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On transformation of conditional, conformant and
parallel planning to linear programming

Adam GALUSZKA, Eryka PROBIERZ

Classical planning in Artificial Intelligence is a computationally expensive problem of
finding a sequence of actions that transforms a given initial state of the problem to a desired
goal situation. Lack of information about the initial state leads to conditional and conformant
planning that is more difficult than classical one. A parallel plan is the plan in which some
actions can be executed in parallel, usually leading to decrease of the plan execution time but
increase of the difficulty of finding the plan. This paper is focused on three planning problems
which are computationally difficult: conditional, conformant and parallel conformant. To avoid
these difficulties a set of transformations to Linear Programming Problem (LPP), illustrated by
examples, is proposed. The results show that solving LPP corresponding to the planning problem
can be computationally easier than solving the planning problem by exploring the problem state
space. The cost is that not always the LPP solution can be interpreted directly as a plan.

Key words: planning, conformant planning, conditional planning, parallel planning, uncer-
tainty, linear programming, computational complexity

1. Introduction

Artificial Intelligence can be understood as a study of design of intelligent
agents. An intelligent agent is a system that acts intelligently on its environment.
There are various problemswhich are being investigated byArtificial Intelligence,
like knowledge, reasoning, learning and planning [20,28]. Classical planning is a
problem of finding a sequence of actions that will achieve a goal. Finding an opti-
mal plan is generally a hard computational problem and needs a lot of resources.
The situation becomes even more complicated when a planner does not have
a complete set of information about an environment for which the plan should
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be created (e.g. [21]). This is called uncertainty and is essential for exact de-
scription of a real environment. There exist large number of different approaches
and heuristics that try to deal with planning with uncertainty depending on its
kind (e.g. [5]). One can find examples of planning applications in manufacturing,
production planning (e.g. [25]), logistics and agentics (eg. [11]).

Planning should be distinguished from scheduling – well-known and fre-
quently used technique of improving the cost of a plan. Planning is understood
as causal relations between actions, while scheduling is concerned with metric
constraints on actions [2, 4]. When all states of a planning problem (including
an initial and a goal) are defined by a given set of conditions (also called predi-
cates), then the problem is called STRIPS planning problem [23]. The planning
systems have been successfully applied in planning modules of Deep Space One
Spacecraft [31] and for elevators control in Rockefeler Center in New York [19].
One should mention STRIPS system is no longer used in its original form.
The advanced version of STRIPS introduced in 1987 [24] is called Action De-
scription Language (ADL) and other extensions of planning languages are stan-
dardized by Planning Domain Definition Language (PDDL) formalism ( [15].
The latest PDDL extension is The Hierarchical Domain Definition Language
(HDDL, [18]).

The problem becomes more complicated, if information about the modeled
world is not sufficient to determine all facts necessary to describe an initial state
of the world. Then, we say that the initial state of the problem is uncertain but
can be represented by a set of possible initial states. A plan for solving such
a problem may take the form of actions that are executed conditionally, based
on new information emerging during the search for the plan. The inflow of new
information is modeled by the so-called sensory actions, in such a way that the
uncertainty of the information available is reduced by using information from the
sensors. This approach is called conditional planning [30, 32].

In some cases, information from sensors may be unavailable e.g. sensors
are damaged or broken down, receiving sensory information is too expensive
or dangerous. Then, it is reasonable to search for a plan that is a solution to
the planning problem independently of possible initial states. This approach is
called conformant planning [30, 32]. Both conditional and conformant planning
are more difficult to solve than a classical planning [17].

The cases, in which more than one action can be applied in one planning step,
i.e. some actions can be performed simultaneously, constitute a large class of
important planning problems. Such problem formulation allows to model multi-
agent and multi-robot environments and is called parallel planning. Combining
conformant and parallel planning leads to a problem, in which many agents in-
teract in an uncertain environment with no possibility of performing sensing
actions. Finding a solution to a parallel conformant planning problem is more
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difficult than for previous problems. To avoid this difficulty, in the paper we pro-
pose a heuristics for the transformation of the problem to a Linear Programming
Problem (LPP), illustrated by examples.

1.1. Motivation

Finding a plan is generally a hard computational problem and needs a lot
of resources. This hardness is especially characteristic for domain-independent
algorithms [1] and it corresponds to difficulties with constructing general solvers.
However, it should be noted that even for methods specific for certain domains
(e.g. for block world), planning problems usually remain difficult [7]. The com-
plexity of planning problems strongly depends on the complexity of the actions
defined for the assumed domain (also [7]). Moreover in real-world applications
knowledge about environment is incomplete, uncertain and approximate. It im-
plies that planning in the presence of uncertainty is more complex than classical
planning.

In general, planning with complete information is PSPACE-complete prob-
lem. Planning in the presence of incompleteness is much more complicated [6]
and belongs to the next level in the hierarchy of completeness. Precisely speaking,
if the uncertainty about the initial state is modelled by a set of possible initial
states, then planning problem is NPN P-complete or Σ2P-complete [3]. High level
of computational complexity of planning causes that practical applications of
planning under uncertainty are based on heuristic algorithms (e.g. [16, 27]. The
newest approach provides a way to combine a method that does not explicitly
consider any problem structure with techniques that do [33].

