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Heating control of a finite rod with a mobile source

Samvel H. JILAVYAN, Edmon R. GRIGORYAN and Asatur Zh. KHURSHUDYAN

The Green’s function approach is applied for studying the exact and approximate null-
controllability of a finite rod in finite time by means of a source moving along the rod with
controllable trajectory. The intensity of the source remains constant. Applying the recently
developed Green’s function approach, the analysis of the exact null-controllability is reduced
to an infinite system of nonlinear constraints with respect to the control function. A sufficient
condition for the approximate null-controllability of the rod is obtained. Since the exact solution
of the system of constraints is a long-standing open problem, some heuristic solutions are
used instead. The efficiency of these solutions is shown on particular cases of approximate
controllability.

Key words: null-controllability, mobile control, nonlinear constraints, triangular wave,
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1. Introduction

The ability of a system to be transmitted from any given state in finite time to
any other given state by an external control is referred to as controllability. It is
one of the most important properties of control systems, which is being studied
for a long time now. Accordingly, there is a great deal of references studying
different types and aspects of controllability for various model systems described
by all types of state constraints. Some of the recent fundamental works in the area
of controllability can be found in [1-6] and references therein.

This paper studies the controllability of a finite rod from any given initial
temperature distribution to a state where each point of the rod has a constant
uniform temperature by means of a source moving along the rod with a constant
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intensity and controllable trajectory. In general, the controllability analysis of
heating process of bodies is a very delicate problem, especially in two- and three-
dimensions. Since the heat transfers slower compared to, e.g., sound, unbounded
and even some cases of bounded bodies may not be controlled. The case of
unbounded bodies has been studied, e.g., in [7-10], and that of bounded bodies
in [11,12]. In these and similar studies, usually, boundary controls or controls
distributed over a fixed, bounded region of the body are considered. On the other
hand, due to high thermal efficiency, laser heating is widely applied in various
areas of contemporary engineering technologies [13]. Laser heater is usually
modelled as a point source or a source having a small area of concentration
moving over the surface of the heating body. In mathematical terms, the heat
transfer induced in a body as a result of laser heating is modelled by means of
usual heat equation with a source term represented as a Dirac function of time
dependent argument:

cv‘z—}(? = k0O + 0,5 (Y- us (7)) 6 (F-uy (1)) 0 (7-u: (7)), ®FDeQ

where cy and « are the volumetric heat capacity and thermal conductivity of the

body occupying the domain Q ¢ R?, @ is the constant coefficient and (ux, Uy, uZ)
is the trajectory of the source.

The control problem is in determination of the triple (ux, Uy, uz) such that

for any initial temperature distribution ® (x,y,7,0), any given distribution
O(x,y,z, T) is provided in given finite time 7. Such control problems, referred to
as mobile control problems, have been first considered by prominent mathemati-
cian A.G. Butkovskiy in 1970s [14] and then studied mainly by his students (for
a relatively complete list of references, see, [15] and [16]). The main difficulty
of mobile control problems is that the determination of the control trajectory is
reduced to the solution of an infinite system of nonlinear constraints. Analytical
solution to that problem has not been obtained yet [17]. Nevertheless, there exist
quite efficient methods for numerical solution of mobile control problems [15,16].

In this paper, a mobile control problem for the one-dimensional heat equation
is considered by the Green’s function approach [6, 18, 19] efficiently applicable to
the analysis of exact and approximate controllability of both linear and nonlinear
processes [20-25]. Using the explicit solution of the heat equation in terms of
Green’s function, explicit representation of the controllability residue in terms of
the control trajectory is obtained. As a result, an infinite system of nonlinear con-
straints is obtained for the exact null-controllability, and an inequality sufficient
for the approximate null-controllability is obtained. Some parametric families of
control including triangular and rectangular waves and their superpositions are
developed using the heuristic method [26, 27]. The efficiency of the heuristic
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solutions is proved in particular examples of approximate controllability. It is
showsn also that for a particular initial distribution of the temperature, the rod is
not exactly null-controllable by a source fixed at some point of the rod and having
a constant intensity.

