
1Bull. Pol. Acad. Sci. Tech. Sci. 69(4) 2021, e137731

BULLETIN OF THE POLISH ACADEMY OF SCIENCES 
TECHNICAL SCIENCES, Vol. 69(4), 2021, Article number: e137731
DOI: 10.24425/bpasts.2021.137731

*e-mail: kaczorek@ee.pw.edu.pl

Manuscript submitted 2021-03-09, revised 2021-06-01, initially accepted  
for publication 2021-06-09, published in August 2021

CONTROL AND INFORMATICS 

© 2021 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Abstract. The cyclicity of the state matrices of positive linear electrical circuits with the chain structure is considered. Two classes of positive 
linear electrical circuits with the chain structure and cyclic Metzler state matrices are analyzed. Some new properties of these classes of positive 
electrical circuits are established. The results are extended to fractional linear electrical circuits.

Key words: cyclic matrix; positive; electrical circuit; fractional; Metzler matrix.

Positive electrical circuits with the chain structure  
and cyclic Metzler state matrices

Tadeusz KACZOREK *

Bialystok University of  Technology, Faculty of  Electrical Engineering, Wiejska 45D, 15-351 Białystok, Poland

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 69(4), 2021, Article number: e137731
DOI: 10.24425/bpasts.2021.137731

RESEARCH PAPER

Positive electrical circuits with the chain structure
and cyclic Metzler state matrices

Tadeusz KACZOREK∗∗∗
o

Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D, 15-351 Białystok, Poland

Abstract. The cyclicity of the state matrices of positive linear electrical circuits with the chain structure is considered. Two classes of positive
linear electrical circuits with the chain structure and cyclic Metzler state matrices are analyzed. Some new properties of these classes of positive
electrical circuits are established. The results are extended to fractional linear electrical circuits.

Key words: cyclic matrix; positive; electrical circuit; fractional; Metzler matrix.

1. INTRODUCTION
A dynamical system and an electrical circuit are called positive
if their state variables take nonnegative values for all nonnega-
tive inputs and nonnegative initial conditions. The positive lin-
ear systems have been investigated in [1–9]. Examples of pos-
itive systems are industrial processes involving chemical reac-
tors, heat exchangers and distillation columns, storage systems,
compartmental systems, water and atmospheric pollution mod-
els. A variety of models having positive linear behavior can be
found in engineering, management science, economics, social
sciences, biology and medicine, etc.

Mathematical fundamentals of the fractional calculus are
given in the monographs [6,7,10,11]. Fractional dynamical sys-
tems have been investigated in [4–7, 10, 12–16].

Positive linear systems with different fractional orders have
been addressed in [4, 6, 7, 15].

In this paper the positive electrical circuits of integer and
fractional orders with the chain structure and cyclic Metzler
state matrices are investigated. The paper is organized as fol-
lows. In Section 2 some definitions and theorems concern-
ing positive and cyclic matrices are recalled. New results con-
cerning positive electrical circuits with the chain structure and
cyclic Metzler state matrices are presented in Section 3. An ex-
tension of these results to fractional positive electrical circuits is
given in Section 4. Concluding remarks are given in Section 5.

The following notation will be used: R – the set of real num-
bers, Rn×m – the set of n×m real matrices, Mn – the set of n×n
Metzler matrices (real matrices with nonnegative off-diagonal
entries), In – the n×n identity matrix.

2. PRELIMINARIES
Consider the continuous-time linear system

ẋ = Ax+Bu, (1a)
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y =Cx, (1b)

where x = x(t)∈Rn, u = u(t)∈Rm, y = y(t)∈Rp are the state,
input and output vectors and A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n.

Definition 1. [3, 6, 7] The continuous-time linear system (1)
is called (internally) positive if x(t) ∈ Rn

+, y(t) ∈ Rp
+, t ≥ 0 for

any initial conditions x(0)∈Rn
+ and all inputs u(t)∈Rm

+, t ≥ 0.

Theorem 1. [3, 6, 7] The continuous-time linear system (1) is
positive if and only if

A ∈Mn, B ∈ Rn×m
+ , C ∈ Rp×n

+ . (2)

Definition 2. [3,6,7] The positive continuous-time system (1)
for u(t) = 0 is called asymptotically stable if

lim
t→∞

x(t) = 0 for any x(0) ∈ Rn
+ . (3)

Theorem 2. [3, 6, 7] The positive continuous-time linear sys-
tem (1) for u(t) = 0 is asymptotically stable if and only if one
of the following equivalent conditions is satisfied:
1. All coefficients of the characteristic polynomial

pn(s) = det[Ins−A] = sn +an−1sn−1 + . . .+a1s+a0 (4)

are positive, i.e. ai > 0 for i = 0,1, . . . ,n−1.
2. There exists strictly positive vector λ T = [λ1 . . . λn ],

λk > 0, k = 1, . . . ,n such that

Aλ < 0 or λ T A < 0. (5)

If the matrix A is nonsingular, then we can choose λ =A−1c,
where c ∈ Rn is strictly positive.

