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Abstract
Rat robots have great potential in rescue and search tasks because of their excellent motion ability. However,
most of the current rat-robot systems relay on human guidance due to variable voluntary motor behaviour
of rats, which limits their application. In this study, we developed a real-time system to detect a rat robot’s
transient motion states, as the prerequisite for further study of automatic navigation. We built the detection
model by using a wearable inertial sensor to capture acceleration and angular velocity data during the control
of a rat robot. Various machine learning algorithms, including Decision Trees, Random Forests, Logistic
Regression, and Support VectorMachines, were employed to perform the classification ofmotion states. This
detection system was tested in manual navigation experiments, with detection accuracy achieving 96.70%.
The sequence of transient motion states could be further used as a promising reference for offline behaviour
analysis.
Keywords: inertial sensor, real-time measurement, rat robot, motion state.
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1. Introduction

Bio-robot is a new type of robot based on the Brain-Computer Interface (BCI) technique.
Microelectrodes are implanted in the peripheral or central nerval system of an animal, which can
send virtual feelings to the animal through mild electrical stimulation and used for controlling the
movement of a bio-robot. Using electrical stimulation as control commands, we can direct the
animal to perform complex behaviours. Bio-robots have been implemented in several different
creatures, including cockroaches [1], rats [2, 3], pigeons [4], goldfish [5] and so on. Bio-robots
are superior to traditional mechanical robots in many aspects, such as mobility, environmental
adaptability, and energy consumption, which possess great potential in rescue and search tasks [6].
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Rat-robot is one of the typical kinds of bio-robot. An operator can send control commands
by computer and make the rat robot navigate along a specified path [7]. However, because of
the reliance on human guidance, rat robots are largely restricted in practical applications. When
human guidance is not available in some rescue and search tasks, such as under the rubble of
a collapsed building, the rat robot is expected to be controlled automatically. The first step of
automatic navigation is to achieve accurate identification of the motion states [8]. Nevertheless,
there is no satisfactory solution yet.

At present, the conventional method for monitoring motion states is using cameras [9, 10]
or inertial sensors [11–13]. When using a camera, the object being observed should generally
be restricted to the laboratory environment. In our previous research, we also tried to mount
aminiature camera on a rat robot [14].We captured the scene in front of the rat and proposed a real-
time video-tracking algorithm to extract its rotational direction and rotational speed. This method
was somehow complicated and unstable because the rat has many unpredictable behaviours,
such as assuming an upright body posture and suddenly grooming its head. Therefore, the visual
method may be more suitable for obtaining environmental information rather than indirectly
monitoring the rat’s motion states.

Wearable inertial sensors are widely used in human posture recognition [15, 16]. Similar
studies have also been done in animals [17,18], mainly as the bio-loggers for ecological research.
As these studies focused on the temporal distribution of animal behaviour, they generally analyzed
the data offline. One particular study for a real-time application was a computer-assisted canine
posture training system [19]. In that study, John et al. mounted two inertial sensors on the dog’s
chest and rump respectively to collect data. A threshold-based classification algorithm was used
to recognize if the dog responded to the trainer’s command. The system would then give proper
feedback in time.

So far, inertial sensors are still rarely used in bio-robot applications with few studies about
them to be found. Abhishek designed a low-cost control backpack for cyborg roach, which
incorporates an inertial sensor to provide linear and rotational acceleration measurements [20].
Cole et al. mounted an inertial sensor on a cyborg roach and used several machine learning
algorithms to identify its motion modes with offline analysis [21]. According to our investigation,
inertial sensors have not been applied to rat robots yet.

In this paper, a real-time system was proposed to identify several common motion states of
a controlled rat robot in a limited space. An inertial sensor was used to capture acceleration
and angular velocity data. Since the system was designed for rat-robot automatic navigation, we
poured attention into both detection accuracy and response latency. The system was then tested
in manual navigation experiments. The results showed that it could effectively detect the rat’s
motion states.

The remainder of this paper is organized as follows. Section 2 describes the process of building
the detection model in detail, introducing the methods of collecting data, feature extraction, and
the classification algorithms we used. The experimental results are presented and discussed in
Section 3. Finally, we give our conclusions and future plans in Section 4.

2. Materials and methods

2.1. Data collection

The rat robot (an adult Sprague Dawley rat, 500g) that took part in the experiments is shown
in Fig. 1. To capture acceleration and angular velocity data, we redesigned the backpack and
added two inertial measurement unit (IMU) interfaces. Two IMUs were mounted on the rat’s
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head and body separately to obtain motion information. The IMU on the body was integrated into
the backpack as attaching it directly to the hair was not feasible. No other location was considered
as the rat might gnaw the devices. The IMUs used in this study were BMX160 (Bosch, Inc.),
which integrates a 3-axis accelerometer, a 3-axis gyroscope, and a 3-axis geomagnetic sensor.
Based on our previous experiments, the sampling rate was set to 25 Hz. The data was then sent
to the computer by Bluetooth.