One of the heuristics is a transformation of planning to LPP. LPP formula-
tions in classical planning are under newest investigations: in [29] the post-hoc
optimization heuristic uses LPP to determine a real-valued factor for each heuris-
tic in a set of pattern database abstractions, and the cost partitioning is derived
by multiplying the costs of all operators that affect an abstraction with that fac-
tor. Many other heuristics can be expressed with an LPP over variables that
express how often an operator is used [26]. The idea of representing STRIPS
planning problems by linear constraints and objective function is also not new
in the literature (see e.g. [22]). In these cases the planning problem takes the
form of binary integer linear program. It implies that the only allowed values of
variables are ‘0’ and ‘1’ and they corresponds to false/truth values of planning
problem predicates and actions. The computational efficiency of the approach
is low (because of complexity of integer programming algorithms) and solution
can be found only for small size planning problems. Another approach proposed
by Bylander [8] is to introduce additional linear constraints to LPP. It allows to
solve optimally some class of classical planning problems using LP polynomial
algorithms [9]. The cost is that not always the LP solution can be interpreted
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directly as a plan (what is followed by assumption P , N P). Also, the size of
LPP increased (polynomially) very fast with the number of planning problem
variables.

1.2. Contribution

In this paper a heuristic of the transformation of conditional, conformant and
parallel planning problems to LPP, basing on extension of the transformation
given in [12], is proposed. This is done because LPPs are known to be computa-
tional easy [9].

The following problems are presented and analyzed:
• transformation of conditional planning to Linear Programming,
• transformation of conformant planning to Linear Programming,
• transformation of parallel conformant planning to Linear Programming,
• computational complexity of solving transformed planning problems.

1.3. Organization of the paper

The paper is organized as follow: In section 2 conditional, conformant and
parallel planning problems together with examples are introduced. In section 3
planning problems transformations are proposed. In section 4 exemplary trans-
formed problems are solved. Remarks on computational complexity are given in
section 5. All is concluded and future works are suggested in section 6.

2. Conditional, conformant and parallel planning problems

Following Bylander [7] it is assumed that planning problemΠ consists of four
sets Π = {C,O, I,G}:

• C is a finite set of conditions,
• O is a finite set of actions, where each action o ∈ O takes the form c+, c− →

c+, c−, where:

– c+ ⊆ C are so called positive preconditions,
– c− ⊆ C are so called negative preconditions,
– c+ ⊆ C are so called positive postconditions,
– c− ⊆ C are so called negative postconditions,

• I ⊆ C is an initial state,
• G = {G+,G−} is a goal situation, where G+ ⊆ C are positive conditions
(i.e. are true) and G− ⊆ C are negative conditions (i.e. are false).
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In order to include the information that some conditions are unknown (assume
k conditions can be true or false) in the description of the current problem state,
one can introduce so called k-states proposed by [3]. In simple terms k-state is
a pair (s, Σ), where s is the current problem state, and Σ is a set that consists of
all possible initial states I. For unknown initial state set Σ consists of all states s,
for which:

• condition c ∈ C is true in the initial state (i.e. c ∈ I),

• condition c ∈ C is false (i.e. ¬ c ∈ I),

• if it is unknown whether condition c ∈ C is true or false in the initial state
then set Σ includes both states for which this condition is true and false.

The initial state I can be potentially any state from states included in set Σ.
The number of possible initial states is denoted by w and is limited by k such
that: w ¬ 2k . Such planning problem with incomplete information about initial
state is called conformant planning problem and takes the form:

Πconf = (C,O, Σ,G). (1)

The result of applying action to the current state depends whether the action is
ordinary or sensory. Description of this result is presented below, is based on [3]
and is adopted to STRIPS problem.

For action o, k-state is described by a set {Result(S, {o}),Result(Σ, {o})}, where
Result(S, {o}) is the same like in case with complete information, e.g.:

Result(S, { }) = S,

Result(S, {o}) =



(S ∪ c+)\c− if c+ ⊆ S ∧ c− ∩ S = Ø;
S in opposite case,

Result(S, {o1, o2, . . . , on}) = Result(Result(S, {o1}), {o2, . . . , on}), (2)

and:

Result(Σ, {o}) = {Result(S′, {o}) | S′ ∈ Σ}. (3)

Modern intelligent systems are often equipped with sensors of different kind that
are used to determine different properties of robot’s environment. This infor-
mation can be mapped to truth degree of conditions that define current problem
state. Usually, it is done by introducing special actions called sensory actions [32].
As there is no formal extension of STRIPS planning by sensory actions, below
the definition of these actions for k unknown conditions, as a special subset of
STRIPS actions, is proposed.
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Definition 1 For k unknown conditions set of sensory actions Os is a finite set
of actions, where for each sensory action os ∈ Os it is needed to introduce two
STRIPS sensory actions {ot

s, o
f
s } ∈ Os that take the form:

ot
s : c+, c− → ci, if condition ci is true after performing action os,

o f
s : c+, c− →¬ci, if condition ci is false after performing action os,

i = 1, 2, . . . , k.
It follows that the maximal number of sensory actions |Os | = 2k. The result of

applying action to the current state depends on whether the action is ordinary or
sensory. Such planning problem with incomplete information about initial state
and sensory actions is called conditional planning problem and takes the form:

Πcond =
(
C, (O,Os), Σ,G

)
. (4)

The plan∆C = 〈o1, o2, . . . , on〉 solves conformant planning problem if:

Result
(
(S, Σ), ,∆C

)
= G. (5)

Since all actions in ∆C are ordered, ∆C is called a total order conformant plan.
The partial-order conformant plan is denoted as ∆POC = {∆SetC, π}, where

∆SetC = {o1, o2, . . . , on} is the set of actions, and π is the non-returnable partial
order defined on ∆SetC (compare [2]). So, a partial-order conformant plan is a
compact representation of a set of possible total ordered plans.

