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Analysis of selected aspects of a tank gassing-up
process on board liquefied petroleum gas carrier.
Part I

AGNIESZKA WIECZOREK∗

Gdynia Maritime University, Morska 81–87, 81-225 Gdynia, Poland

Abstract The paper is a thermodynamics analysis of the removal of
any inert gas from the tank using the vapors of any liquefied petroleum gas
cargo (called cargo tank gassing-up operation). For this purpose, a ther-
modynamic model was created which considers two boundary cases of this
process. The first is a ‘piston pushing’ of inert gas using liquefied petroleum
gas vapour. The second case is complete mixing of both gases and removal
the mixture from the tank to the atmosphere until desired concentration
or amount of liquefied petroleum gas cargo in the tank is reached. Calcula-
tions make it possible to determine the amount of a gas used to complete
the operation and its loss incurred as a result of total mixing of both gases.

Keywords: convective heat transfer; Reynolds number; nanofluid; single wall carbon
nanotube SWCNT; laminar flow

Nomenclature

cE – gas E concentration in tank at any moment of filling
coutE – gas E concentration in the tank
cpE – gas E specific heat at a constant pressure, J/kgK
cpinE – gas E introduced to the tank specific heat at a constant pressure
cv – specific heat at constant volume
cvA – gas A specific heat at constant volume, J/kgK,
cvE – specific heat at constant volume
C – any constant of mE function
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dmE – change of a gas E mass, kg
dminE – gas E introduced to the tank change, kg
dmm – change of a gas mass in tank, kg
dpz – change of tank pressure, Pa
dτ – time rate increase, s
dτA – change of time for gas A, s
dU – change of internal space energy, J/kg
dUE – change of internal energy of gas E, J/kg
finE – area cross section of a pipe introducing gas E to the tank, m2

foutm – area cross section of a pipe removing a gas mixture from the tank, m2

h – enthalpy, J/kg
hinE – enthalpy of a gas E introduced to the tank, J/kg
houtm – enthalpy of a gas mixture removing from the tank, J/kg
L̇ – work done flux, W
m – mass, kg
mA – gas A mass in the tank at any moment of filling, kg
mE – gas E mass in the tank at any moment of filling, kg
mEx – gas E mass introduced to the tank during stage I
minE – gas E mass introduced to the tank, kg
mlossE – gas E loss, kg
mtotE – total gas mass used to gassing-up process, kg
mz – both gas mass in the tank at any moment of filling, kg
ṁ – mass flow, kg/s
ṁinE – mass flow of gas E introduced to the tank, kg/s
ṁoutm – mass flow of gas removing from the tank, kg/s
Q̇ – heat flux supplied to the system, W
p – pressure, Pa
pA – gas A pressure, Pa
patm – atmospheric pressure, Pa
pE – gas E pressure, Pa
pinE – gas E pressure introduced to the tank, Pa
pz – tank pressure, Pa
RA – gas A individual constant, kJ/kg
RE – gas E individual constant, kJ/kg
Ri – individual gas constant, kJ/kg
T – temperature, K
TA – gas A temperature in the tank, K
TinE – gas E temperature introduced to the tank, K
Tz – tank temperature at any moment of filling, K
U – energy, J/kg
UA – gas A energy in tank, J
UE – gas E energy in tank, J
Uz – tank energy, J
vA – gas A specific volume, m3/kg
vinE – gas E introducing to the tank specific volume, m3/kg
V – volume, m3

Vz – tank volume, m3
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Greek symbols

κA – gas A adiabat exponent
κE – gas E adiabatic exponent
µ – ratio of the stream narrowing
ψ – value of a flow cross section function
τ – time, s
τ1 – time of the operation including pressure increase by the use of gas E, s

1 Introduction

Liquefied petroleum gas (LPG) gas carriers are used to transport lique-
fied gases. Depending on the temperature value and pressure at which in-
dividual cargo should be transported, gas carriers are divided into three
groups: fully refrigerated ships that carry cargo at ambient temperature,
semi-pressurised vessels and vessels carrying cargo at atmospheric pres-
sure, which allow transport of cargo with temperatures down to minus
104◦C (169 K), slightly below ethylene boiling point at atmospheric pres-
sure [5].