Fig. 1. The rat robot wearing IMU1 and IMU2 (left) and details of the backpack (right).

As our rat robot’s target application scenario is the rescue and searching task of narrow spaces,
we are interested in its motion states in a limited space. An eight-armed maze (shown in Fig. 2)
was used to simulate a narrow space. The width of each arm is about 12 cm, which could limit
many unexpected behaviors but has no limitation on the normal locomotion of the rat robot. As
such, the middle part of the maze and the end of each arm can respectively simulate the dead-end
and fork space, which we think are two important areas for automatic navigation. According to our
previous research [7, 22], although the arm’s wall is transparent, it does not have much influence
on the rat robot’s behavior.

Fig. 2. The experimental site.
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To simulate the actual movement states of a rat robot during a control task, the data were
collected through manual navigation. An operator guided the rat robot to move in the eight-
armed maze. The control commands were not always consecutive. Therefore, the rat robot might
sometimes stop or groom its head. These motion states would also be recorded and detected
afterward. It should be noted that when the rat robot reached the end of an arm, we would
immediately send turning prompt stimulation. This was done to make the whole turning back
process under control and make the amount of left and right turning balanced. The whole
experimental process was captured by a USB camera above the eight-armed maze.

This study was approved by the Ethics Committee of Zhejiang University. All the experiments
were performed in accordance with the guidelines issued by the Ethics Committee of Zhejiang
University, and they complied with the China Ministry of Health Guide for the Care and Use of
Laboratory Animals.

2.2. Motion state definition

In total, five primary motion states were studied. The description of each motion state is
shown in Table 1. The distinction of walking forward, swerving, and turning back could help us
judge the current whereabouts of the rat robot. We added the motion state of head grooming since
it happens when the rat feels too excited, which means the electrical stimulation is too intense,
and the stimulation parameters should be modified at once.

Table 1. Descriptions of the aim motion states.

Motion state category Description
Walking forward The rat moves forward by advancing its feet alternately at a slow pace. This behavior mainly

occurs in the straight road of the eight-armed maze.

Swerving The rat moves from one arm to the next one. Its body rotates about 135 degrees clockwise
or counterclockwise. This behavior happens at the fork of the eight-armed maze.

Turning back The rat’s body rotates about 180 degrees clockwise or counterclockwise in the same spot.
This behavior mainly occurs at the end of an arm.

Stopping The rat changes postures without changing its location. It may sniff around or lie down in
a relaxed position.

Head grooming The rat rears and grooms its head with upper limbs.

However, it is not appropriate to train the classification model directly using the above motion
state categories. The swerving and turning back process usually lasts over one second, which
would result in unbearable response latency in the system. Our method was to detect transient
motion states firstly and then distinguish swerving and turning back according to the sequence
of the predicted results. This method is similar to Carroll et al.’s way to some degree [23]. By
observing the rat’s behavioral pattern, the transient turning states were divided into turning in the
same spot and turning with moving. The most typical moments for these two transient motion
states are the middle moment of the turning back process and the middle moment of the swerving
process respectively. In other words, we would directly classify seven transient motion states,
including walking forward (WF), turning left in the same spot (TLSS), turning right in the same
spot (TRSS), turning left with moving (TLM), turning right with moving (TRM), stopping (S),
and head grooming (HG). The detection results could be used for real-time applications. We then
would distinguish swerving and turning back by the predicted results sequence, applying it to
offline behaviour analysis.
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Fig. 3. Some aim motion states. Head grooming (left), turning back (middle) and swerving (right).

2.3. Feature extraction

The recorded inertial data were annotated manually based on the synchronous experimental
video. Features were extracted within a specific time window (shown in Fig. 4). It should be noted
that to make the label more objective, every time window contains only one pure motion state.
Therefore, in the annotation, only the middle moment of the turning back process was marked as
turning in the same point, and only the middle moment of the swerving process was marked as
turning with moving. Transition states are not considered for the time being.

Fig. 4. Extract features within a specific time window.

Only time-domain features were considered as they are less computationally intensive than
frequency-domain features. Features included mean, standard deviation, maximum value, mini-
mum value, kurtosis, and energy for each axis [24–26]. Besides, pairwise correlations between
the accelerometer’s three axes and between the gyroscope’s three axes were also considered [27].
A total of 42 variables were used in modelling for motion state classification.