The parallel partial-order conformant plan is denoted as ∆PPOC =
{∆SetC, π, #}, where {∆SetC, π} is ∆POC, while # is a symmetrical relation, de-
fined on the set ∆SetC. # ⊆ (π ∪ π−1) is called a non-concurrency relation and it
indicates which actions cannot be applied in parallel.

The plan∆CON D solves conditional planning problem if:

Result((S, Σ), ,∆COND) = G. (6)

The plan consists of both classical (o ∈ O) and sensory actions (os ∈ Os) and
classical actions are performed conditionally and depend on the result of sensory
action.

2.1. Example of conditional planning problem

Consider the problem of opening doors by the robot. It is assumed that robot
can perform actions of pushing doors (push_door) and flipping lock (flip_lock).
Additionally, it can perform sensory action of checking if doors are locked
(check_if_locked). If doors are not locked (¬locked) and not jammed (¬jammed)
then action push_door opens them. If doors are locked then action push_door
jammed them. The goal is to open doors so condition open should be true in
description of final problem state. Actions can be described as follow:

push_door : effect : jammed if locked, (7)
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push_door : effect : open if ¬locked, ¬jammed, (8)
flip_lock : effect : locked if ¬locked, (9)
flip_lock : effect : ¬locked if locked, (10)
check_if_locked : determines if locked is true or false. (11)

Action model in formulas (7)–(11) is different than classical cause-effect action.
It is caused by the fact that actions effects in formulas (7)–(10) are formulated
conditionally (action causes set1_of_conditions if set2_of_conditions) and action
in formula (11) is formulated as a truth determination for unknown conditions).
Both models can be translated into classical six cause-effect actions and take the
form like in formulas (12)–(17):

o1 = push_door : locked→ jammed, (12)
o2 = push_door_1: ¬locked, ¬jammed→ open, (13)
o3 = flip_lock : ¬locked→ locked, (14)
o4 = flip_lock_1: locked→ ¬locked, (15)
o5 = check_if_locked : {no preconditions} → locked, if locked is true, (16)
o6 = check_if_locked_1: {no preconditions} → ¬locked, if locked is false (17)

where o1, o2, o3, o4 ∈ O and o5, o6 ∈ Os.
Two separate actions are needed for one sensory action [32], so in the example

|O | = 6. If the set of problem actions contains sensory actions it implies that the
plan solving the problem is not a determined sequence of actions: if at least one
action is sensory, then next actions depend on sensory action result. It leads to so
called conditional plans. Assume in the example that in initial situation doors are
closed and not jammed {¬open, ¬jammed}, but it is unknown if they are locked.
It leads to two possible initial problem states and theirs description is included
in set Σ:

Σ =
{
{¬open, ¬jammed, locked}, {¬open, ¬jammed, ¬locked}

}
. (18)

Remaining sets for STRIPS representation are:

C =
{
c1 = locked, c2 = jammed, c3 = open

}
, I = Σ, G = {open}. (19)

and conditional plan that solves the problem is:

∆ =
{
check_if_locked, if ¬locked then push_door,

if locked then flip_lock, push_door
}
. (20)
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2.2. Example of conformant planning problem

To illustrate conformant planning consider the following simple model of the
action of taking medication [32]:

Medicate : no preconditions, effects : (when I¬I) (when ¬HD) (21)

in which I means the patient is Infected, H means he is Hydrated and D means
Dangerous health state. If the patient is Infected before the action then he will no
longer be Infected but if the patient takes medication when he is not Hydrated
then the result is Dangerous health state.

Action model in formula (21) is different than classical one. It is caused by
a fact that actions effects are formulated conditionally with the general schema:
action causes set1_of_conditions if set2_of_conditions. Please note that such
defined action has no preconditions but action effects are formulated conditionally.
It implies that preconditions are indirectly defined by effects, so action Medicate
is equivalent to four classical cause-effect actions:

Med1 : preconditions : (I and H), effects : ¬I ,
Med2 : preconditions : (I and ¬H), effects : (¬I and D),
Med3 : preconditions : (¬I and H), effects : no effects ,
Med4 : preconditions : (¬I and ¬H), effects : D.

(22)

As an example of conformant planning one can consider following problemΠMed
with two possible initial states:

ΠMed = {CMed, OMed, ΣMed, GMed}, (23)

where:

CMed = {I, H, D},

OMed =
{
Medicate : no preconditions, effects : (when I¬I)(when ¬H D);
Drink : nopreconditions, effects : H

}
,

ΣMed =
{
{¬I, ¬H, ¬D}, {I, H, ¬D}

}
,

GMed = {¬I, ¬D}.