The most important loading operations are the aerating of tanks and
their inerting, which is preparation for the gassing-up process. Before carry-
ing out cargo operations, for specific loads, each tank must undergo a visual
inspection. The condition of the material is checked for possible presence of
corrosion or cracks in the bottom of the tank, cleanliness and correctness of
protection of all equipment elements in the tank. Also check that there is no
water on the bottom of the tank. When the visual inspection is completed,
tanks must be sealed and the inerting operation by the use of nitrogen or
carbon dioxide can be started [1].

Inverting is an operation to create an inert atmosphere in the tank and all
pipelines (without oxygen) to avoid creating an explosive mixture between
a cargo and the oxygen. This procedure is performed before each cargo is
loaded. The required oxygen level is achieved by flushing the tanks with
inert gas, such as nitrogen or carbon dioxide, which can be delivered from
the shore or generated on the ship, e.g., using the pressure swing adsorption
(PSA) installation. The compressor draws in and compresses air, which
after preliminary drying and cleaning passes through membrane modules
dividing the air into two parts, nitrogen and oxygen mixed with other gases.
Nitrogen thus obtained with a purity up to 99.9 vol% is introduced into
tanks during inerting of cargo tanks [9].
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None of the gases being an inert gas that can be used on ships, nitro-
gen or carbon dioxide, can be liquefied by the ship’s reliquefaction plant.
Therefore, it is necessary to remove an inert gas from the cargo tank. This
possibility is provided by the operation of gassing-up – introducing cargo
vapour to the tank removing inert gas at the same time, carried out at am-
bient temperature. Inappropriate inert gas removal causes an emergency
stop of the cargo compressors due to too high condensing pressure of a gas
mixture. In order to solve the problem, thermodynamics model of gassing-
up operation after inerting the tank was built [3, 8].

2 Theoretical computational model – tank
gassing-up by the use of cargo vapour

2.1 Outline of the model

The purpose of calculation model is to determine the optimal technical pa-
rameters at which gassing-up should be carried out, the amount of cargo
used in relation to various temperatures and pressures in the tank, cargo
loss of gassing-up, and thus, the elimination of additional cargo loss during
tank cooling caused by improper gassing-up process, as well as to deter-
mine the time the operation will be carried out. The model consists of two
stages. The first stage is to introduce the cargo vapours (gas E) into a
tank filled with inert gas (gas A). Gas A is under specified technical pa-
rameters, i.e. pressure and temperature. Gas E is introduced into the tank
with a defined mass flow until the desired pressure in the tank is reached.
The second stage is the removal of gas A from the tank (completely or up
to a certain concentration/a mass of gas E). Two cases of the second stage
were considered, i.e. ‘piston ejection’ of gas A using gas E and complete
mixing of both gases and removal the mixture from the tank until desired
concentration or mass of gas E in the tank is achieved (Fig. 1).

2.2 Filling the tank beneath the inert gas with cargo
vapour to the set pressure in the tank

Due to the fact that the analyzed system takes or releases the substance
outside, the tank is considered as an open system. In accordance with the
first law of thermodynamics, which states that the rate of internal energy
change of the system, ∆U , is equal to the sum of the rate of heat supplied,
Q̇, and the power in the system, L̇. The equation of the considered system
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Figure 1: Stages and assumptions of the gassing-up computational model, filling the tank
with gas E and removing gas A by ‘piston pushing’ and total mixing of both
gases.

taking into account the energy change in the function of time for open
system takes the following form [6,7]:

dU

dτ
=
∑

(ṁh)in −
∑

(ṁh)out + Q̇− L̇ . (1)