Let

ϕ(s) = det[Ins−A] = sn +an−1sn−1 + . . .+a1s+a0 (6)

be the characteristic polynomial of the matrix A.
The minimal polynomial ψ(s) of the matrix A is related to

the characteristic polynomial (6) by

ψ(s) =
ϕ(s)

Dn−1(s)
, (7)

where Dn−1(s) is the greatest common divisor of all n−1 order
minors of the matrix [Ins−A] [3, 5, 17].
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ẋ = Ax+Bu, (1a)

∗∗∗e-mail: kaczorek@ee.pw.edu.pl

Manuscript submitted 2021-03-09, revised 2021-06-01, initially
accepted for publication 2021-06-09, published in August 2021.

y =Cx, (1b)

where x = x(t)∈Rn, u = u(t)∈Rm, y = y(t)∈Rp are the state,
input and output vectors and A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n.

Definition 1. [3, 6, 7] The continuous-time linear system (1)
is called (internally) positive if x(t) ∈ Rn

+, y(t) ∈ Rp
+, t ≥ 0 for

any initial conditions x(0)∈Rn
+ and all inputs u(t)∈Rm

+, t ≥ 0.

Theorem 1. [3, 6, 7] The continuous-time linear system (1) is
positive if and only if

A ∈Mn, B ∈ Rn×m
+ , C ∈ Rp×n

+ . (2)

Definition 2. [3,6,7] The positive continuous-time system (1)
for u(t) = 0 is called asymptotically stable if

lim
t→∞

x(t) = 0 for any x(0) ∈ Rn
+ . (3)

Theorem 2. [3, 6, 7] The positive continuous-time linear sys-
tem (1) for u(t) = 0 is asymptotically stable if and only if one
of the following equivalent conditions is satisfied:
1. All coefficients of the characteristic polynomial

pn(s) = det[Ins−A] = sn +an−1sn−1 + . . .+a1s+a0 (4)

are positive, i.e. ai > 0 for i = 0,1, . . . ,n−1.
2. There exists strictly positive vector λ T = [λ1 . . . λn ],

λk > 0, k = 1, . . . ,n such that

Aλ < 0 or λ T A < 0. (5)

If the matrix A is nonsingular, then we can choose λ =A−1c,
where c ∈ Rn is strictly positive.

Let

ϕ(s) = det[Ins−A] = sn +an−1sn−1 + . . .+a1s+a0 (6)

be the characteristic polynomial of the matrix A.
The minimal polynomial ψ(s) of the matrix A is related to

the characteristic polynomial (6) by

ψ(s) =
ϕ(s)

Dn−1(s)
, (7)

where Dn−1(s) is the greatest common divisor of all n−1 order
minors of the matrix [Ins−A] [3, 5, 17].

Bull. Pol. Acad. Sci. Tech. Sci. 69(4) 2021, e137731 1

mailto:kaczorek@ee.pw.edu.pl
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-1270-3948


2

T. Kaczorek

Bull. Pol. Acad. Sci. Tech. Sci. 69(4) 2021, e137731

T. Kaczorek

From (7) it follows that ψ(s) = ϕ(s) if and only if Dn−1(s) = 1.

Definition 3. The matrix A is called cyclic if ψ(s) = ϕ(s).

Definition 4. The matrix A has the Frobenius canonical form if
it has one of the following forms [18]:

A1 =




0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

−a0 −a1 −a2 . . . −an−1



,

A2 = AT
1 =




0 0 . . . 0 −a0

1 0 . . . 0 −a1

0 1 . . . 0 −a2
...

...
. . .

...
...

0 0 . . . 1 −an−1



,

A3 =




−an−1 −an−2 . . . −a1 −a0

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0



,

A4 = AT
3 =




−an−1 1 0 . . . 0

−an−2 0 1 . . . 0
...

...
...

. . .
...

−a1 0 0 . . . 1

−a0 0 0 . . . 0



.

(8)

The inverse matrices of the matrices (4) have also the Frobe-
nius canonical forms [12, 18, 19]:

A−1
1 =




−a1

a0
−a2

a0
. . . −an−1

a0
− 1

a0

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0



,

A−1
2 =




−a1

a0
1 0 . . . 0

−a2

a0
0 1 . . . 0

...
...