The plan that solves the problem cannot be just Medicate because we do not
know whether the patient is hydrated or not. Conformant plan that solves the
ΠMed problem is:

∆ = {Drink, Medicate}. (24)
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2.3. Example of parallel conformant planning problem

To illustrate a parallel conformant planning problem consider the following
simple bomb in the toilet problem with one action containing conditional effects:

Dunk(P) : preconditions : package(P), bomb(B),
effects : if in(P, B) then defused(B), (25)

meaning that if there is a bomb B and there is a package P then action dunk causes
that bomb B is defused if it was in package P. So if there is no bomb in package,
the action dunk has no effects.

Action model in formula (25) is different than classical action. It is caused
by a fact that actions effects are formulated conditionally with general schema:
action causes set1_of_conditions if set2_of_conditions. Please note that an action
defined in such way has no preconditions but action effects are formulated con-
ditionally. It implies that preconditions are indirectly defined by effects, so action
Dunk is equivalent to two classical actions:

Dunk1(P) : preconditions : package(P), bomb(B), in(P, B),
effects : defused(B),

Dunk2(P) : preconditions : package(P), bomb(B), not(in(P, B)),
effects : no effects.

(26)

Now, let us consider the following problem ΠBT with two possible initial states
(bomb is in package 1 or in package 2):

ΠBT = {CBT, OBT, ΣBT, GBT }, (27)
where:
CBT =

{
package(P1), package(P2), bomb(B), in(P1, B), in(P2, B), defused(B)

}
,

OBT =
{
Dunk

}
,

ΣBT =
{
{package(P1), package(P2), bomb(B), in(P1, B)},
{package(P1), package(P2), bomb(B), in(P2, B)}

}
,

GBT =
{
defused(B)

}
.

The conformant plan that solves the ΠBT problem is:
∆CBT = 〈Dunk(P1), Dunk(P2)〉 or
∆CBT = 〈Dunk(P2), Dunk(P1)〉.

(28)

The partial-order conformant plan that solves the ΠBT problem is:
∆POCBT = {Dunk(P2), Dunk(P1)}.(29) (29)

If actions in ∆POCBT can be performed in parallel (#BT = Ø), then ∆POCBT =
∆PPOCBT and the problem is solved in one step.
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3. Transformation to LP

Following [8], the transformation from planning to Linear Programming is
based onmapping of conditions and operators in each plan step to variables. Truth
values of conditions are mapped to ”0” and “1” for the planning without incom-
pleteness, and to any values between “0” and “1” for planning with incomplete
information.

Assume that if c ∈ C is a condition and if the planning process is divided into
l steps and i is the step index (i = 0, 1, . . . , l) then (l+1) variables are needed
for this condition: c(0), c(1), . . . , c(l). If in turn o ∈ O is an action, then we need
l variables for each action: o(0), o(1), . . . , o(l−1). If os ∈ Os is a sensory action,
then we need 2l variables for each sensory action: ot

s (0), ot
s (1), . . . , ot

s (l−1), and
o f

s (0), o f
s (1), . . . , o f

s (l−1). Thus, the arguments for conditions c and operators o
are extended by the index of the planning step.

The goal function reaches its maximum value if the value of the variable c(l)
corresponding to condition is: c(l) = 1 if c ∈ G+ and c(l) = 0 if c ∈ G−, i.e. the
goal state is true in the last step of planning l.

Basing on above one can build LPP having vector of decision variables x:

x =
{
c(0), o(0), ot

s (0), o f
s (0), c(1), o(1), ot

s (1), o f
s (1), . . . ,

c(l−1), o(l−1), ot
s (l−1), o f

s (l−1), c(l)
}
.

Assume now that the set G+ = {c
pos
1 , cpos

2 , . . . , cpos
n } and the set G− =

{cneg
1 , cneg

2 , . . . , cneg
m }, i.e. the goal consists of n positive and m negative conditions,

so there are (n+m) variables that constitutes LP objective function:

cpos(l) =
[
cpos

1 (l), cpos
2 (l), . . . , cpos

n (l)
]

;

cneg(l) =
[
cneg

1 (l), cneg
2 (l), . . . , cneg

m (l)
]
.

The objective function to be maximized is:

Max← f (
(
cpos(l), cneg(l)

)
=



n∑
i=1

(
cpos

i (l)
)
+

m∑
j=1

(
1 − cneg

j (l)
) . (30)

Since each component of (30) should be equal to 1 (one) if the goal is achieved,
the optimal value of objective function ( fopt) to be maximized is known prior
to solving LP problem and is fopt = (n + m). The optimization problem is
formulated as:

Find minimal number of steps “l” for which fopt = (n + m).
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Inequality constraints (of the form “greater or equal to”) express the property
that actions can be applied if their preconditions are true. The left side of the
inequality consists of variable corresponding to the precondition. If precondition
is not satisfied then variable value for this condition is ‘0’. The right side of
inequality is the sum of variables corresponding to all actions having the pre-
condition. Thus, if left side is ‘0’ any action having the precondition cannot be
applied. Dependently of the initial state representation and the number of actions
taken in parallel inequalities differ in detail.

Equality constraints describe changes of variables value for conditions due to
action application. Dependently of the initial state representation and the number
of actions taken in parallel these equalities also differ in detail.