2. Controllability problem

The heat transfer in a rod is described by the following one-dimensional heat
equation

00 0’0
Ezﬁ+®36(x—u(t)), x€(0,1), t>0, (D)
in which all variables and quantities are dimensionless:
A _ a0
© - 0-0;
a0 _ @O
0r - 0,

describes the temperature of the rod, where 9, (:58 and (:52 are the actual, initial
and desired constant temperature distribution of the rod,

0,2

. Kt
I2cy’

b

rod has length /, ¢ is the Fourier number. The rod is assumed to be sufficiently
thin, so that the temperature distribution over any of its cross section is uniform.

The heat transfer between the rod and the external medium does not happen
including both x = 0 and x = 1 ends:

00,1) =0(1,1) =0, t>0. (2)
The temperature distribution in the rod for # = 0 is given by
0 (x,0) = O (x), x € [0, 1]. 3)

Let @y € L2[0,1], ®y(0) = 0, so that the initial and boundary conditions are
consistent. Note that since the temperature has been normalized, ®; merely
describes the temperature distribution law. Therefore, for the sake of simplicity,

it is assumed that ”®0”i2[01] <1

The aim is to study the null-controllability of the rod, i.e., the possibility of
derivation of trajectories of the source, such that at a given finite value T of the
Fourier number, the rod is brought to the null-state

Ox,T) =0, x €[0,1]. 4)
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Apparently, when (4) is ensured for the rod, the source may be turned off to ensure
the null-state of the rod for ¢t > T as well.

Assume that the heat source does not tear off of the rod, but may have some
discontinuities. Therefore, the set of admissible controls will be defined as

U ={ueCl0.T] ue (01}

The problem is to characterize the set of admissible trajectories of the source
for which the residue

1
Rr () = 1100, D720 = f ©Cx, T)[* dx 5)
0

satisfies either exact or approximate controllability condition
Rr(u) =0 or Rr(u) <e,

respectively, where € > 0 is a given constant. The dependence Ry on u will be
made explicit in the next section.

3. Green’s function solution

In order to analyze the controllability of (1), the Green’s function approach [6]
is involved. Represent the general solution of (1)-(3) in terms of the Green’s
function [28]:

1 T
Ox, 1) = fG(x, E,1)O0(E)dE + O f G (x,u(t), T —1)dr,
0 0
xe[0,1], t>0, (6)

where -
G(x,&1) =2 Z sin(rkx) sin(ké) exp [~ (rk)’t] .
k=1

In order to make the dependence Ry = Ry (u) explicit, evaluate (6) att =T
and substitute it into (5):

11 T 2

RT(M):f f@o(f)G(x,f,T)d§+®sfG(x,u(T),T—T) dr| dx. (1)

0 10 0
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4. Exact null-controllability

First, examine the exact null-controllability of (1). Using the methodology
of [6], the following result can be established.

Theorem 1 For the exact null controllability of (1), it is necessary and sufficient
that for given ®g, O; and T,

T
Q f sin [rnu(7)] exp [—(7rn)2(T - T)] dr =
0
= -@puexp [~(xn)’T|,  neZ (8)
Here, O, are the Fourier sine-coefficients of Q.

Proof. By the definition of norm, (7) is equivalent to

T
(OF f Gxu(t),T—1)dt = Mpr(x), x¢€]01], 9)
0

where
1

My (x) = - f O0(&)G(x, & T)dE.
0

Expanding (9) into Fourier series, we obtain the following infinite system of
integral constraints on u:

T
OF f G, (u(r), T —7t)dr = My, nez, (10)
0
with
1

Ga(&,1) = f G(x, & 1) sin(rnx)dx = Z 5 sin(ké) exp [-(wk)*t]
k=1

0

1
My, = fMT(x) sin(rnx)dx = - Z 0% Ok exp [—(ﬂk)zT] ,
i k=1

where 67 is the Kronecker symbol.
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Substituting these expressions into (10), infinite system (8) is eventually ob-
tained.

Apparently, (8) is an infinite system of integral constraints on #. Determination
of u from (8) explicitly is a long-standing open problem [17]. Usually, it is done
numerically [15, 16].