...
. . .

...

−an−1

a0
0 0 . . . 1

− 1
a0

0 0 . . . 0




,

A−1
3 =




0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 1

− 1
a0

−an−1

a0
. . . −a2

a0
−a1

a0



,

A−1
4 =




0 . . . 0 0 − 1
a0

1 . . . 0 0 −an−1

a0
...

. . .
...

...
...

0 . . . 1 0 −a2

a0

0 . . . 0 1 −a1

a0




. (9)

Note that the greatest common divisor of the matrices (8) and
(9) is Dn−1(s) = 1.

Theorem 3. The real matrix

A1 =




a11 a12 0 . . . 0 0
a21 a22 a23 . . . 0 0

...
...

...
. . .

...
...

an−2,1 an−2,2 an−2,3 . . . an−2,n−1 0
an−1,1 an−1,2 an−1,3 . . . an−1,n−1 an−1,n

an1 an2 an3 . . . an,n−1 ann




(10a)

and

A2 =




a11 a12 . . . a1,n−2 a1,n−1 a1n

a21 a22 . . . a2,n−2 a2,n−1 a2n

0 a32 . . . a3,n−2 a3,n−1 a3n
...

...
. . .

...
...

...
0 0 . . . 0 an,n−1 ann




(10b)

are cyclic matrices if the matrix (10a) satisfies the condition

a12,a23, . . . ,an−2,n−1,an−1,n �= 0 (11a)

and the matrix (10b)

a21,a32, . . . ,an−1,n−2,an,n−1 �= 0, (11b)

respectively.

Proof. If the condition (11a) is satisfied then the greatest com-
mon divisor of all n− 1 order minors of the matrix [Ins−A1]
for A1 defined by (10a) is Dn−1(s) = 1. In this case from (7)
we have ψ(s) = ϕ(s) and by Definition 3 the matrix is cyclic.
Proof for the matrix (10b) is dual.

Remark 1. Every square matrix with only one nonzero entry
in each row and in each column and its inverse are cyclic ma-
trices [7].

Examples of such matrices are the matrices (8).

Definition 5. The system is called normal if its matrix A is
cyclic.
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Normal systems have very useful properties and play an im-
portant role in technical sciences [2–4, 17].

3. POSITIVE ELECTRICAL CIRCUITS WITH THE CHAIN
STRUCTURE AND CYCLIC STATE MATRICES

Consider the electrical circuit shown in Fig. 1 with given re-
sistances R1,R2, . . . ,Rn, inductances L1,L2, . . . ,Ln and source
voltage e = e(t).

Fig. 1. Electrical circuit with inductances

Using Kirchhoff’s laws we may write for the electrical circuit
the equations

L1
di1
dt

+(R1 +R2)i1 −R2i2 = e,

L2
di2
dt

+(R2 +R3)i2 −R2i1 −R3i3 = 0,

...

Ln−1
din−1

dt
+Rn−1(in−1 − in)+Rn−2(in−1 − in−2) = 0,

Ln
din
dt

+Rn−1(in − in−1)+Rnin = 0,

(12)

which can be written in the form
dxL

dt
= A1xL +B1e, (13a)

where

A1 =




a1
R2

L1
0 . . . 0 0 0

R2

L2
a2

R3

L2
. . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . .
Rn−2

Ln−1
an−1

Rn−1
Ln−1

0 0 0 . . . 0
Rn−1

Ln
an




,

a1 =−R1 +R2

L1
, a2 =−R2 +R3

L2
,

an−1 =−Rn−2 +Rn−1

Ln−1
, an =−Rn−1 +Rn

Ln
,

B1 =

[
1
L1

0 . . . 0 0
]T

,

xL =
[

i1 i2 . . . in−1 in
]T

.

(13b)

As the output y = y(t) of the electrical circuit the voltage on the

resistance Rn is chosen

y = Rnin = C̄1xL, C̄1 =
[

0 . . . 0 Rn

]
. (13c)

Note that the matrix A1 is the asymptotically stable Metzler
matrix and the matrices B1 ∈ Rn×1

+ , C̄1 ∈ R1×n
+ , and the elec-

trical circuit is positive and asymptotically stable. The matrix
A1 satisfies the condition of Theorem 3 and it is a cyclic matrix.
Therefore, the following theorem has been proved.

Theorem 4. The electrical circuit shown in Fig. 1 is positive
with asymptotically stable cyclic Metzler state matrix A1.