Tomodel uncertainty about truth or false of unknown condition c it is proposed
to use three-valued Kleen’s logic system. In this system logic values of condition
aremapped into set

{
0, 1

2, 1
}
. SentencesT (a) = 0,T (a) = 1 andT (a) = 1

2 denote
that condition “a” is false, truth or that nothing can be said about truthfulness of
“a” [10]. Following subsections introduce constraints dependently on the planning
problem.

3.1. Conditional planning problem

For conditional planning problem (4) with two classical actions and one
sensory action that checks the unknown c3:

o1 : c1 → c2 ,

o2 : ¬c1, ¬c2 → ¬c3 ,

ot
s1 : { } → c3 ,

o f
s1 : { } → ¬c3 ,

(31)

the set of inequalities is:

c1(i) ­ o1(i),

1 − c1(i) ­ o2(i),

1 − c2(i) ­ o2(i),
(32)

and set of equalities is:

c2(i + 1) = c2(i) + o1(i),

c3(i + 1) = c3(i) − o2(i) +
1
2

ot
s1(i) −

1
2

o f
s1(i).

(33)

One should note that the value c3 in next planning step, c3(i + 1), can be
modified in two ways:
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1) if c3 is true in current planning problem state (i.e. c3(i) = 1) than it can stay
false in next step after applying action o2;

2) if c3 is unknown in current planning problem state (i.e. c3(i) = 1
2 ) than it

can stay true or false in next step dependently of the sensory action result.

3.2. Conformant planning problem

In conformant planning there are no sensory actions, so for conformant plan-
ning problem (1) and two actions with unknown c3:

o1 : c1 → c2 ,

o2 : ¬c1, ¬c2 → ¬c3 ,

there are two possible worlds: the first one in which c3 is true and the second one
in which c3 is false. The solution is the plan that solves the problem independently
of the world we are in. The set of inequalities is:

cw1 (i) ­ o1(i),

1 − cw1 (i) ­ o2(i),

1 − cw2 (i) ­ o2(i),
(34)

and set of equalities is:

cw2 (i + 1) = cw2 (i) + o1(i),

cw3 (i + 1) = cw3 (i) − o2(i),
(35)

where w = 1, 2.

3.3. Parallel conformant planning problem

For parallel conformant planning problem (1) there is a possibility to perform
many actions at the same planning step. One should note that actions o1 and o2
in (31) cannot be taken at the same step since their preconditions are mutually
excluding. Assuming that r is the maximal number of actions performed in
parallel one finds modifications in inequality (34):

r ∗ cw1 (i) ­ o1(i).

4. Exemplary results

Below transformation results for examples introduced in sections 2.1, 2.2 and
2.3 are shown.
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4.1. Transformation of conditional planning problem

If l is the number of planning steps then variables for conditions (19) are:

c1(i) = locked(i), c2(i) = jammed(i),
c3(i) = open(i), i = 0, 1, . . . , l, (36)

for actions (12)–(17):

o1(i) = push_door(i),
o2(i) = push_door_1(i),
o3(i) = flip_lock(i),
o4(i) = flip_lock_1(i),
o5(i) = check_if_locked(i),
o6(i) = check_if_locked_1(i),

i = 0, 1, . . . l−1.

(37)

The description of initial state can be transformed from the set of possible
initial states Σ to set of equality constraints with variable values for unknown
conditions equal to 1

2 :

c1(0) = locked(0) = 0.5,
c2(0) = jammed(0) = 0,
c3(0) = open(0) = 0.

(38)

Goal state is reached if condition open is true in last planning step, so the
objective function of LP is:

max← c3(l) = open(l). (39)

The planning problem is solved if the optimal value of f is equal to 1, meaning
that one conditions is true. It leads to following formulation of optimization
problem: Find minimal number of planning steps l, such that f = 1.

The set of constraints is:
– one action in one planning step (these are equality constraints):

push_door(i) + push_door_1(i) + flip_lock(i) + flip_lock_1(i)+
+ check_if_locked(i) + check_if_locked_1(i) = 1, i = 0, 1, 2, . . . l−1, (40)



388 A. GALUSZKA, E. PROBIERZ

– actions can be applied if preconditions are true (these are inequality con-
straints):

locked(i) ­ push_door(i) + flip_locked_1(i),
1 − locked(i) ­ push_door_1(i) + flip_lock(i),

1 − jammed(i) ­ push_door_1(i), i = 0, 1, 2, . . . , l−1,
(41)

– changes of variables for conditions due to action application (these are
equality constraints):

jammed(i + 1) = jammed(i) + push_door(i),
open(i + 1) = open(i) + push_door_1(i), i = 0, 1, 2, . . . , l−1. (42)

Constraints (41) and (42) are only formulas for actions (12)–(15). Now it is
necessary to model the influence of sensory actions that will change the value of
variable for uncertain condition locked = 1

2 :

locked(i + 1) = locked(i) + 0.5check_if_locked(i)
− 0.5check_if_locked_1(i). (43)

Initially locked(0) = 1
2 . The condition locked can be determined by sensory

action check_if_locked modeled by 2 actions o5 = check_if_locked that deter-
mines locked and o6 = check_if_locked_1 that determines ¬ locked. Thus, the
variable value of the action o5 should increase the variable value of the condition
locked(i) from “1

2” to “1”. Similarly, the variable value of the action o6 should
decrease the variable value of the condition locked(i) from “1

2” to “0”, what is ex-
pressed by (43). It should be noted that that other classical actions also influences
the value of locked(i). The variable of action o3(i) = flip_lock(i) changes the
locked(i) value to “1” if it was “0”. The variable of action o4(i) = flip_lock_1(i)
changes the locked(i) value to “0” if it was “1”. Thus, the constraint (43) should
also model these changes. It leads to:

locked(i + 1) = locked(i) + 0.5check_if_locked(i)
− 0.5check_if_locked_1(i) + flip_lock(i) − flip_lock_1(i).

