUCTION
Initial pre-processing of data can take much more time than
actual data mining, and can greatly affect obtained results [1].
Depending on the nature of input datasets, and techniques used
for knowledge exploration and discovery, some steps in the data
preparation can be considered as optional or indispensable [2].
One such step is discretisation, responsible for the reduction of
information. It transforms continuous attributes describing con-
cepts into their categorical forms [3]. The process is influenced
by characteristics of data, and occurring irregularities can re-
sult in obtaining such representations that cause unsatisfactory
performance of classification systems [4].

When input data is divided into several disjoint parts, such
as corresponding to train, evaluation, and test sets, discretisa-
tion becomes even more complicated, as properties of variables
studied in the local context of these sets are practically never
the same [5]. With the governing idea of discovering knowl-
edge only from the learning samples, they can serve as a base
for construction of a discretisation model – the lists of ranges
representing categories of values for attributes. This model can
be employed to interpret values present in evaluation and test
sets, which leads to their translation into discrete domain [6].
However, when data points are scattered, with highly disjoint
groupings, in this processing it is possible that for some of at-
tribute values in a test set there is no good match in any of the
intervals defined for it.
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On the other hand, all sets can be discretised independently
of each other. With this kind of transformation, the discretisa-
tion model based on test data is yet another factor compared
to the one obtained for train data. It is safe to assume that in-
dependent processing will cause different cut-points between
constructed intervals, but also, depending on selected discreti-
sation approaches, varying numbers of bins can be obtained.
Since cardinalities of learning and test sets most often vary, not
always the same ranges of parameters for discretisation can be
used for all sets. Thus the obtained discretisation models can be
used to observe irregularities between train and evaluation and
test sets.

The paper presents research in which input data were discre-
tised by several selected approaches, and with varying parame-
ters. From each version of discrete train sets decision rules were
induced. Then, with weighted voting as a conflict resolution
strategy [7], decision algorithms were employed in classifica-
tion of all variants of learning, and evaluation and test sets. The
latter were discretised in two ways: independently, and with
transformation based on discrete train sets. For all these tested
combinations of sets, the resulting performance of inducers was
studied.

Decision rules are often preferred as classification systems,
as they offer a transparent representation of patterns discov-
ered in data, by conditions included in rules [8]. In the re-
search they were inferred in rough set approach, implemented
in Rough Set Exploration System (RSES) [9]. Rough set theory
is well suited to data mining tasks with uncertain and incom-
plete knowledge [10]. In a rough set perspective, the universe is
seen through granules corresponding to equivalence classes of
objects that cannot be discerned, based on values of considered
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attributes. The classic approach requires categorical character-
istic features [11].

The input space, used in experiments, was defined to solve a
task of authorship attribution in the field of computer-assisted
stylometric analysis of texts [12]. In the domain of stylome-
try, recognition of authorship is based on stylistic fingerprints:
quantitative descriptors that reflect linguistic preferences and
habits of writers, often involving the calculation of frequencies
of occurrence for selected words or characters [13]. It makes
stylometric features continuous-valued [14]. Based on texts, a
classifier assigns authors as class labels to samples, and to mea-
sure its performance application of test sets gives much more re-
liable predictions than typically used standard cross-validation
[15]. This is a reason why stylometric data is a well suited ex-
ample for illustration of the described research works on data
irregularities and discretisation.

The objectives of the research presented, and main contribu-
tions of this paper are:
• exploration of a new aspect of data irregularity problem.

Very often in the literature, this problem is studied in terms
of the number of samples representing a given decision
class [16, 17], for example, class imbalance, class distribu-
tion, or missing/absent values issues. In the paper, the prob-
lem of data irregularities is considered in the framework
of discretisation process, which can be performed in differ-
ent ways;

• investigation into the influence of data irregularities on
categories and data models constructed for continuous at-
tributes within discretisation through various methods and
approaches, in particular in the case of disjoint datasets, such
as train, evaluation and test sets, for their independent trans-
formations, and for translation of test sets based on ranges
formed for train sets;

• examination of inducers performance for a wide range of
variants for all datasets, treating comparisons of different dis-
crete data models as a part of classification processes.
The content of the paper is organised as follows. Section 2 in-

cludes comments on various irregularities that can be observed
in data. Section 3 presents the problem of recognising author-
ship through stylometric features. Section 4 provides the back-
ground for selected discretisation approaches. The fundamental
notions of rough set theory are described in Section 5. Experi-
mental set-up and test results are detailed in Section 6. Section 7
contains conclusions and directions for future research.

2. DATA IRREGULARITIES
Data irregularities can be observed in many real-life applica-
tions [18], as well as data mining tasks, which try to deal with
this issue [19]. In this framework, one of the most popular re-
search topics is the study of the influence of certain data ir-
regularities on obtained classification results. From this point
of view, data irregularities can be considered as the following
problems [4, 20]:
• class imbalance, where the classes in a dataset are not

equally represented. It is a common form of the distribution-
based data irregularity, with one or more classes under-

represented in a set, while some other class or classes are
over-represented. It leads to distinction of minority and ma-
jority classes;

• small disjuncts, when there are small (that is under-
represented) subconcepts within classes;

• class distribution skew, when different classes possess signif-
icant disparate class distributions;

• missing features, in the cases of somehow lost or simply un-
recorded values of some attributes;

• absent features, where certain variables can be undefined or
non-existing for certain data instances rather than having an
unobserved or unrecorded value.
To minimise the bias caused by data irregularities on classi-

fier performance, several approaches are employed that attempt
to make up for the listed problems. For example, under- and
over-sampling for imbalanced classes either decreases or in-
creases numbers of instances in order to reach balance [21].
Missing or absent feature values can be replaced by averages
or most common values [22]. Irregularities can also be stud-
ied in the context of data processing methods, such as dis-
cretisation. The research described was dedicated to the exam-
ination of classification accuracies for decision algorithms in-
duced from, and then tested on various discrete versions of the
same data.