Consider the electrical circuit shown in Fig. 2 with given re-
sistances R1, R2, . . . , Rn−1 capacitances C1, C2, . . . , Cn, and
source voltage e = e(t).

Fig. 2. Electrical circuit with capacitances

Using Kirchhoff’s laws we may write for the electrical circuit
the equations

e−u1

R1
=

u1 −u2

R2
+C1

du1

dt
,

u1 −u2

R2
=

u2 −u3

R3
+C2

du2

dt
,

...
un−1 −un

Rn
=

un

Rn+1
+Cn

dun

dt
,

(14a)

which can written in the form

dxC

dt
= A2xC +B2e, (14b)

where

A2 =




a1
1

C1R2
0 . . . 0 0 0

1
C2R2

a2
1

C2R3
. . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . .
1

Cn−1Rn−1
an−1

1
Cn−1Rn

0 0 0 . . . 0
1

CnRn
an




,

an =− 1
Cn

(
1

Rn
+

1
Rn+1

)
,

B2 =

[
1

R1C1
0 . . . 0 0

]T

,

xC =
[

u1 u2 . . . un−1 un

]T
.

(14c)
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]T
.

(14c)
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As the output y = y(t) of the electrical circuit we choose the
voltage on the resistance Rn+1

y = un = C̄2xC, C̄2 =
[

0 0 . . . 1
]
. (14d)

The matrix A2 is cyclic asymptotically stable Metzler matrix
and B2 ∈ Rn×1

+ , C̄2 ∈ R1×n
+ . The electrical circuit shown in Fig.

2 is positive and asymptotically stable. Therefore, the following
theorem has been proved.

Theorem 5. The electrical circuits shown in Fig. 2 is positive
with asymptotically stable cyclic Metzler state matrix A2.

The following example shows that the presented above con-
siderations can be extended to linear electrical circuits com-
posed of resistances, inductances, capacitances and source volt-
ages.

Example 1. Consider the electrical circuit shown in Fig. 3
with given resistances R1,R2, . . . ,R6, inductances L1,L2, capac-
itances C1,C2 and source voltage e = e(t).

Fig. 3. Linear electrical circuit

Using Kirchhoff’s laws we may write for the electrical circuit
the following equations

R1i1 +L1
di1
dt

+R2(i1 − i2) = e,

L2
di2
dt

+R3

(
i2 −C1

du1

dt
−C2

du2

dt
− u2

R6

)

−R2(i1 − i2) = 0,

R3

(
i2 −C1

du1

dt
−C2

du2

dt
− u2

R6

)

−R4

(
C1

du1

dt
+C2

du2

dt
+

u2

R6

)
−u1 = 0,

du1

dt
=−R3 +2R4

C1R4
u1 +

u2

C1R5
+

R3

C1(R3 +R4)
i2,

u1 −R5

(
C2

du2

dt
+

u2

R6

)
−u2 = 0,

(15a)

which can be written in the form

d
dt




i1
i2
u1

u2


= A




i1
i2
u1

u2


+Be, (15b)

where

A =



−R1+R2

L1

R2

L1
0 0

R2

L2
−R2(R3+R4)+R3R4

(R3+R4)L2

R3

(R3+R4)L2
0

0
R3

C1(R3+R4)
− R3+2R4

C1R4(R3+R4)

1
C1R5

0 0
1

C2R5
− R5+R6

R5R6C2




,

B =

[
1
L1

0 0 0
]T

. (15c)

Note that the matrix A satisfies the condition of Theorem 3 and
it is a cyclic matrix. As the output y = y(t) of the electrical
circuit the voltage on the resistance R6 is chosen

y = u2 =Cx, C =
[

0 0 0 1
]
. (15d)

Note that the matrix A is the cyclic Metzler matrix and the ma-
trices B ∈ R4×1

+ , C ∈ R1×4
+ . Therefore, the electrical circuit is

positive with cyclic state matrix. By the condition (5) of Theo-
rem 2 the electrical circuit is asymptotically stable if

R3

R3 +R4
+

1
R5

<
R3 +2R4

R4(R3 +R4)
. (16)

4. FRACTIONAL ELECTRICAL CIRCUITS
Consider the fractional linear electrical circuit [7] described by
the equations

dα x(t)
dtα = Ax(t)+Bu(t), 0 < α < 1, (17a)

y(t) =Cx(t), (17b)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp are the state, input and
output vectors and A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,

dα x(t)
dtα =

1
Γ(1−α)

t∫

0

ẋ(τ)
(t − τ)α dτ, ẋ(τ) =

dx(t)
dt

(17c)

is the Caputo fractional derivative and

Γ(z) =
∞∫

0

tz−1e−tdt, Re(z)> 0 (17d)

is the gamma function [6, 11].