Last constraints are implications of the fact that sensory actions for each
unknown condition are performed only once during planning process:

Σcheck_if_locked(i) + Σcheck_if_locked_1(i) = 1.

Optimal solution xopt depends on the result of application of sensory action
check_if_locked. If the door were locked, it would correspond to effects of action
o5, and it is modeled by introducing additional equality constraint to LP:

o5(0) = check_if_locked(0) = 1, (44)
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and if the door were ¬locked, it corresponds to effects of action o6, and is modeled
by introducing additional equality constraint to LP:

o6(0) = check_if_locked_1(0) = 1. (45)

In case (44) the number of planning steps that satisfies goal is l = 3 and
the vector xopt that maximizes (39) can be directly interpreted as a plan: ∆1 =
{o5, o4, o2} = {check_if_locked, flip_lock_1, push_door_1}. In the opposite case,
one should apply additional heuristics or methods that leads to binary integer
solution (see e.g. [12]). In case (45) the number of planning steps that satisfies
goal is l = 2 and vector xopt that maximizes (39) can be directly interpreted
as a plan: ∆2 = {o6, o2} = {check_if_locked_1, push_door_1}. Plans ∆1 and ∆2
correspond to conditional plan (7).

4.2. Transformation of conformant planning problem

If w is the index of possible initial world state, then variables of the problem
(23) for conditions are:

cw1 (i) = Iw (i), cw2 (i) = Hw (i), cw3 (i) = Dw (i),

i = 0, 1, . . . , l, w = 1, 2,
(46)

for actions:

o1(i) = Med1(i),
o2(i) = Med2(i),
o3(i) = Med3(i),
o4(i) = Med4(i),
o5(i) = Drink(i), i = 0, 1, . . . , l−1.

(47)

The initial state is a disjunction of two possibilities. It is modelled by a set of
equality constraints:

c1
1 (0) = I1(0) = 0, c1

2 (0) = H1(0) = 0,
c1

3 (0) = D1(0) = 0,
c2

1 (0) = I2(0) = 1, c2
2 (0) = H2(0) = 1,

c2
3 (0) = D2(0) = 0,

(48)

Goal state GMed = {¬I, ¬D} is reached if conditions I and D are false in last
planning step in each world, so the objective function of LP, mapping ¬c into
variable value in step i equal to (1 − c(i)), is:

max← f =
(
1 − c1

1 (l)
)
+

(
1 − c1

3 (l)
)
+

(
1 − c2

1 (l)
)
+

(
1 − c2

3 (l)
)
. (49)
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The planning problem is solved if the optimal value of f is equal to 4, meaning
two conditions in both worlds are false. It leads to following formulation of
optimization problem: Find minimal number of planning steps l, such that f = 4.

Set of constraints is:
– one action in one planning step (these are equality constraints):

n∑
k=1

ok (i) = 1,

n∑
k=1

ok (i) = 1, i = 0, 1, 2, . . . l−1,
(50)

– actions can be applied if preconditions are true (these are inequality con-
straints):

Iw (i) ­ Med1(i) +Med2(i),
(1 − Iw (i)) ­ Med3(i) +Med4(i),

Hw (i) ­ Med1(i) +Med3(i),
(1 − Hw (i)) ­ Med2(i) +Med4(i),

i = 0, 1, 2, . . . l−1, w = 1, 2;

(51)

– changes of variables for conditions due to action application (these are also
equality constraints):

Iw (i + 1) = Iw (i) −Med1(i) −Med2(i),
Dw (i + 1) = Dw (i) +Med2(i) +Med4(i),
Hw (i + 1) = Hw (i) + Drink(i),

i = 0, 1, 2, . . . l−1, w = 1, 2.

(52)

Last equality constraint in (52) should be studied more carefully. First action
in plan (4) Drink applied to possible initial state when patient is hydrated leads
to infeasible value of variable H2(1):

H2(1) = H2(0) + Drink(0) = 1 + 1 = 2,

so one should introduce additional balancing variable for each condition in each
planning step to avoid infeasibility:

Iw (i + 1) + Iwb (i + 1) = Iw (i) −Med1(i) −Med2(i),
Dw (i + 1) + Dw

b (i + 1) = Dw (i) +Med2(i) +Med4(i),
Hw (i + 1) + Hw

b (i + 1) = Hw (i) + Drink(i),
i = 0, 1, 2, . . . l−1, w = 1, 2.

(53)
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Basing on formulas (46) to (53) it is easy derive general formulas for any
problem (1). Table 1 presents the optimal solution of (30) which is divided into
sections that correspond to variable values of actions oi and conditions ci, where
i is the index of planning step.