5. Approximate null-controllability

The approximate controllability is studied in a fashion similar to [6].

Theorem 2 For the approximate null-controllability of (1), it is sufficient that for
the required accuracy € > 0,

T
20, )" f sin? [mku(t)) exp [-2(xk) (T - 7)] d7
k=1 0

< &= C(T) 180ll7210; » (11

provided that

&= C(T) (|9l 0. (12)

2

210,11 =

Proof. Making use of Minkowski’s inequality, (7) is reduced to
1 T

Ri(u) < f@o(f)G(x, ET)déE + O fG (x,u(t), T —7)dr
0 12[0,1] 0 L2[0,1]
=11+ 0Ol (13)

Jensen’s inequality applied to /; and I, provides

1
I < f OO IG (&) 2ago, &,
0

T
L < f ”G ('» M(T), T- T)II%Z[O,I] .
0
Taking into account that

(o] 2 (o] (o] (o)
Z Ap sin(:rkx)] = Z A2 sin®(rkx) + Z Ay sin(zkx) Z Ajsin(rjx),
k=1 k=1 k=1

j=1
J#k
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and that the family {sin(wkx)};”, is orthogonal in [0, 1], we obtain

1G(x, & T3y, = 2 ka sin® (k&) exp [-2(nk)’T | .

Therefore,

)
k=1

1
I < ZZexp [-2(mk)*T | f 1@0(&)? sin®(rk&)dé <
0

< 211001201, Y exp [-21k)°T] =

k=1
= 11801172;41, (93 (0. exp [-27°T]) = 1) := C(T) 180172y,
T
h<2) f sin? [wku(t)] exp [-2(xk)*(T - 7)| d,
k=1 0

where 3 is the Jacobi theta function.
Substituting these estimates into (13), we will obtain

T

Rr(u) < C(T) 190]132y,, + 205 ) | f sin® [ku(r)] exp | -2(xk)*(T - 7)] d.
k=1

Satisfying the approximate null-controllability criterion, we immediately de-

rive (11). O

6. Some heuristic trajectories

As it has been mentioned above, the exact solution to the infinite system (8)
is an open problem. Nevertheless, following to [26,27], it is possible to construct
particular solutions based on the physical interpretation of the problem. One
of the heuristic solutions appropriate to the control process under study is the
triangle wave

2 & 2
u(t) = — Z Ay arcsin [sin (—t + (,ok) . (14)
T =1 Wi

Here, K, Aj, wi and @i are parameters determined to satisfy (8) or (11), respec-
tively.
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Another heuristic trajectory is defined by the rectangular wave as follows:

u(t):iAk [9(r—t1k+%")—9(r—r1k—%")]. (15)
k=1

In this case, the control parameters are K, Ay, t1x and ;. At this, 71, and ty
define the sides of the rectangular wave. In order to ensure that u € U, it is
accepted 6(0) = 1/2.

Superposition of (14) and (15) can be considered as another heuristic trajec-
tory of the sources. Additional constraints on control parameters follow from the
restriction u € (0, 1). Particular heuristic controls are plotted in Fig. 1.

Triangle wave Rectangle wave
0.8 1.0 R
0.7 0.8
0.6 0.6
0.5
0.4
0.4
03 0.2 i
0.2 0.0
0 2 4 6 8 10 0 2 4 6 8 10
Superposed wave

1.0

0.8

0.6

0.4

0.2

0.0

0 2 4 6 8 10
Figure 1: Examples of triangle, rectangle and superposed waves
Note that all three types of controls are easily implementable for machines

regulating the laser motion. Other heuristic trajectories of the form of saw-tooth
wave or more smooth functions can be used as well.

7. Numerical analysis

In this section, several particular cases are studied numerically to show the
practical efficiency of the heuristic trajectories discussed in the previous section
especially for the approximate controllability analysis.
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7.1. Exact controllability

Since ®g € L?[0, 1], ®, decays as n increases. Therefore, it is appropriate to
consider (8) for some finite N. However, note that, in general, the consideration of
the truncated system will lead to the determination of controls providing merely
approximate controllability of the rod.