3. PROPERTIES OF STYLOMETRIC DATA
Stylometry advocates uniqueness of writing styles, visible in
linguistic characteristics, observed for all authors [23]. What-
ever particular topic they write about [24], through their indi-
vidual preferences and habits, the authors leave their stylistic
fingerprints in how they write, which leads to authorial pro-
files [13]. Not only can a stylistic profile be generally described,
but also its approximation can be expressed by measurable
characteristic features, specific to writers, to the point of reli-
able recognition of authorship [25]. The degree of precision of
definitions and descriptions, obtained for stylistic profiles, de-
termines techniques and algorithms that can be used for stylo-
metric data mining [26].

Author characterisation and comparison make attribution
possible, and these three are the main stylometric tasks. For
authorship attribution there can be executed calculations refer-
ring to statistics [12], for example, based on language models
and probabilities of occurrence of transitions between charac-
ters, letters [27]. Also methods from the computational intelli-
gence domain are employed [28, 29]. In this case the task of au-
thorship attribution becomes a problem of supervised learning,
where an inducer is trained on a part of a corpus of attributed
texts, and then the discovered stylistic patterns are compared
with the another part of the corpus, in order to label previ-
ously unknown samples into classes corresponding to recog-
nised authors.

Corpus construction is an important part of stylometric data
mining process [30]. Due to the high variety of linguistic fea-
tures that make a base for any language, style-markers that can
be employed are also numerous, and they are often categorised
as belonging to one of the four main types:
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• lexical: giving frequencies of occurrence, distributions, and
averages for characters, words, specific phrases, sequences
of words (word n-grams);

• syntactic: reflecting sentence formulation by employed punc-
tuation marks;

• structural: describing the organisation of a text in some units
(such as paragraphs or chapters), also specific formatting;

• content-specific: detecting important words in the context, of
special significance or meaning.
Descriptors need to be calculated over several text samples,

the more the better representation obtained for a stylistic pro-
file. For the values of features to be comparable, lengths of these
samples need to be as close as possible, and the samples should
be of sufficient length [31], as for short forms of writing differ-
ent stylometric rules apply [32]. With these considerations in
mind, and taking into account that not that many writers author
a sufficiently high number of long texts, it is a widely applied
practice to divide longer works into several smaller parts. Not
only does it increase the number of available samples, it also
allows for closer observation of stylistic variations exhibited in
long texts, written over longer periods of time. Otherwise, such
intricacies would be invisible in general calculations and con-
clusions.

Operation on examples, obtained from text samples being a
part of some larger whole, comes at a certain risk. As they re-
flect some variations of a style, in which this longer work was
written, such samples show closer similarity to each other than
to examples based on entirely different texts [33]. If all works
of a writer were collected and divided into smaller parts, then
the input space would include unevenly distributed data points,
grouped according to certain texts they were part of.

Standard cross-validation approach, popularly used for eval-
uation of classifiers, assumes testing on randomly selected sam-
ples not used for training, but in a space where no specific simi-
larity among samples is detected. The properties of stylometric
data cause this approach to be unreliable, as it is not only pos-
sible but highly probable that for testing there would be used
samples from the same novel that was used in training, thus
closer in style and easier to correctly recognise. The resulting
performance would be falsely increased, as the improved pre-
dictions would be caused by leakage of information from train-
ing into testing. It is the reason why evaluation and test sets,
constructed for evaluation of performance, need to use samples
based on separate texts, never used for knowledge mining. For
stylometric data, reliable cross-validation would mean swap-
ping not just samples, but original long texts between training
and test sets, but such processing brings very high computa-
tional costs [30].

4. OBJECTIVES AND ALGORITHMS OF DISCRETISATION
One of the stages in knowledge discovery is data pre-
processing. It can include discretisation, which transforms nu-
merical attributes into categorical ones with a finite number of
intervals [3]. Discretisation can be considered a part of data re-
duction methods as it maps continuous space of attributes val-
ues into a reduced subset of discrete values. From this point

of view, discretisation simplifies the data and removes possible
noise, so the data are easier to use and interpret. Discretisation
usually causes some loss of information, therefore it should al-
ways be used with caution, and adjusted to data and their prop-
erties, as existing irregularities influence the outcome.

Generally, discretisation can be considered a process consist-
ing of four steps:
• sorting all values of a discretised attribute;
• determining cut-points for splitting or merging intervals;
• executing splitting/merging according to an algorithm crite-

rion;
• evaluating the stopping condition of the discretisation algo-

rithm, and assigning values of the discretised attribute from
the input set to one of the evaluated intervals.
There are many discretisation methods and algorithms,

which can be grouped based on various criteria. One of the
most popular is division into supervised and unsupervised. For
supervised methods, information about classes is taken into ac-
count while searching for intervals among ranges of attribute
values. Some heuristic measures, e.g. entropy [34], can be used
to determine the best cut-points. In the case of unsupervised
methods, information about class labels is omitted during dis-
cretisation.

Another division of the algorithms is into local and global.
Local discretisers are defined separately for distinctive parts
of an attribute domain. Global methods consider the whole
attribute domain to define the initial set of candidate cut-
points.