The isothermal model is taken into consideration. It assumes that in the
first stage, i.e., filling with gas E the tank under atmosphere of gas A to
the set pressure in the tank pz. The system does not release the substance
outside, and no work is carried out. According to the above, for built model,
formula (1) takes the form

dU

dτ
= ṁinEhinE . (2)

According to the law of mass conservation [9], the increase of the ethylene
mass in the tank, mE , in the function of time, τ , has the form [2]

dmE

dτ
= ṁinE . (3)
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Substituting formula (3) into formula (2) is given:

dUE

dτ
= dmE

dτ
hinE , (4)

dUE = dmEhinE . (5)

Because the product of a mass and internal energy for a molar quantity
is equal to the product of specific heat at a constant volume, mass and
temperature [7, 11]

mU = cvmT, (6)

and internal energy for molar quantity is the product of mass, m, and
internal energy, u, in general [10]

U = mu , (7)

then
U = cvmT, (8)

and after differentiating above equation, differential of total internal energy
yields [4]

dU = cvEd (minETinE) . (9)

For simplicity of calculations, gas A and gas E are considered as ideal gases.
To calculate the differential of internal energy, dU, we use the ideal gas law
(Clapeyron equation) [2]

pV = mRiT . (10)

Eq. (10) is substituted to Eq. (9), to give

minETinE = pinEVz

RE
, (11)

and finally dUE is received

dUE = cvEd

(
pinEVz

RE

)
= cvE

RE
d (pinEV ) . (12)

Consequently
dUE = cvE

RE
(dpinEVz + pinEdVz) . (13)

Because volume of the tanks, Vz, is constant and hence pEdVz = 0, than

dUE = cvE

RE
Vzdpz . (14)
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If the enthalpy of ethylene introduced into the tank is equal to

hinE = cpinETinE , (15)

then substituting Eq. (15) into Eq. (5) returns

UE = cpETinEdmE . (16)

Substituting above formula to Eq. (14) the following is received

cpETinEdmE = cvE

RE
Vzdpz . (17)

Using Dalton’s law, which says that the sum of partial pressures of gases
is equal to the total pressure of the gas mixture in the tank [13], i.e.,

pz = pE + pA , (18)

after transformation, the formula for the gas E partial pressure is given as

pE = pz − pA . (19)

Substituting the partial pressure of gas E, pE , into Eq. (17), the following
equation is obtained

cpETinEdminE = cvE

RE
Vzd (pz − pA) . (20)

According to the ideal gas law (10), the partial pressure of gas A is

pA = mARATA

Vz
. (21)

Equation (20) takes the form

cpETinEdminE = cvE

RE
Vzd

(
pz − mARATA

Vz

)
, (22)

and after transformation
cpE

cvE
TinEdminE = Vz

RE
d

(
pz − mARATA

Vz

)
. (23)

Since the κ coefficient is equal to the quotient of specific heat at constant
pressure cp to specific heat at constant volume, cv, [12], the κE coefficient
for ethylene is

cpE

cvE
= κE . (24)
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Equation (23) thus takes the form

κETinEdminE = Vz

RE
d

(
pz − mARATA

Vz

)
, (25)

and afer transformation

κETinEdminE = Vz

RE
dpz − mARA

RE
dTA . (26)

Flow rate, ṁ, can be calculated treating throttling in the pipeline as from
the nozzle flow equation. Because the model assumes flow through a con-
stant diameter pipeline, the flow through the de Laval nozzle was assumed
for simplification of calculations, according to the formula [7, 12]

ṁE = dmE

dτ
= µfinE

√
pinE

vinE
ψ . (27)

Because value ψ is given by the formula (26)