Definition 6. [6] The fractional electrical circuit (17) is called
(internally) positive if x(t) ∈ Rn

+ and y(t) ∈ Rp
+, t ≥ 0 for any

initial conditions x(0) ∈ Rn
+ and all inputs u(t) ∈ Rm

+, t ≥ 0.

Theorem 6. [6] The fractional electrical (17) is positive if and
only if

A ∈Mn, B ∈ Rn×m
+ , C ∈ Rp×n

+ . (18)

Definition 7. [6] The positive fractional electrical circuit (17)
(for u(t) = 0) is called asymptotically stable (the matrix A is
Hurwitz) if

lim
t→∞

x(t) = 0 for any x(0) ∈ Rn
+. (19)
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Theorem 7. [6] The positive electrical circuit (17) is asymp-
totically stable if and only if one of the equivalent conditions is
satisfied:

1. All coefficients of the characteristic polynomial

det[Ins−A] = sn +an−1sn−1 + . . .+a1s+a0 (20)

are positive, i.e. ak > 0 for k = 0,1, . . . ,n−1.
2. All principal minors M̄i, i = 1, . . . ,n of the matrix −A are

positive, i.e.

M̄1 = |−a11|> 0,

M̄2 =

∣∣∣∣∣
−a11 −a12

−a21 −a22

∣∣∣∣∣> 0, . . . ,

M̄n = det[−A]> 0.

(21)

3. There exists strictly positive vector λ T = [ λ1 . . . λn ],
λk > 0, k = 1, . . . ,n such that

Aλ < 0 or AT λ < 0. (22)

Consider the fractional electrical circuit shown in Fig. 1 with
given resistances R1,R2, . . . ,Rn, inductances L1,L2, . . . ,Ln and
source voltage e = e(t). In a similar way as for integer order
derivative we can write using Kirchhoff’s laws similar equa-
tions as (12) substituting the first order derivatives by corre-
sponding fractional α-order derivatives of the currents in the
coils. The equations can be written in the form

dα xL

dtα = A1xL +B1e,

y = C̄1xL,

(23)

where the matrices A1, B1, C̄1 are given by (13b) and (13c).
In a similar way as for standard electrical circuits we can prove
for the fractional electrical circuits the following theorems.

Theorem 8. The fractional electrical circuit shown in Fig. 1 is
a positive one with asymptotically stable cyclic Metzler state
matrix A1 defined by (13b).

Theorem 9. The fractional electrical circuit shown in Fig. 2 is
a positive one with asymptotically stable cyclic Metzler state
matrix A2 defined by (14c).

5. CONCLUDING REMARKS
The positive electrical circuits of integer and fractional orders
with cyclic Metzler state matrices have been investigated. Some
new results concerning positive electrical circuits with the chain
structure and cyclic Metzler state matrices have been estab-
lished (Theorems 4 and 5) and next extended to fractional elec-
trical circuits (Theorems 8 and 9).The considerations can be ex-
tended to descriptor linear electrical circuits. An open problem
is an extension of these considerations to fractional different
orders linear electrical circuits and systems.

REFERENCES
[1] A. Berman and R. J. Plemmons, Nonnegative Matrices in

the Mathematical Sciences. Philadelphia: SIAM, 1994.
[2] L. Farina and S. Rinaldi, Positive Linear Systems; Theory

and Applications. New York: J. Wiley, 2000.
[3] T. Kaczorek, Positive 1D and 2D Systems. London:

Springer-Verlag, 2002.
[4] T. Kaczorek, “Positive linear systems with different frac-

tional orders,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 58,
no. 3, pp. 453–458, 2010.

[5] T. Kaczorek, “Normal fractional positive linear systems
and electrical circuits,” in Proc. Conf. Automation 2019,
Warsaw, 2020, pp. 13–26.

[6] T. Kaczorek, Selected Problems of Fractional Systems
Theory. Berlin: Springer, 2011.

[7] T. Kaczorek and K. Rogowski, Fractional Linear Systems
and Electrical Circuits. Cham: Springer, 2015.

[8] W. Mitkowski, “Dynamical properties of metzler sys-
tems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 54, no. 4, pp.
309–312, 2008.

[9] W. Mitkowski, Outline of Control Theory. Kraków: Pub-
lishing House AGH, 2019.

[10] P. Ostalczyk, Discrete Fractional Calculus. River Edge,
NJ: World Scientific, 2016.