Static discretisation methods are independent of the learning
algorithm and are performed before the learning task. Dynamic
methods are based on the information exchange between discre-
tiser and learner units, and can be considered as a component
of the learning algorithm. Most of discretising algorithms are
static, and dynamic discretisers are considered as a part of data
mining algorithms.

Discretisation can either be top-down or bottom-up. Bottom-
up approaches initially consider a number of intervals deter-
mined by the set of cut-points, and then these intervals are
merged until a certain stopping criterion is achieved. In top-
down methods at the beginning one big interval containing all
known values of an attribute is considered, and then partition-
ing of this interval into smaller and smaller subintervals is per-
formed, until a certain stopping criterion is reached.

In univariate methods, discretiser is working with a single
attribute at a time. In multivariate approaches, the work of a
discretiser is based on interactions among attributes, and simul-
taneously values of all attributes are studied to define the initial
set of cut-points.

4.1. Supervised discretisation algorithms
Fayyad and Irani [35], and Kononenko [36] methods were
two representatives of supervised discretisation approaches ap-
plied in the research works reported in this paper. Both be-
long to static, global, top-down, univariate approaches. These
two methods base evaluation of candidate cut-points on class
entropy of considered intervals, and Minimum Description
Length (MDL) [37] principle as a stopping criterion.
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4.1.1. Fayyad and Irani MDL
Let set S contain N instances and k decision classes C1, . . . ,Ck.
Class entropy Ent(S) of S is defined as follows:

Ent(S) =−
k

∑
i=1

P(Ci,S) log(P(Ci,S)), (1)

where P(Ci,S) is the proportion of class Ci instances included
in the set S.

Taking into account binary discretisation of a continuous at-
tribute a, the selection of cut-point is made by testing all possi-
ble candidates T . A cut-point T splits the set S into two subsets,
S1 and S2, where S1 ⊂ S contains instances with attribute values
≤ T and S2 = S\S1. Entropy for T is calculated as follows:

Ent(a,T ;S) =
|S1|
|S|

Ent(S1)+
|S2|
|S|

Ent(S2). (2)

For the optimal cut-point Topt , class information entropy
Ent(a,Topt ;S) is minimal. The process of evaluating cut-points
starts from a single interval of a discretised attribute, and is re-
peated again and again until the stopping criterion is met.

For Fayyad and Irani approach, the stopping criterion is con-
nected with information gain, considered as the difference be-
tween the entropy for the whole range and the entropy after
selecting cut-point T . The discretisation process is applied re-
cursively until the following inequality (3) is satisfied:

Gain(a,T ;S) = Ent(S)−E(a,T ;S)>

log2(N −1)+ log2(3
k −2)

N
+

− [k ·Ent(S)− k1 ·Ent(S1)− k2 ·Ent(S2)]

N
, (3)

where k1 and k2 give the numbers of classes, distinguished cor-
respondingly in the sets S1 and S2 after the split.

4.1.2. Kononenko MDL
In the case of Kononenko method, the discretisation process is
recursively executed until the inequality (4) is true:
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where
N – the number of training instances,
NCi – the number of training instances from the class Ci,
Nax – the number of instances with x-th value of the given

attribute a,
NCiay – the number of instances from class Ci with y-th value

of the given attribute a,
NT – the number of possible cut-points.

4.2. Unsupervised discretisation algorithms
Equal width and equal frequency binning are representatives
of unsupervised discretisation methods. In both the input pa-
rameter k determines the number of bins constructed for each
attribute. Each bin is associated with a distinct discrete value.

Equal width binning algorithm sorts the values of a contin-
uous attribute, designates the minimum and maximum and di-
vides this range into k equal width discrete intervals. In the case
of equal frequency binning, an equal number of continuous val-
ues are placed in each bin. So, the minimum and maximum
values of the discretised attribute are determined, sorted and
the range of values is divided into k intervals where each bin
contains the same number of sorted values [38].

The two methods are simple and sensitive to data irregular-
ities. When values of a continuous attribute are not distributed
evenly, some information can be lost after the discretisation pro-
cess. For the equal frequency approach, many occurrences of a
continuous value could cause that such value is assigned into
different bins. Therefore, during the selection of cut-points, it
is important that duplicated values are assigned only to one and
the same constructed bin.

5. ROUGH SET THEORY
Rough set theory (RST) was proposed by Z. Pawlak in 1982
as a mathematical tool for work with inconsistent and impre-
cise data [11]. Perception of knowledge through its granular
structure is a feature of RST. An elementary set contains all
indiscernible objects (i.e. characterised by the same values of
attributes). It forms a granule of knowledge about the universe.
It means that in the rough set theory, granules of indiscernible
objects, instead of particular objects, are considered.

A union of elementary sets is referred to as a crisp (precise)
set, otherwise the set is rough (imprecise). Each rough set has
objects which cannot be properly classified by employing avail-
able knowledge, and they are called boundary-line cases. So, in
RST, rough concepts cannot be characterised in the framework
of knowledge available about their elements. Hence, there are
used approximations of the rough concept.

Any imprecise concept is replaced by a pair of precise con-
cepts called the lower and the upper approximation of the rough
concept. The lower approximation consists of objects which
surely belong to the concept and the upper approximation con-
tains objects which possibly belong to it. The difference be-
tween the upper and the lower approximation constitutes the
boundary region of the rough concept. If the boundary region
of a set is nonempty, it means that our knowledge about the set
is insufficient to define the set precisely.