2.4. Classification methods

We used four common machine learning algorithms to do the classification: Decision Trees
(DT) [28],RandomForests (RF) [29],Logistic Regression (LR) [30], and Support VectorMachines
(SVM) [31]. Thesemethods have beenwidely used to deal with inertial data both in human posture
recognition [26] and in wildlife observation [18, 32–34]. The machine learning algorithms were
implemented using the Python scikit-learn package. To do the multi-class classification, we
implemented LR and SVM using the one-vs-rest approach. The classification results would be
assigned to one of four categories: TP (True positive), TN (True negative), FP (False positive), and
FN (False negative). Accuracy (=[TP+FN]/[TP+TN+FP+FN]) would be presented to indicate
the performance of the model [33].
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3. Results and discussion

3.1. Motion state measurements

A total of 1508motion state observationswere extracted bymanual annotation, each belonging
to a single motion state category. The details of the dataset are shown in Table 2. Typical sample
signals of the two IMUs for walking forward, stopping, and head grooming are shown in Fig. 5.

Table 2. The number of observations in the dataset.

Motion
state

Walking
forward

Turning
left in the
same spot

Turning
right in the
same spot

Turning
left with
moving

Turning
right with
moving

Stopping Head
grooming

Abbreviation WF TLSS TRSS TLM TRM S HG

Samples 189 166 159 241 161 472 120

a)

b)

Fig. 5. Sample IMU signals for walking forward, stopping, and head grooming. The direction of the axes is defined in
Fig. 1: a) sample signals of the head IMU, b) sample signals of the body IMU.

3.2. Offline model performance evaluation

To build the classification model, the dataset was randomly split into two subsamples: training
dataset (70%) and validation dataset (30%). The tuning of the model parameters was performed
by ten-fold cross-validation. Through parameter optimization, the tree depth in DT and RFwas set
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to 5, and RF was applied with 20 trees. We evaluated the offline performance of the classification
model with various time window sizes on the validation dataset. The results are shown in Fig. 6.

Fig. 6. Average classification accuracy over varying model parameters.

LR and SVM show better performance than DT and RF under the same conditions. When
the window size is over 600 ms, the classification accuracy with RF also achieves over 90%.
Therefore, RF may be a promising choice for embedded computing on wearable devices since
the computational requirements of RF are much smaller [35].

The accuracy of all classification methods increases with the increase of the window size.
However, a larger time window is not suitable in real online control of a rat robot. As mentioned
above, there is only one pure motion state in each observation which we had selected for classi-
fication. However, in practice, a large time window may include more than one single transient
motion state. A larger window also results in larger lag time in prediction. Therefore, we finally
optimized the time window size to 600 ms. The latency in prediction would be around 300 ms.
We tentatively considered this response latency to be bearable in most cases for the automatic
navigation system. According to our investigation, in some real-time human posture recognition
cases, their classification system’s window size is around 1 second [26, 36].

Two different sensor locations were tested in the experiments. The results are shown in
Fig. 6 by solid lines and dashed lines. The difference in accuracy is not significant in most cases.
Although themotion pattern of the head and body is quite different, it seems that machine learning
algorithms could handle it quite well.

Based on the above results, we used the IMU integrated into the backpack and trained an SVM
classification model with a window size of 600 ms. These parameters would also be used to build
the online detection system in Section 3.3. The classification model was tested on the validation
dataset, and the results are presented in a confusion matrix in Fig. 7. The rows indicate the
observed motion states, whereas the columns indicate the predicted results. The correct results
are shown in the diagonal. The classification accuracy of our model achieves 96.70%. Most
misclassifications occur between the two turning states. This may be because their signals are
somewhat similar, and they usually occur consecutively in the timeline.

A comparison of our method with some methods mentioned in the introduction is shown
in Table 3. As these methods were designed for specific animals, they vary comparatively in
the choice of sensors and the range of behaviours studied. In relative terms, our method can
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Fig. 7. Confusion matrix of the classification results.

distinguish several different motion states with only one sensor site. It also performs well in terms
of accuracy and response latency at the same time. The overall performance is satisfactory.

Table 3. Behaviour detection systems designed for different animals.