[11] I. Podlubny, Fractional Differential Equations. San
Diego: Academic Press, 1999.

[12] T. Kaczorek, “Reachability and observability of positive
discrete-time linear systems with integer positive and neg-
ative powers of the state frobenius matrices,” Arch. Con-
trol Sci., vol. 28, no. 1, pp. 5–20, 2018.

[13] M. D. Ortigueira and J. A. Tenreiro Machado, “New
discrete-time fractional derivatives based on the bilinear
transformation: definitions and properties,” J. Adv. Res.,
vol. 25, pp. 1–10, 2020.

[14] A. Ruszewski, “Stability of discrete-time fractional linear
systems with delays,” Arch. Control Sci., vol. 29, no. 3,
pp. 549–567, 2019.

[15] L. Sajewski, “Stabilization of positive descriptor frac-
tional discrete-time linear systems with two different frac-
tional orders by decentralized controller,” Bull. Pol. Acad.
Sci. Tech. Sci., vol. 65, no. 5, pp. 709–714, 2017.

[16] R. Stanisławski, K. Latawiec, and M. Łukaniszyn, “A
comparative analysis of laguerre-based approximatiors to
the grunwald-letnikov fractional-order difference,” Math.
Probl. Eng., vol. 2015, 2015.

[17] F. G. Gantmacher, The Theory of Matrices. London:
Chelsea Pub. Comp., 1959.

[18] T. Kaczorek and K. Borawski, “Stability of continuous-
time and discrete-time linear systems with inverse state
matrices,” Meas. Autom. Monit., vol. 62, no. 4, pp. 132–
135, 2016.

[19] T. Kaczorek, Polynomial and Rational Matrices. London:
Springer, 2007.

Bull. Pol. Acad. Sci. Tech. Sci. 69(4) 2021, e137731 5



5

Positive electrical circuits with the chain structure and cyclic Metzler state matrices

Bull. Pol. Acad. Sci. Tech. Sci. 69(4) 2021, e137731

Positive electrical circuits with the chain structure and cyclic Metzler state matrices

Theorem 7. [6] The positive electrical circuit (17) is asymp-
totically stable if and only if one of the equivalent conditions is
satisfied:
1. All coefficients of the characteristic polynomial

det[Ins−A] = sn +an−1sn−1 + . . .+a1s+a0 (20)

are positive, i.e. ak > 0 for k = 0,1, . . . ,n−1.
2. All principal minors M̄i, i = 1, . . . ,n of the matrix −A are

positive, i.e.

M̄1 = |−a11|> 0,

M̄2 =

∣∣∣∣∣
−a11 −a12

−a21 −a22

∣∣∣∣∣> 0, . . . ,

M̄n = det[−A]> 0.

(21)

3. There exists strictly positive vector λ T = [ λ1 . . . λn ],
λk > 0, k = 1, . . . ,n such that

Aλ < 0 or AT λ < 0. (22)

Consider the fractional electrical circuit shown in Fig. 1 with
given resistances R1,R2, . . . ,Rn, inductances L1,L2, . . . ,Ln and
source voltage e = e(t). In a similar way as for integer order
derivative we can write using Kirchhoff’s laws similar equa-
tions as (12) substituting the first order derivatives by corre-
sponding fractional α-order derivatives of the currents in the
coils. The equations can be written in the form

dα xL

dtα = A1xL +B1e,

y = C̄1xL,

(23)

where the matrices A1, B1, C̄1 are given by (13b) and (13c).
In a similar way as for standard electrical circuits we can prove
for the fractional electrical circuits the following theorems.

Theorem 8. The fractional electrical circuit shown in Fig. 1 is
a positive one with asymptotically stable cyclic Metzler state
matrix A1 defined by (13b).

Theorem 9. The fractional electrical circuit shown in Fig. 2 is
a positive one with asymptotically stable cyclic Metzler state
matrix A2 defined by (14c).

5. CONCLUDING REMARKS
The positive electrical circuits of integer and fractional orders
with cyclic Metzler state matrices have been investigated. Some
new results concerning positive electrical circuits with the chain
structure and cyclic Metzler state matrices have been estab-
lished (Theorems 4 and 5) and next extended to fractional elec-
trical circuits (Theorems 8 and 9).The considerations can be ex-
tended to descriptor linear electrical circuits. An open problem
is an extension of these considerations to fractional different
orders linear electrical circuits and systems.
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Theorem 7. [6] The positive electrical circuit (17) is asymp-
totically stable if and only if one of the equivalent conditions is
satisfied:
1. All coefficients of the characteristic polynomial

det[Ins−A] = sn +an−1sn−1 + . . .+a1s+a0 (20)

are positive, i.e. ak > 0 for k = 0,1, . . . ,n−1.
2. All principal minors M̄i, i = 1, . . . ,n of the matrix −A are

positive, i.e.