In the rough set theory, the main structure for data representa-
tion is an information system, and its special case – decision ta-
ble. Information system is a pair of the form S = (U,A), where
U is a nonempty, finite set of objects, and A = {a1, . . . ,am} is a
nonempty, finite set of attributes, i.e., ai : U → Va, where Va is
the set of values of attribute ai, called the domain of ai. A deci-
sion table is a pair of the form S = (U,A

⋃
{d}), with a distin-

guished attribute d /∈ A. The attributes belonging to A are called
condition attributes while d is called a decision.

Sets of decision rules are a popular form of knowledge rep-
resentation, used in many areas connected with data mining. In
the paper, decision rules are formulas presented in the form:

(ai1 = v1)∧ . . .∧ (aik = vk)→ d = vd , (5)

where 1 ≤ i1 < .. . < ik ≤ m,vi ∈Vai , 1 ≤ vd ≤ |Vd |.
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Many algorithms for the construction of decision rules ex-
ist [8, 39]. In the research presented, an exhaustive algorithm,
implemented in RSES system [9] was used. This algorithm al-
lows to construct all decision rules with a minimal number of
descriptors (pairs attribute=value).

6. EXECUTED EXPERIMENTS
The experiments started with the determination of writers to be
compared and recognised in the author attribution tasks, and
division of their available works into three disjoint groups. The
novels were next partitioned into smaller text parts of a compa-
rable size, over which selected stylometric markers were calcu-
lated. This resulted in the construction of respectively learning
(training), and evaluation and test sets.

After this initial preparation of data, all sets were discre-
tised through various approaches, with varying discretisation
parameters, with independent processing of all sets, and with
obtaining discrete test sets while using models build on discrete
learning data in their corresponding versions. The processing
resulted in obtaining several variants of all sets.

Next, from all versions of discrete training sets decision rules
were inferred in rough set approach, by an exhaustive algo-
rithm. The obtained sets of rules were then used to classify
samples, applying standard voting in the case of conflicts, that
is weighting the vote of each rule by its support. The decision
algorithms were applied to all sets within a dataset – all vari-
ants of a learning set, and all versions of evaluation and train
sets, constructed within the same discretisation approach. In all
cases the resulting performance was studied.

The details of the experiments are given below.

6.1. Preparations of input datasets
Two pairs of writers were chosen for analysis, Edith Whar-
ton and Mary Johnston (Wharton-Johnston, or W-J dataset),
and Jack London and James Curwood (London-Curwood, or
L-C dataset). This particular pairing of selected writers was
not coincidental. As stylistic profiles for female and male writ-
ers show certain distinguishing characteristics [40], their com-
parison (for example Wharton with Curwood) would mean
introducing additional factor into the equation that has non-
negligible potential of influencing obtained predictions.

As the governing idea is for all text samples to be attributed
to their authors, regardless of the topic, similarity or dissimi-
larity of the genre, these elements were disregarded in corpus
construction [24]. For all four writers 10 novels were randomly
selected and then grouped, 4 for training data, and two times 3
novels for the two test sets. All works were further divided into
text parts, and per author for learning 25 such samples per novel
were taken, and for both test sets 15 per novel. It resulted in 200
samples in a training set (100 per author), and 90 per each eval-
uation and test set (45 per writer), making all sets balanced with
respect to recognised classes and classification binary [41].

Then, using the list of the most popular words in English
language and a set of punctuation marks, the frequencies of oc-
currence of 100 lexical and syntactic style-markers were cal-
culated over all text samples [42]. To the results obtained for

both training sets (for W-J and L-C data), in the next step sev-
eral ranking algorithms for features were applied [43]. The at-
tributes that obtained low rank were discarded, and only these
always highest-ranking left, which returned the set of 24 char-
acteristic features (22 lexical and 2 syntactic at the end), with
the values for all attributes in the range < 0,1), corresponding
to occurrence frequencies for:

after almost any around before but by during how
never on same such that then there though until what
whether who within ; ,

6.2. Discretisation of input datasets
For the discretisation of input data four methods were chosen,
two examples from the supervised category, and two represen-
tatives of the unsupervised group. All these algorithms are im-
plemented in WEKA workbench [44], which was employed in
the execution of the experiments.

Supervised discretisation with both Kononenko, and Fayyad
and Irani approaches is non-parametric and calculations in-
volved have a highly local context, so they were selected for
the purpose of gathering information on data irregularities ob-
served for attributes. Independent application of these methods
to all sets of samples resulted in obtaining significantly differ-
ent characteristics for the same features in various sets [5], as
shown in Table 1 and Table 2 respectively for two datasets.

Table 1
Characteristics of attributes for independent supervised discretisation of

Wharton-Johnston dataset

Fayyad and Irani algorithm
Set Bins Attributes
Train 1 during though almost within

2 that by what who there how then any whether after
never same such before until around ;

3 on ,
4 but

Test 1 1 that but by then during before though whether almost
2 on what who there how any after never same around

such until within ;
3 ,

Test 2 1 that but by what such how then there same whether
around during before though almost

2 on who any after never until within ;
3 ,

Kononenko algorithm
Set Bins Attributes
Train 1 almost

2 that by what who there how then until such before any
never after same during though whether around within ;

3 on ,
4 but

Test 1 1 but by then before though almost whether
2 that on what who there how after any around never

same such during until within ;
3 ,

Test 2 1 that but by how then such during before though almost
whether around

2 on what who there any after never same until within ;
3 ,

Bull. Pol. Acad. Sci. Tech. Sci. 69(4) 2021, e137629 5



5

Data irregularities in discretisation of test sets used for evaluation of classification systems: A case study on authorship attribution

Bull. Pol. Acad. Sci. Tech. Sci. 69(4) 2021, e137629

Irregularities in discretisation of test sets used for evaluation of classification systems

Many algorithms for the construction of decision rules ex-
ist [8, 39]. In the research presented, an exhaustive algorithm,
implemented in RSES system [9] was used. This algorithm al-
lows to construct all decision rules with a minimal number of
descriptors (pairs attribute=value).