Table 1: Optimal solution xopt for transformation of the conformant planning problem
example

world variable i = 0 i = 1 i = 2 add1 add2
w1 I 0 0 0 0 0

H 0 1 1 0 0
D 0 0 0 0 0

w2 I 1 1 0 0 0
H 1 1 1 1 0
D 0 0 0 0 0

O med1 0 0 – – –
med2 0 0 – – –
med3 0 1 – – –
med4 0 0 – – –
drink 1 0 – – –

It should be noted that values of variables for actions are binary integer,
so the solution presented in Table 1 can be directly interpreted as a plan: ∆ =
{Drink, Medicate}. In the opposite case, one should apply additional heuristics
or methods that leads to binary integer solution (see e.g. [12]).

4.3. Transformation of parallel conformant planning problem

If l is the number of planning steps and w is the number of possible initial
world states then variables of the problem (27) for conditions are [14]:

c1(i) = package(P1, i), c2(i) = package(P2, i), c3(i) = bomb(B, i),
cw4 (i) = in(P1, B, i)w, cw5 (i) = in(P2, B, i)w, cw6 (i) = defused(B, i)w,
i = 0, 1, . . . , l, w = 1, 2,

(54)

for actions:

ow1 (i) = Dunk1(P1, i)w, ow2 (i) = Dunk2(P1, i)w,
ow3 (i) = Dunk1(P2, i)w, ow4 (i) = Dunk2(P2, i)w,

i = 0, 1, . . . , l−1, w = 1, 2.
(55)
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The initial state is a disjunction of two possibilities. It is modelled by a set of
equality constraints:

package(P1, 0) = 1, package(P2, 0) = 1, bomb(B, 0) = 1,
in(P1, B, 0)1 = 1, in(P2, B, 0)1 = 0, defused(B, 0)1 = 0,
in(P1, B, 0)2 = 0, in(P2, B, 0)2 = 1, defused(B, 0)2 = 0.(56)

(56)

Goal state G BT is reached if condition (defusedB) is true in last planning step
in each world, so the objective function of LP is:

max ← f = defused(B, l)1 + defused(B, l)2. (57)
It leads to following formulation of optimization problem: Find minimal number
of planning steps l, such that f = 2.

The set of constraints is given by:
– actions can be applied if preconditions are true (these are inequality con-

straints), so we have:
package(P1, i) ­ Dunk1(P1, i)w + Dunk2(P1, i)w,
package(P2, i) ­ Dunk1(P2, i)w + Dunk2(P2, i)w,
r ∗ bomb(B, i) ­ Dunk1(P1, i)w + Dunk2(P1, i)w + Dunk1(P2, i)w

+ Dunk2(P2, i)w,
in(P1, B, i)w ­ Dunk1(P1, i)w,
in(P2, B, i)w ­ Dunk1(P2, i)w,

(1 − in(P1, B, i)w) ­ Dunk2(P1, i)w,
(1 − in(P2, B, i)w) ­ Dunk2(P2, i)w, i = 0, 1, 2, . . . , l−1, w = 1, 2,

(58)

where r is a natural number indicating how many actions can be performed in
parallel (in our example r = 2),

– changes of variables for conditions due to action application (these are
equality constraints), so we have:

defused(B, i+1)w = defused(B, i)w + Dunk1(P1, i)w + Dunk1(P2, i)w,
i = 0, 1, 2, . . . , l−1, w = 1, 2.

(59)

The equality constraint (59) should be studied more carefully. If actions
Dunk1(P1, i)w and Dunk1(P2, i)w are applied in parallel in the same planning
step, then the value of condition defused(B, i+1)w becomes infeasible. In this
case, one should introduce an additional balancing variable for each condition in
each planning step to avoid infeasibility:

defused(B, i+1)w + defused(B, i+1)b
w = defused(B, i)w+

+Dunk1(P1, i)w + Dunk1(P2, i)w,
i = 0, 1, 2, . . . , l−1, w = 1, 2.

(60)
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Table 2 presents the optimal solution of the parallel conformant planning
problem as well as the two additional test problems with possible initial states
given by set of equalities (61) and (62):

package(P1, 0) = 1, package(P2, 0) = 1, bomb(B, 0) = 1,
in(P1, B, 0)1 = 1, in(P2, B, 0)1 = 0, defused(B, 0)1 = 0,
in(P1, B, 0)2 = 1, in(P2, B, 0)2 = 1, defused(B, 0)2 = 0;

(61)

package(P1, 0) = 1, package(P2, 0) = 1, bomb(B, 0) = 1,
in(P1, B, 0)1 = 1, in(P2, B, 0)1 = 0, defused(B, 0)1 = 0,
in(P1, B, 0)2 = 0, in(P2, B, 0)2 = 0, defused(B, 0)2 = 0.(62)

(62)

Table 2: Optimal solution xopt for the parallel conformant planning problem (56) as well
as (61) and (62) problems

world LP variable problem (56) problem (61) problem (62)
package(P1,0) 1 1 1

both package(p2,0) 1 1 1
bomb(B,0) 1 1 1
in(P1,B,0) 1 1 1

world 1 in(P2,B,0) 0 0 0
defused(B,0) 0 0 0
in(P1,B,0) 0 1 0

world 2 in(P2,B,0) 1 1 0
defused(B,0) 0 0 0

world 1

Dunk1(P1,0) 1 1 1
Dunk2(P1,0) 0 0 0
Dunk1(P2,0) 0 0 0
Dunk2(P2,0) 0 0 0

world 2

Dunk1(P1,0) 0 1 0
Dunk2(P1,0) 0 0 0
Dunk1(P2,0) 1 0 0
Dunk2(P2,0) 0 0 0

world 1 defused(B,1) 1 1 1
world 2 defused(B,1) 1 1 0

– objective f 2 2 1
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In the first one (61) there is a bomb in first package but it is uncertain whether it
is in the second package, in second one (62) there is no bomb in second package
but it is uncertain whether it is in first package.