ψ =

√√√√√ 2κE

κE − 1

( pz

pinE

) 2
κ

−
(
pz

pinE

)κE+1
κE

 , (28)

the weight differential of ethylene in time is given by the formula

dmE

dτ
= µfinE

√
pinE

vinE

√√√√√ 2κE

κE − 1

( pz

pinE

) 2
κE −

(
pz

pinE

)κE+1
κE

 . (29)

The formula for the gas E mass increase in the tank is obtained from
Eq. (26) in the form

dmE = Vz

REκETinE
dpz − mARA

REκETinE
dTA . (30)

Substituting Eq. (30) to Eq. (29) returns the following

Vz

REκETinE

dpz

dτ
− mARA

REκETinE

dTA

dτ

= µfinE

√
pinE

vinE

√√√√√ 2κE

κE − 1

( pz

pinE

) 2
κE −

(
pz

pinE

)κE+1
κE

 . (31)
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To simplify calculations, the isothermal model was adopted, therefore

dTA

dτ
= 0 , (32)

Equation (31) takes the form

Vz

REκETinE

dpz

dτ

= µfinE

√
pinE

vinE

√√√√√ 2κE

κE − 1

( pz

pinE

) 2
κE −

(
pz

pinE

)κE+1
κE

 , (33)

dpz = REκETinE

Vz
µfinE

×
√
pinE

vinE

√√√√√ 2κE

κE − 1

( pz

pinE

) 2
κE −

(
pz

pinE

)κE+1
κE

dτ . (34)

Substituting the numerically integrated pressure values from Eq. (34) to
Eq. (29), the mass of gas E, minE , introduced into the tank is given relative
to time, according to the changing pressure in the tank, pz.

The percentage gas E concentration in the tank is calculated according to
the following formula, obtained by inserting the mass of gas E into Eq. (29):

cE = mE

mE +mA
100% . (35)

Gas A mass is calculated using the Clapeyron formula

mA = pzVz

RATz
. (36)

2.3 Removing gas A from the tank filled with gas A
and gas E

According to the model assumptions, the second stage of calculations con-
stitutes of removal of gas A from the tank until required concentration of
E gas in the tank is obtained. In this stage the tank is filling and at the
same time the mixture is removed from the tank. From the mass balance,
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the mass difference of the mixture, mz, in the tank at time τ , can be de-
termined, equal to the quotient of the mass flow rate of gas E introduced
into the tank ṁinE and the mass flow rate of the mixture removed from
the tank ṁoutm

dmm

dτ
= ṁinE − ṁoutm . (37)

According to the principle of energy conservation [6], the energy of an
isolated system does not change, despite changes taking place in its interior.
The energy balance for the system is written in the form

dUm

dτ
= ṁinEhinE − ṁoutmhoutm . (38)

From the transformation of Eq. (37) there can be determined the mass flow
rate

minE = dmm

dτ
+ ṁoutm , (39)

which is next substituted to the energy balance Eq. (38), to give

dUm

dτ
=
(
dmm

dτ
+ ṁoutm

)
hinE − ṁoutmhoutm . (40)

The internal energy of the mixture is referred to as [12]

U = cvTm . (41)

Total internal energy of the mixture in the tank is

Um = UE + UA . (42)

By developing the above formula the following is given

Um = mEcvETE +mAcvATA . (43)

To simplify the calculations, a model assuming a constant temperature in
the tank has been adopted, i.e., TE = TA = Tz with the constant pressure
in the tank pz = const. Differentiating the Eq. (43) by time

dUm

dτ
= d (mEcvETE)

dτ
+ d (mAcvATA)

dτ
. (44)

If the differential of a mass mixture in tank is equal to the sum of differen-
tials of ethylene mass, dmE , and nitrogen mass, dmA, in tank, i.e.

dmm = dmE + dmA , (45)
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after transforming formulas (40) and (44) the following equation is given

cvATz
dmA

dτ
+ cvETz

dmE

dτ
=

= dmE

dτ
hinE + dmA

dτ
hinE + ṁoutmhinE − ṁoutmhoutm , (46)

which after simplifications reads

(cvATz−hinE) dmA

dτ
+ (cvETz−hinE) dmE

dτ
= ṁoutm (hinE−houtm) . (47)

The calculation model considers two extreme cases of gas A removal from
cargo tank – ‘piston pushing’ of gas A, without cargo loss (gas E) and
complete mixing of both gases and removing the mixture until the set gas
E concentration in the tank, cE , is achieved.