6. EXECUTED EXPERIMENTS
The experiments started with the determination of writers to be
compared and recognised in the author attribution tasks, and
division of their available works into three disjoint groups. The
novels were next partitioned into smaller text parts of a compa-
rable size, over which selected stylometric markers were calcu-
lated. This resulted in the construction of respectively learning
(training), and evaluation and test sets.

After this initial preparation of data, all sets were discre-
tised through various approaches, with varying discretisation
parameters, with independent processing of all sets, and with
obtaining discrete test sets while using models build on discrete
learning data in their corresponding versions. The processing
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is weighting the vote of each rule by its support. The decision
algorithms were applied to all sets within a dataset – all vari-
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L-C dataset). This particular pairing of selected writers was
not coincidental. As stylistic profiles for female and male writ-
ers show certain distinguishing characteristics [40], their com-
parison (for example Wharton with Curwood) would mean
introducing additional factor into the equation that has non-
negligible potential of influencing obtained predictions.

As the governing idea is for all text samples to be attributed
to their authors, regardless of the topic, similarity or dissimi-
larity of the genre, these elements were disregarded in corpus
construction [24]. For all four writers 10 novels were randomly
selected and then grouped, 4 for training data, and two times 3
novels for the two test sets. All works were further divided into
text parts, and per author for learning 25 such samples per novel
were taken, and for both test sets 15 per novel. It resulted in 200
samples in a training set (100 per author), and 90 per each eval-
uation and test set (45 per writer), making all sets balanced with
respect to recognised classes and classification binary [41].

Then, using the list of the most popular words in English
language and a set of punctuation marks, the frequencies of oc-
currence of 100 lexical and syntactic style-markers were cal-
culated over all text samples [42]. To the results obtained for

both training sets (for W-J and L-C data), in the next step sev-
eral ranking algorithms for features were applied [43]. The at-
tributes that obtained low rank were discarded, and only these
always highest-ranking left, which returned the set of 24 char-
acteristic features (22 lexical and 2 syntactic at the end), with
the values for all attributes in the range < 0,1), corresponding
to occurrence frequencies for:

after almost any around before but by during how
never on same such that then there though until what
whether who within ; ,

6.2. Discretisation of input datasets
For the discretisation of input data four methods were chosen,
two examples from the supervised category, and two represen-
tatives of the unsupervised group. All these algorithms are im-
plemented in WEKA workbench [44], which was employed in
the execution of the experiments.

Supervised discretisation with both Kononenko, and Fayyad
and Irani approaches is non-parametric and calculations in-
volved have a highly local context, so they were selected for
the purpose of gathering information on data irregularities ob-
served for attributes. Independent application of these methods
to all sets of samples resulted in obtaining significantly differ-
ent characteristics for the same features in various sets [5], as
shown in Table 1 and Table 2 respectively for two datasets.

Table 1
Characteristics of attributes for independent supervised discretisation of

Wharton-Johnston dataset

Fayyad and Irani algorithm
Set Bins Attributes
Train 1 during though almost within

2 that by what who there how then any whether after
never same such before until around ;

3 on ,
4 but

Test 1 1 that but by then during before though whether almost
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3 ,
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2 on who any after never until within ;
3 ,

Kononenko algorithm
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2 that by what who there how then until such before any
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3 on ,
4 but
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3 ,
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Table 2
Characteristics of attributes for independent supervised discretisation of

London-Curwood dataset

Fayyad and Irani algorithm

Set Bins Attributes

Train 1 never during
2 that who but by there what how then almost until such

after any same before though whether around within ;
3 on ,

Test 1 1 before but what how then after never same whether
who during though within

2 that on by there any such until almost around ; ,

Test 2 1 that but what who how then after any whether never
during same such before though almost

2 on by there until around within ,
3 ;

Kononenko algorithm

Set Bins Attributes

Train 1 during
2 that by what who there how then any never same before

almost after such though until whether around within ;
3 on but ,

Test 1 1 but what who then after never same whether within
during before though

2 that on there how any such until almost around ; ,
3 by

Test 2 1 that what how then after same such almost though
during before whether who

2 on but by there any never until around within
3 ; ,

For all sets there are shown numbers of intervals defined for
each attribute in a set, and these numbers ranged from 1 (the
cases where for the whole range of continuous values for some
attribute there is a single discrete representation) to the maxi-
mum of 4. Only a part of attributes had the same numbers of
intervals found in all sets. However, even if the numbers of bins
were the same, it does not imply that the cut-points selected
were identical. On the contrary, they differed as well.

These characteristics of features indicate irregular distribu-
tions of data points in the input space influencing recognition of
classes, as this information plays an important role in the pro-
cess of interval construction in supervised discretisation such as
with Fayyad and Irani, or Kononenko methods.

Discretisation models obtained for the two training sets were
also used to discretise two test sets for both datasets, which re-
sulted in sets denoted as ToL1 (Test 1 on Learn) and ToL2. Such
an enforced perspective reflects the general idea of train and
test, by which local information, relevant to discretisation, and
contained in test sets, is ignored, treated as unknown.