M̄1 = |−a11|> 0,

M̄2 =

∣∣∣∣∣
−a11 −a12

−a21 −a22

∣∣∣∣∣> 0, . . . ,

M̄n = det[−A]> 0.

(21)

3. There exists strictly positive vector λ T = [ λ1 . . . λn ],
λk > 0, k = 1, . . . ,n such that

Aλ < 0 or AT λ < 0. (22)

Consider the fractional electrical circuit shown in Fig. 1 with
given resistances R1,R2, . . . ,Rn, inductances L1,L2, . . . ,Ln and
source voltage e = e(t). In a similar way as for integer order
derivative we can write using Kirchhoff’s laws similar equa-
tions as (12) substituting the first order derivatives by corre-
sponding fractional α-order derivatives of the currents in the
coils. The equations can be written in the form

dα xL

dtα = A1xL +B1e,

y = C̄1xL,

(23)

where the matrices A1, B1, C̄1 are given by (13b) and (13c).
In a similar way as for standard electrical circuits we can prove
for the fractional electrical circuits the following theorems.

Theorem 8. The fractional electrical circuit shown in Fig. 1 is
a positive one with asymptotically stable cyclic Metzler state
matrix A1 defined by (13b).

Theorem 9. The fractional electrical circuit shown in Fig. 2 is
a positive one with asymptotically stable cyclic Metzler state
matrix A2 defined by (14c).

5. CONCLUDING REMARKS
The positive electrical circuits of integer and fractional orders
with cyclic Metzler state matrices have been investigated. Some
new results concerning positive electrical circuits with the chain
structure and cyclic Metzler state matrices have been estab-
lished (Theorems 4 and 5) and next extended to fractional elec-
trical circuits (Theorems 8 and 9).The considerations can be ex-
tended to descriptor linear electrical circuits. An open problem
is an extension of these considerations to fractional different
orders linear electrical circuits and systems.

REFERENCES
[1] A. Berman and R. J. Plemmons, Nonnegative Matrices in

the Mathematical Sciences. Philadelphia: SIAM, 1994.
[2] L. Farina and S. Rinaldi, Positive Linear Systems; Theory

and Applications. New York: J. Wiley, 2000.
[3] T. Kaczorek, Positive 1D and 2D Systems. London:

Springer-Verlag, 2002.
[4] T. Kaczorek, “Positive linear systems with different frac-

tional orders,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 58,
no. 3, pp. 453–458, 2010.

[5] T. Kaczorek, “Normal fractional positive linear systems
and electrical circuits,” in Proc. Conf. Automation 2019,
Warsaw, 2020, pp. 13–26.

[6] T. Kaczorek, Selected Problems of Fractional Systems
Theory. Berlin: Springer, 2011.

[7] T. Kaczorek and K. Rogowski, Fractional Linear Systems
and Electrical Circuits. Cham: Springer, 2015.

[8] W. Mitkowski, “Dynamical properties of metzler sys-
tems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 54, no. 4, pp.
309–312, 2008.

[9] W. Mitkowski, Outline of Control Theory. Kraków: Pub-
lishing House AGH, 2019.

[10] P. Ostalczyk, Discrete Fractional Calculus. River Edge,
NJ: World Scientific, 2016.

[11] I. Podlubny, Fractional Differential Equations. San
Diego: Academic Press, 1999.

[12] T. Kaczorek, “Reachability and observability of positive
discrete-time linear systems with integer positive and neg-
ative powers of the state frobenius matrices,” Arch. Con-
trol Sci., vol. 28, no. 1, pp. 5–20, 2018.

[13] M. D. Ortigueira and J. A. Tenreiro Machado, “New
discrete-time fractional derivatives based on the bilinear
transformation: definitions and properties,” J. Adv. Res.,
vol. 25, pp. 1–10, 2020.

[14] A. Ruszewski, “Stability of discrete-time fractional linear
systems with delays,” Arch. Control Sci., vol. 29, no. 3,
pp. 549–567, 2019.

[15] L. Sajewski, “Stabilization of positive descriptor frac-
tional discrete-time linear systems with two different frac-
tional orders by decentralized controller,” Bull. Pol. Acad.
Sci. Tech. Sci., vol. 65, no. 5, pp. 709–714, 2017.