Reference Current study [21] [19] [18]

Animals Rat robots Cyborg roaches Dogs Eurasian beavers

Sensors An accelerometer
and a gyroscope

An accelerometer
and a gyroscope

Two accelerometers
and two gyroscopes An accelerometer

Behaviours

Walking forward,
turning in the same
spot, turning with
moving, stopping,
head grooming

Stopping, clockwise
movement, counter-
clockwise movement,

free movement
Sitting down

Standing, walking,
swimming, feeding,
grooming, diving,

sleeping

Classification Method Support Vector
Machines

Support Vector
Machines

A variance-based
threshold classifier Random Forests

Window size 600 ms 1.5 s 400 ms 2 s

Real-time system Yes No Yes No

Offline accuracy 96.70% 93.02% 97.3% 94.99%

3.3. Online model performance evaluation

As mentioned above, swerving and turning back would be distinguished by the sequence of
transient motion states. To make the sequence more distinguishable, a 50% overlapping sliding
window was used when building the online model. Because each time window may include
multiple motion states, especially in the transition between two motion states, manual annotation
is not objective for consecutive inertial data. Therefore, we directly evaluated the predicted
sequence of the results, focusing on whether it is consistent with reality.
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The typical transient motion state sequence of swerving and turning back is shown in Table 4.
From the sequence with overlapping windows, it is clear that the process of turning back is
dominated by turning in the same spot while the process of swerving is dominated by turning
with moving.

Table 4. Typical transient motion state sequence of swerving and turning back.

Motion state non-overlapping windows 50% overlapping windows
Turning back (left) TLSS-TLSS-TLSS TLM-TLSS-TLSS-TLSS-TLSS-TLSS
Swerving (left) TLSS-TLM-TLM TLSS-TLM-TLM-TLM-TLM-WF

Turning back (right) TRSS-TRSS-TRSS TRSS-TRSS-TRSS-TRSS-TRSS-TRSS
Swerving (right) TRM-TRM-TRM TRM-TRM-TRM-TRM-TRM-WF

Besides, because the medial forebrain bundle (MFB) electrical stimulation is only given
on one side of the brain, the rat tends to turn to the contralateral direction inherently [37]. As
shown in Table 4 in the bold font, the turning pattern is slightly different between left and right
turning. Turning back (left) starts with a turning with moving while turning back (right) starts
with a turning in the same spot. This phenomenon is similar during the swerving process. As the
sequence could provide some movement details, we think this method is likely to be used in other
behavior analysis applications in the future.

We tested the online detection system in manual navigation experiments. Figure 8 shows
the trajectory and the real-time predicted motion states when the rat robot moved from point A,
turned round on point B, and finally reached point C. Figure 9 shows the actual movement of the
rat robot. Compared with the experimental video, the predicted results were basically consistent
with the actual behaviours. In general, swerving and turning back could be clearly distinguished
from the sequence. There is a red point at the fork position marked as turning right in the same
spot. According to the experimental video, this is because the rat robot briefly turned to the right

Fig. 8. The trajectory and predicted results when the rat robot moved from point A to point C.
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side at that moment (shown in Fig. 9b). And the classification model accurately captured this
behavior. Besides, from the spatial distribution of the points, it seems that different motion states
generally occurred in specific locations. The sequence may provide a reference for speculating
the position of the rat robot.

Fig. 9. The actual movement of the rat robot.

4. Conclusion and future work

In this paper, a real-time detection system for a rat robot was proposed. Our system can
effectively detect several different common motion states of the rat robot based on a wearable
inertial sensor. The experimental results also suggested that some long-lasting behaviours could
be distinguished according to a sequence of transient motion states. This work is the prerequi-
site for rat-robot automatic navigation. The predicted motion states could provide evidence for
automatically selecting commands. This method also shows excellent potential in training as the
sequence could directly provide some movement details. To the best of our knowledge, this is the
first work to use an inertial sensor in a rat-robot system.

However, it should be noted that our system has only been examined in the eight-armed
maze, and the rat robot was still controlled by an operator during the trial. When a rat robot
is automatically controlled in the actual situation afterward, its motion states will undoubtedly
be more complicated. Besides, as the rat robot’s behaviours are occasionally discontinuous, the
motion state sequence may not always be visualized. Despite its preliminary character, our work
has clearly indicated that using an inertial sensor to detect the real-time motion states of a rat
robot is promising.

Building on our current results, some further work is needed. Firstly, we will add some
other behaviours in the system, such as digging, going uphill and downhill. These behaviours
are decided by specific applications. Secondly, we are interested in optimizing the method of

264



Metrol. Meas. Syst.,Vol. 28 (2021), No. 2, pp. 255–268
DOI: 10.24425/mms.2021.136605

sequence analysis. Last but not least, the classification model could be simplified and integrated
into an embedded backpack. As mentioned above, Random Forests may be a suitable choice. In
general, our ultimate goal is to implement a rat-robot automatic navigation system in the future.
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