The two employed unsupervised discretisation methods,
namely equal width binning and equal frequency binning, re-
quired setting the input parameter of the number of bins to be
constructed in all sets, and for independent processing this pa-
rameter was varied as follows:
• equal width binning for both train and test sets

– from 2 to 10 with a step of 1;

– from 10 to 100 with a step of 10;
– from 100 to 1000 with a step of 100;
– from 1000 to 10000 with a step of 1000;

• equal frequency binning
– from 2 to 200 with a step of 1 for train sets;
– from 2 to 90 with a step of 1 for test sets.

To obtain ToL versions for all test sets, for equal width bin-
ning all 36 discretisation models from train data were used. For
equal frequency binning all 199 discrete models from train data
were imposed on test data.

Together for a dataset there were obtained the following vari-
ants of discrete sets:
• train sets – 36 versions from equal width binning, 199 ver-

sions from equal frequency binning, 1 version from Fayyad
and Irani method, 1 version from Kononenko approach;

• test sets – independent: 36 versions from equal width bin-
ning, 89 versions from equal frequency binning, 1 version
from Fayyad and Irani method, 1 version from Kononenko
approach;

• test sets – based on learn: 36 versions from equal width bin-
ning, 199 versions from equal frequency binning, 1 version
from Fayyad and Irani method, 1 version from Kononenko
approach.
Because of two test sets, the given numbers need to be mul-

tiplied by 2. And then the total number also doubled because of
two datasets, Wharton-Johnston and London-Curwood.

One more mode for discretisation was considered – per-
formed by combining samples from all sets in a dataset into
a single one, for which intervals would be defined, and which
would be split back, but after discrete representations for all
values are found. Such mode would cause formulation of bins
for training data to be based partially on knowledge of test data.
As it would be in violation of the governing idea of train and
test approach, this way of processing was rejected.

6.3. Induction of decision rules
All versions of learning sets were next subjected to rule induc-
tion process using exhaustive algorithm (implemented in RSES
system), which typically leads to relatively high numbers of
rules. Cardinalities of inferred rule sets ranged from just few
thousands to over a hundred thousands.

The characteristics of these rules, such as lengths or supports,
also varied. These elements can be used for filtering rules [45],
resulting in construction of rule classifiers with enhanced per-
formance [46], however, this aspect was not considered in the
research, in order not to cloud the overall picture. Thus for all
processing the complete sets of inferred rules were employed,
without any hard constraints. The rule sets were used for clas-
sification of samples with standard voting as the strategy for
conflict resolution.

The attributes, for which through supervised discretisation
single intervals were found for representation of all their val-
ues, were not excluded from decision tables, however, as brin-
ing zero information content, they were never present in the
decision rules generated for such variants of discrete data.

6 Bull. Pol. Acad. Sci. Tech. Sci. 69(4) 2021, e137629

Irregularities in discretisation of test sets used for evaluation of classification systems

6.4. Performance of rule classifiers for supervised
discretisation

For supervised discretisation, as two used methods returned sin-
gle versions of train sets, two rule sets were induced for both
datasets. The decision algorithms for London and Curwood
data contained in both cases more than twice as many rules
as for Wharton and Johnston. When applied for classification
of learning samples, they returned the perfect accuracy, which
was as expected. The results for other sets are listed in Table 3.

Table 3
Performance [%] of rule classifiers evaluated with test sets obtained from su-
pervised discretisation executed independently for all sets (Test 1 and Test 2),

and based on the models constructed from learn data (ToL1 and ToL2)

Fayyad and Irani method

Dataset Test 1 ToL1 Test 2 ToL2

Wharton and Johnston 94.44 86.67 97.78 96.67

London and Curwood 88.89 93.33 88.89 95.56

Kononenko method

Dataset Test 1 ToL1 Test 2 ToL2

Wharton and Johnston 97.78 83.33 96.67 94.44

London and Curwood 93.33 93.33 86.67 94.44

In the case of L-C dataset, for both discretisation approaches,
application of models learned for train data to test sets worked
rather to advantage of classifiers, as they returned results at the
same or improved level with respect to independent discreti-
sation. However, for W-J dataset the trend was opposite, inde-
pendent discretisation of test sets caused higher classification
accuracy. Both groups of results indicated differences in distri-
butions of data points in the input space. If they were the same,
changing the mode of executing discretisation would not influ-
ence the obtained performance.

6.5. Performance of rule classifiers for unsupervised equal
width binning

Because of varying the number of intervals constructed for each
attribute, equal width binning returned 36 variants for train sets.
From all these versions decision rules were inferred, which
led to construction of as many decision algorithms for both
datasets. Each of these rule classifiers was applied next for la-
belling examples contained in:
• 36 versions of train sets;
• 36 versions for two test sets discretised independently;
• 36 versions for two test sets discretised by referring to mod-

els constructed for train data;
which led to three groups of results, as commented below.

Re-classification of all samples from the learning sets, dis-
played in Fig. 1, enabled to study how each decision algorithm
recognised the same data, but seen through a perspective of
a number of bins, different than the one from which the rules
were induced. The diagonals in the charts confirm that the high-
est performance was obtained when the numbers of intervals
matched, but the plots also show other areas of interest, es-
pecially in the range of ten intervals constructed in the input
datasets.

a)

b)

Fig. 1. Performance of rule classifiers for training sets discretised with equal
width binning for: a) Wharton-Johnston data, b) London-Curwood data

The performance of rule classifiers evaluated with test sets is
given in Fig. 2a for Wharton and Johnston, and in Fig. 2b for
London and Curwood. In each row, the chart on the left dis-
plays classification accuracy for a test set discretised indepen-
dently, and the right chart corresponds to the same test set dis-
cretised by definitions of intervals formed for the corresponding
train set.