[16] R. Stanisławski, K. Latawiec, and M. Łukaniszyn, “A
comparative analysis of laguerre-based approximatiors to
the grunwald-letnikov fractional-order difference,” Math.
Probl. Eng., vol. 2015, 2015.

[17] F. G. Gantmacher, The Theory of Matrices. London:
Chelsea Pub. Comp., 1959.

[18] T. Kaczorek and K. Borawski, “Stability of continuous-
time and discrete-time linear systems with inverse state
matrices,” Meas. Autom. Monit., vol. 62, no. 4, pp. 132–
135, 2016.

[19] T. Kaczorek, Polynomial and Rational Matrices. London:
Springer, 2007.

Bull. Pol. Acad. Sci. Tech. Sci. 69(4) 2021, e137731 5

to descriptor linear electrical circuits. An open problem is an 
extension of these considerations to fractional different orders 
linear electrical circuits and systems.

REFERENCES
	 [1]	 A. Berman and R.J. Plemmons, Nonnegative Matrices in the 

Mathematical Sciences. Philadelphia: SIAM, 1994.
	 [2]	 L. Farina and S. Rinaldi, Positive Linear Systems; Theory and 

Applications. New York: J. Wiley, 2000.
	 [3]	 T. Kaczorek, Positive 1D and 2D Systems. London: Spring-

er-Verlag, 2002.
	 [4]	 T. Kaczorek, “Positive linear systems with different fractional or-

ders,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 58, no. 3, pp. 453–458, 
2010.

	 [5]	 T. Kaczorek, “Normal fractional positive linear systems and elec-
trical circuits,” in Proc. Conf. Automation 2019, Warsaw, 2020, 
pp. 13–26.

	 [6]	 T. Kaczorek, Selected Problems of Fractional Systems Theory. 
Berlin: Springer, 2011.

	 [7]	 T. Kaczorek and K. Rogowski, Fractional Linear Systems and 
Electrical Circuits. Cham: Springer, 2015.

	 [8]	 W. Mitkowski, “Dynamical properties of metzler systems,” Bull. 
Pol. Acad. Sci. Tech. Sci., vol. 54, no. 4, pp. 309–312, 2008.

	 [9]	 W. Mitkowski, Outline of Control Theory. Kraków: Publishing 
House AGH, 2019.

	[10]	 P. Ostalczyk, Discrete Fractional Calculus. River Edge, NJ: 
World Scientific, 2016.

	[11]	 I. Podlubny, Fractional Differential Equations. San Diego: Ac-
ademic Press, 1999.

	[12]	 T. Kaczorek, “Reachability and observability of positive dis-
crete-time linear systems with integer positive and negative pow-
ers of the state frobenius matrices,” Arch. Control Sci., vol. 28, 
no. 1, pp. 5–20, 2018.

	[13]	 M.D. Ortigueira and J. A. Tenreiro Machado, “New discrete-time 
fractional derivatives based on the bilinear transformation: defi-
nitions and properties,” J. Adv. Res., vol. 25, pp. 1–10, 2020.

	[14]	 A. Ruszewski, “Stability of discrete-time fractional linear sys-
tems with delays,” Arch. Control Sci., vol. 29, no. 3, pp. 549–567, 
2019.

	[15]	 L. Sajewski, “Stabilization of positive descriptor fractional dis-
crete-time linear systems with two different fractional orders by 
decentralized controller,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, 
no. 5, pp. 709–714, 2017.

	[16]	 R. Stanisławski, K. Latawiec, and M. Łukaniszyn, “A compar-
ative analysis of laguerre-based approximatiors to the grun-
wald-letnikov fractional-order difference,” Math. Probl. Eng., 
vol. 2015, 2015.

	[17]	 F.G. Gantmacher, The Theory of  Matrices. London: Chelsea Pub. 
Comp., 1959.

	[18]	 T. Kaczorek and K. Borawski, “Stability of continuoustime and 
discrete-time linear systems with inverse state matrices,” Meas. 
Autom. Monit., vol. 62, no. 4, pp. 132–135, 2016.

	[19]	 T. Kaczorek, Polynomial and Rational Matrices. London: Spring-
er, 2007.

5.	 CONCLUDING REMARKS
The positive electrical circuits of integer and fractional orders 
with cyclic Metzler state matrices have been investigated. Some 
new results concerning positive electrical circuits with the chain 
structure and cyclic Metzler state matrices have been established 
(Theorems 4 and 5) and next extended to fractional electrical 
circuits (Theorems 8 and 9).The considerations can be extended 