It should be noted that values of variables for actions are binary integer, so
the solution presented in Table 1 can be directly interpreted as a plan:

∆PPOCBT = {Dunk(P2), Dunk(P1)}.

In the opposite case, one should apply additional heuristics or methods that lead
to a binary integer solution.

5. Remarks on computational complexity of transformed planning problems

Let us introduce complexity classes P and ΣkP. Following [3], a decision
problem is a problem of determining whether a given input w satisfies a certain
property F (i.e., in set-theoretic terms, whether it belongs to the corresponding
set S = {w |F (w)}). For every positive integer k, a problem belongs to the class
ΣkP if the formula F (w) can be represented as:

∃u1 ∀u2 . . . F (u1, u2, . . . , un, w),

where F (u1, u2, . . . , un,w) is a tractable property, and all k quantifiers run over
words of tractable length (i.e., of length limited by some given polynomial of the
length of the input).

5.1. Complexity of transformed conformant planning problem

Basing on above notation one can represent formula (1) for conformant plan-
ning as:

∃∆ ∀IΠ (∆,Π(C,O, I,G)) , (63)

where the initial state I can be potentially any state from states included in the set
Σ. It follows that conformant planning is in Σ2P. It is also a complete problem [3].

The complexity of the heuristic presented in the paper results from the size of
LP problem, i.e. the number of variables and constraints for the problem (1). The
number of variables depends on the number of conditions, actions and planning
steps is:

p = w |C |(l + 1) + w |O |l = p1 + p2 , (64)

where:
p1 = w |C |(l + 1) – the number of variables corresponding to conditions,
p2 = w |O |l – the number of variables corresponding to actions.
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The number of constraints is:

• w |C | equality constraints to define the initial state, since the number of
constraints needed to define the initial state for each belief state is |C |,

• |C |l equality constraints to define the change of variable values after per-
forming the action,

• |C |l inequality constraints to define actions preconditions,

• 2p inequality constraints for variable values 〈0, 1〉.

In a general case, for problems with the number of variables and constraints
limited polynomially by the size of the planning problem, it can be shown [12]
that transformation of planning to LP takes time: T = O(nl), where n is the size
of the problem, n = (w |C |+w |O |). If, additionally, it is assumed that the number
of planning steps does not increase exponentially with the size of the problem,
then transformation of planning to LP is polynomial with complexity T = O(n3).
The heuristics of the transformation of planning with incomplete information
about initial state and determined effect of actions to LP has two properties:

a) one should introduce an additional balancing variable for each condition in
each planning step to avoid possible infeasibility of variable values,

b) given any feasible solution of LP problem x connected with planning prob-
lem Π = (C,O, Σ,G), it is easy to check (in polynomial time) whether the
solution corresponds to plan that solves Π.

From the property a) it follows that polynomial time, depending on the prob-
lem size, is needed to solve LP problems that represents incomplete planning:
T = O(n3). From the property b) it follows that the heuristic is in NP.

5.2. Complexity of transformed conditional planning problem

In general case, for STRIPS problemswith number of variables and constraints
limited polynomially by the size of planning problem, it can be shown [12] that
transformation of planning to LP takes time:

T = O (( |C | + |O |)l) . (65)

If additionally it is assumed that the number of planning steps does not increase
exponentially with the size of the problem, then transformation of planning to LP
is polynomial with complexity T = O(n3), where n is the size of the problem,
n = (|C | + |O |). The heuristic of the transformation of planning with incomplete
information about initial state and determined effect of actions to LP has two
properties:
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c) for k sensory actions one should perform 2k transformations to LP,

d) given any admissible solution of LP problem x connected with planning
problem Π = {C,O, Σ,G} it is easy to check (in polynomial time) whether
the solution corresponds to plan that solves Π.

The property a) follows that it is needed polynomial time depended on problem
size an exponential time depended on the number of sensory actions to solve LP
problems that represents incomplete planning: T = O(n32k ). The property b)
follows that heuristic is in NP.

6. Conclusion

In this paper the transformation and the computational complexity of condi-
tional planning, conformant planning and parallel conformant planning problems
to LP were presented and analyzed.

Important planning problems are those where more than one agent interacts
with the problem environment simultaneously. They arise in multi-agent and
multi-robot environments. Additionally, it is assumed here that maximal number
of actions applied to current problem state is r . It can occur when r agents act on
the same problem state or one agent is able to perform r actions at a time. It should
be noted that in real-life problems application of an action to a problem state does
not always lead to expected effects. It is particularly important in cases where
action outcomes are uncertain, as well, and when a condition that is determined
can become undetermined. Future works will be focused on introducing uncertain
action outcomes to LP transformation.
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