Comparison of the effects of two discretisation modes on
observed performance yields the conclusion that also for this
method the differences resulting from data irregularities were
visible. Unlike the previously applied independent supervised
approaches, equal width binning can guarantee the possibility
of constructing matching numbers of bins for variables between
learn and test sets. Yet still groupings of data points in test sets
were different in such degree that cut-points, selected regard-
less of train data, not only better suited local characteristics, but
also caused better predictions of rule classifiers.
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application of models learned for train data to test sets worked
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sation. However, for W-J dataset the trend was opposite, inde-
pendent discretisation of test sets caused higher classification
accuracy. Both groups of results indicated differences in distri-
butions of data points in the input space. If they were the same,
changing the mode of executing discretisation would not influ-
ence the obtained performance.

6.5. Performance of rule classifiers for unsupervised equal
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Because of varying the number of intervals constructed for each
attribute, equal width binning returned 36 variants for train sets.
From all these versions decision rules were inferred, which
led to construction of as many decision algorithms for both
datasets. Each of these rule classifiers was applied next for la-
belling examples contained in:
• 36 versions of train sets;
• 36 versions for two test sets discretised independently;
• 36 versions for two test sets discretised by referring to mod-

els constructed for train data;
which led to three groups of results, as commented below.

Re-classification of all samples from the learning sets, dis-
played in Fig. 1, enabled to study how each decision algorithm
recognised the same data, but seen through a perspective of
a number of bins, different than the one from which the rules
were induced. The diagonals in the charts confirm that the high-
est performance was obtained when the numbers of intervals
matched, but the plots also show other areas of interest, es-
pecially in the range of ten intervals constructed in the input
datasets.
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Fig. 1. Performance of rule classifiers for training sets discretised with equal
width binning for: a) Wharton-Johnston data, b) London-Curwood data

The performance of rule classifiers evaluated with test sets is
given in Fig. 2a for Wharton and Johnston, and in Fig. 2b for
London and Curwood. In each row, the chart on the left dis-
plays classification accuracy for a test set discretised indepen-
dently, and the right chart corresponds to the same test set dis-
cretised by definitions of intervals formed for the corresponding
train set.

Comparison of the effects of two discretisation modes on
observed performance yields the conclusion that also for this
method the differences resulting from data irregularities were
visible. Unlike the previously applied independent supervised
approaches, equal width binning can guarantee the possibility
of constructing matching numbers of bins for variables between
learn and test sets. Yet still groupings of data points in test sets
were different in such degree that cut-points, selected regard-
less of train data, not only better suited local characteristics, but
also caused better predictions of rule classifiers.
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pecially in the range of ten intervals constructed in the input
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The performance of rule classifiers evaluated with test sets is
given in Fig. 2a for Wharton and Johnston, and in Fig. 2b for
London and Curwood. In each row, the chart on the left dis-
plays classification accuracy for a test set discretised indepen-
dently, and the right chart corresponds to the same test set dis-
cretised by definitions of intervals formed for the corresponding
train set.

Comparison of the effects of two discretisation modes on
observed performance yields the conclusion that also for this
method the differences resulting from data irregularities were
visible. Unlike the previously applied independent supervised
approaches, equal width binning can guarantee the possibility
of constructing matching numbers of bins for variables between
learn and test sets. Yet still groupings of data points in test sets
were different in such degree that cut-points, selected regard-
less of train data, not only better suited local characteristics, but
also caused better predictions of rule classifiers.
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6.4. Performance of rule classifiers for supervised
discretisation

For supervised discretisation, as two used methods returned sin-
gle versions of train sets, two rule sets were induced for both
datasets. The decision algorithms for London and Curwood
data contained in both cases more than twice as many rules
as for Wharton and Johnston. When applied for classification
of learning samples, they returned the perfect accuracy, which
was as expected. The results for other sets are listed in Table 3.
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pervised discretisation executed independently for all sets (Test 1 and Test 2),

and based on the models constructed from learn data (ToL1 and ToL2)
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Dataset Test 1 ToL1 Test 2 ToL2
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application of models learned for train data to test sets worked
rather to advantage of classifiers, as they returned results at the
same or improved level with respect to independent discreti-
sation. However, for W-J dataset the trend was opposite, inde-
pendent discretisation of test sets caused higher classification
accuracy. Both groups of results indicated differences in distri-
butions of data points in the input space. If they were the same,
changing the mode of executing discretisation would not influ-
ence the obtained performance.

6.5. Performance of rule classifiers for unsupervised equal
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Because of varying the number of intervals constructed for each
attribute, equal width binning returned 36 variants for train sets.
From all these versions decision rules were inferred, which
led to construction of as many decision algorithms for both
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Fig. 2. Performance of rule classifiers evaluated with test sets discretised with equal width binning for: a) Wharton-Johnston dataset, b) London-Curwood dataset.
On the left for independent discretisation, on the right for discretisation model obtained from train data
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6.6. Performance of rule classifiers for unsupervised equal
frequency binning

Equal frequency binning approach to discretisation led to con-
struction of 199 variants for both train sets, from which decision
rules were induced. Decision algorithms were used to classify
samples included in:
• 199 versions of train sets;
• 89 versions for two test sets discretised independently;
• 199 versions for two test sets discretised by referring to mod-

els constructed for train data.
The difference in the numbers of versions for the discretised

test sets results from different cardinalities of test and train sets.
As each test set contained 90 samples, in independent discreti-
sation only that many intervals could be requested. On the other
hand, 199 discretisation models were constructed for train data,
thus also that many perspectives on test data offered.