2.4 ‘Piston pushing’ gas A by the use of gas E

The first case of removal of gas A from the tank is the ‘pushing’ of this gas
by the use of gas E which operates like a piston pushing out gas A from
the tank. For ‘piston pushing’ of gas A from the tank it is assumed that
ṁoutm = ṁoutA. Due to the fact that for ‘piston pushing’ of gas A there is
no cargo – gas E loss, then

dmoutE

dτ
= 0 , (48)

gas A flow introduced to the tank might be described by the formula

ṁinE = dmE

dτ
, (49)

and nitrogen mass flow removing from the tank

ṁoutA = dmA

dτ
. (50)

According to above assumptions, Eq. (47) takes the form

(cvATz − hinE) dmA

dτ
= ṁoutm (hinE − houtm) . (51)

By determining the nitrogen mass difference dmA from the above formula,
we obtain the equation for changing the mass of gas A in the tank

dmA = ṁoutm
hinE − houtm

cvAT − hinE
dτ . (52)
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According to the model assumptions, gas A is removed from the tank to
atmosphere. In addition, the amount of gas we introduce into the tank is
equal to what is removed from the tank, ṁin = ṁout (and hin = hout).
Using the formula for the flow rate through the de Laval nozzle [10], it is
possible to determine the increase of the amount of gas A in the tank, dmA,
in time τ .

For considered case of ‘piston pushing out’ of gas A from the tank, the
formula for gas outflow from the tank to the atmosphere ṁoutm is given in
the form

ṁoutm = µfoutm

√
pz

vm

√√√√ 2κm

κm − 1

[(
patm

pz

) 2
κm −

(
patm

pz

)κm+1
κm

]
. (53)

Substituting the above formula to Eq. (50), we obtain the equation for mass
of gas A in the tank

dmA = ṁoutm
hinE − houtm

cvAT − hinE
µfoutm

√
pz

vm

×

√√√√ 2κm

κm − 1

[(
patm

pz

) 2
κm −

(
patm

pz

)κm+1
κm

]
dτ . (54)

By determining foutm from the obtained equation, the cross sectional area
equation of a nozzle through which the gas flows is given

foutm = ṁoutm

µ

√
pz

vm

√√√√ 2κm

κm − 1

[(
patm

pz

) 2
κm −

(
patm

pz

)κm+1
κm

] . (55)

Because gas A is pushed out by gas on the principle of a piston, above
equation takes the form

foutA = ṁoutA

µ

√
pz

vA

√√√√√ 2κA

κA − 1

(patm

pz

) 2
κA −

(
patm

pz

)κA+1
κA


. (56)

Substituting obtained result into the equation for the increase of mass of
gas A in the tank dmA, assuming that ṁoutm = ṁoutA, the increase in
the amount of gas A in the tank and the time of this operation will be
determined.
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2.5 Removing gas A from the tank with complete mixing
of gas A and gas E

The second extreme case of gas removal from tank A is a complete mixing
of both gases and removal from the tank of the mixture until complete
removal of gas A or until the specified content of gas A in the mixture is
reached.