Let, for instance, ®g(x) = cos ((1 — 2x)/2) with ||®0||iz[0 0= 0.921. Then,

1 4n 1 .
———F—COS| =), niseven,

0, n is odd.

Heuristic considerations provide a physically reasonable solution of the form
of a single rectangle

u(t) = up[6(t) — 0t =T)],

where ug is an unknown constant. Substituting it into (8), leads to:

1- —(nn)?T
O, sin [rnug] exp[ o) ] 2n (1

)2 =—[1+(-1)"] 27 °°s 5) exp [—(ﬂ'l’l)zT] .

It becomes more apparent now that when n increases, both sides of the last
equality decay to zero. Apparently, ug = 1/2, corresponding to the case when the
laser heats the mid-point of the rod, makes the equality valid for odd values of n.
For even values of n = 2m, it reduces to

' 1 —exp [~ (22m)’T| 8m | ,
®, sin[7rm] ) = R — cos (5) exp [—(27rm) T]

or

1
—4’7182—’%_1 cos (5) exp [—(27rm)2T] =0

holding for all m only when T is infinite. Therefore, in this case, a lack of exact
controllability is encountered.

7.2. Approximate controllability

Numerical analysis shows that C decays very fast with increase of T'. Figure 2

shows that for T > 0.5, C(T) < 107*. Therefore, since ||®oll7,,,, < 1, (12) may

hold even for & ~ 10~*. For most of metals, the thermal conductivity, k > 1
[W/m K]. Therefore, the consideration is limited to the case ®, < 1.
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00 02 04 06 08 10 050 055 060 065 070 075
T T

Figure 2: Graph of C(T') against T

Figure 3 shows that the approximate controllability of the rod can be provided
by (14)for K =1, A=1,w = 0.05, ¢ = n/4, where

T
NGEDY f sin? [zku(7)] exp [-2(nk) (T - 7)] d.
k=1 0

This trajectory corresponds to the motion of the source starting from x = 0.5
point (mid-point of the rod) to x = 1 end and then back to x = O end, and
repeating the same motion till r = 1.

1.0 T O O RO

0.8 3
06 ‘S
= X
04 &2

U} .
02 1
0.0 0
00 02 04 06 08 10 00 02 04 06 08
1 T

Figure 3: Graph of u and corresponding expression of S(T') for (14)

The plot of S(T") shows that, when the Fourier number 7 increases, S increases
to ~ 4 - 102 and remains constant. Therefore, as soon as, e.g., O ~ 1073, the
rod is approximately null-controllable for any ®( and 7.
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Consider the case of (15). As it is shown in Fig. 4, the approximate control-
lability of the rod for £ ~ 10~ can be provided for any T > 6 by

3

lzk) ( tzk)]
A |0t - — | -0|r- - =
Z k[ ([ g + > t—1tig 5

k=1

u(t) =

with A; = =0.5, Ap = 0.75, A3 = =0.1,t11 = 1, 2t5; = 1.5, t12 = 3, 2ty = 3,
t13 = 8, 2ty = 2.

5
0.6
o6 4 ’
(=)
<04 =
S &3
Z, .
o | e
|
0.0
0 2 4 6 8 o 9 2 4 6 8 10
t T

Figure 4: Graph of u and corresponding expression of S(7") for (15)

8. Conclusions

Heuristic trajectories in the form of triangle, rectangle and their superposed
waves are derived in this paper to study the exact and approximate controllability
of a finite, sufficiently thin rod. The rod is heated by a source moving over its
surface and the control process is carried out by the trajectory of the source.
Applying the Green’s function approach, the solution of the exact controllability
problem is reduced to the solution of an infinite system of integral constraints
with respect to a single control function. For the approximate controllability, a
sufficient condition is derived. Analysis of particular cases shows the efficacy
of the heuristic trajectories especially for the approximate controllability of the
rod. It is also shown that a lack of exact controllability occurs for finite Fourier
numbers.

In our future works, we are going to generalize the developed solution for
2D heat equation for a membrane and for the case when elastic dissipation is
accepted. In the latter case, the elastic energy is coupled with the thermal energy,
leading to a coupled system of partial differential equations describing the heat
transfer in the solid.
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