Figure 3 includes plots obtained from re-classification of
learning samples by generated decision algorithms. In the
whole range of tested bin numbers, the cardinalities of inferred
rule sets showed almost exactly decreasing tendency, starting
with over one hundred thousand of rules for just 2 bins, then
falling down gradually to just few thousand for 200 intervals.

For both datasets, with increasing the number of intervals
constructed for attributes, the tolerance with respect to form-
ing a few less or a few more bins increased as well. For the
numbers of intervals from close to the second half of tested val-
ues, rule classifiers recognised perfectly samples from all sets
with the same or higher numbers of bins. It was caused by the
close resemblance of discretised train sets, and resulting from
it similarity of induced rule sets. The probability that all values
of all considered attributes are unique is relatively low, and any
repeated values are naturally assigned to the same bin, which
means that construction of exactly as many bins as there are
samples, and that was the upper limit, is highly unlikely.

Independent discretisation of test sets put the upper limit on
the number of intervals at the cardinality of these sets, which
was less than a half of training sets. The classification results
for both test sets are shown together in one plot, on the left in

Fig. 4, where the upper half is dedicated to one test set, and the
bottom half to the other, in the same order displayed on the right
for the discrete versions based on learning data.

The patterns visible for corresponding charts show closer
similarities than for the other discretisation methods. Focus
on the frequencies of occurrence of values allowed to obtain
more alike definitions for intervals between train and test sets.
Equal frequency binning enabled projecting input continuous
space into discrete with better image of data structure expressed
through existing data points. It was not possible to obtain such
effect in equal width binning, as this approach requires only
the calculation of minimum and maximum values to divide the
range into required number of sub-ranges, regardless of posi-
tions of data points within these limits.

6.7. Summary of experiments
Advantages of supervised discretisation, as information reduc-
tion technique applied to data in the pre-processing stage, are
widely acknowledged. In a case of transformations needed for
datasets including several separate sets, characterised by differ-
ent groupings and distributions of data points in the input con-
tinuous space, independent discretisation can cause construc-
tion of severely distinct models, with not only different cut-
points, but different numbers of intervals defined for the same
attributes. On the other hand, imposing discrete models discov-
ered in train data on test sets results in ignoring their local char-
acteristics, which can negatively influence the observed perfor-
mance of inducers.

From the two unsupervised approaches tested, equal width
binning in the highest degree allows to represent the unifor-
mity of the input space, with just reduction of scale for details.
Yet this methods ignores the absence or existence of most data
points while forming definitions of ranges (apart from mini-
mum and maximum), which means that it also cannot preserve
their distributions and overall underlying structure. Equal fre-
quency binning, by paying particular attention to groupings of
values, comes the closest in descriptions of patterns present in
data, and translating them to the discrete space.

a) b)

Fig. 3. Performance of rule classifiers for training sets discretised with equal frequency binning for: a) Wharton-Johnston data, b) London-Curwood data
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Fig. 4. Performance of rule classifiers evaluated with test sets discretised with equal frequency binning. On the left for independent discretisation, on the right for
discretisation model from train data, for: a) Wharton-Johnston data, b) London-Curwood data
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U. Stańczyk and B. Zielosko

a)

b)

Fig. 4. Performance of rule classifiers evaluated with test sets discretised with equal frequency binning. On the left for independent discretisation, on the right for
discretisation model from train data, for: a) Wharton-Johnston data, b) London-Curwood data

10 Bull. Pol. Acad. Sci. Tech. Sci. 69(4) 2021, e137629
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The test results showed that independent processing of sets, 
which is more convenient, leads to obtaining discrete repre-
sentation allowing for satisfactory performance of classifiers, 
not only for exactly matching numbers of intervals between 
learning and test sets, but in other cases as well.

7.	 CONCLUSIONS
The paper presents research on irregularities in distributions 
of data points in the input space, observed in the context of 
discretisation processes, which can be performed as indepen-
dent processing of learn and test sets, or based on train data. 
In this framework, supervised and unsupervised discretisation 
approaches and algorithms were examined. In the executed 
experiments the investigation was performed on how definitions 
of intervals, constructed to represent continuous values of attri-
butes in discrete space, influence the performance of rule classi-
fiers induced in rough set approach. The domain of application 
was defined by a task of authorship attribution, where stylistic 
profiles were described by stylometric features.

The results from experiments indicate that even in indepen-
dent processing of sets, as long as the same, or close, numbers 
of intervals for attributes are defined, satisfactory performance 
of rule classifiers is obtained, and for lower numbers of bins 
accuracy tends to be higher. For mismatched numbers of inter-
vals, their higher cardinality in a training set from which rules 
were induced still allowed to obtain acceptable classification 
levels for sets with fewer bins, while in the opposite case, with 
few intervals in the learning set and many in tested, led to much 
worse results.

The directions for future research are pointed out by other 
rule induction algorithms, for example optimised with respect 
to length and support, and other discretisation methods to be 
applied to data, eg. modification of unsupervised equal frequency 
binning, which as the required input parameter asks for numbers 
of instances that should be included in a bin. Such processing 
would reflect distributions of data points, thus it should simplify 
detection of irregularities.
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