General equation of gas E increase in the tank dmE in time τ can be
determined as

dmE(τ)
dτ

= ṁinE − coutEṁoutm , (57)

while the concentration of gas E removed from the tank

coutE = mE(τ)
mm

. (58)

Due to the large number of unknowns, which are continuously changing
(depending on the concentration of both gases in the tank), the technical
parameters in Eq. (54), i.e., mass flow of the mixture flowing out of the
tank ṁoutm, enthalpy of this mixture houtm, its specific volume vm and the
coefficient κmchanging as a function of time τ to determine the amount
of gas E used for the gassing-up process and the time of carrying out this
operation for the case of complete mixing of both gases, the calculation
model has been significantly simplified. It is assumed, that the mass mixture
in the tank during the process mz is constant and is equal to mass of gas
in the tank after finishing introduction of gas E to gas A to the determined
pressure in tank (stage 0) mA

mz = pAVz

RATA
. (59)

After substituting the formulas (56) and (57) into Eq. (55), there is obtaine
the linear differential Eq. (62), where for the shortening of the notation we
marked A and B being equal, respectively, i.e.

A = ṁinE , (60)

B = ṁinE

mz
. (61)

Therefore
dṁ(τ)
dτ

+BṁE(τ) = A . (62)
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After transforming the above equation according to the scheme of solving
differential linear equations [12], we obtain the formula for the mass of
ethylene as a function of time

mE(τ) = e−Bt
∫
AeBt dτ = e−Bt

(
AeBt

B
+ C

)
= A

B
+ Ce−Bt , (63)

where C is any constant, for each real number C functionmE fulfil Eq. (62).
The calculation model has been extended by two cases.

2.5.1 Case I

It assumes, that only gas A is in the tank (the pressure in the tank was not
increased by introducing additional gas E, i.e. at the same time the valves
introducing gas E into the tank and removing the mixture of gas A and gas
E from the tank were opened). Therefore, for mE(0) = 0, the constant in
Eq. (63) is having a form

C = −A

B
. (64)

After substitution (64) to formula (62), mass of gas E in time τ is equal to

mE(τ) = A

B

(
1 − e−Bt

)
(65)

(and the above equation will be mathematically correct for a specific value
mE).

To simplify the calculations, the equation that has been developed as-
sumes performing calculations for a specific (desired) mass of gas E mE

in the tank after the gassing-up process is completed. After transforming
Eq. (65), it can be calculated the gassing-up time without tank pressure
increase at the beginning

τ = − 1
B

ln
(

1 −mE
B

A

)
. (66)

Knowing the time of gassing-up operation and the mass flow of gas E intro-
duced into the tank, it can be determined the total amount of gas E used
in this process mtotE and cargo loss mlossE respectively:

mtotE = ṁinEτ , (67)

mlossE = mtotE −mE . (68)
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2.5.2 Case II

It assumes that a specific amount of E, mEx, was introduced into the tank
first, which increased the pressure in the tank, then the atmosphere re-
moval valve was opened (the valves were opened, the mixture was removed
from the tank until a certain amount of gas E was received in the tank).
Therefore, for mE(0) = mEx, C from Eq. (62) is

C = mEx − A

B
, (69)

thus
mE(τ) = A

B
+
(
mEx − A

B

)
e−Bt, (70)

whereas
τ = 1

B
ln
(
A−mExB

A−mEB

)
. (71)

Taking into account the time during which the pressure in the tank was
increased, the formula will take the form

τ1 = 1
B

ln
(
A−mExB

A−mEB

)
+ mEx

ṁinE
. (72)

The total amount of gas E used in this process, mtotE , and cargo loss,
mlossE , can be calculated by formulas respectively:

mtotE = ṁinEτ +mEx , (73)

mlossE = mtotE −mE . (74)

3 Summary

Developed thermodynamic model makes it possible to determine the amount
of cargo used to gassing-up, its loss during the operation, concentration at
any moment of the process, according to temperature and pressure in the
cargo tank and a gas mass flow rate at the inlet and outlet of the tank for
both extreme cases of calculations, i.e. ‘piston pushing’ and total mixing
of inert gas and cargo vapor. Due to too many variables, it is necessary to
make appropriate assumptions in case of total mixing of both gases.

Received 17 March 2020
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