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1. INTRODUCTION
Fractional-order calculus has recently attracted significant at-
tention which is due to its usefulness in describing and solv-
ing the problems in multiple fields of science such as chaotic
systems, thermodynamics, biophysics and many other, see e.g.
[1, 2]. It can also be successfully applied in control engineer-
ing, where in many cases fractional calculus application al-
lows us to create more accurate models of real life processes
and helps with designing more accurate control procedures as
shown e.g. in [3]. One of the first approaches to fractional-order
control was an introduction of fractional-order PID controller
by Igor Podlubny [4]. The difference between regular PID and
fractional-order PID (FOPID) is that FOPID controller in ad-
dition to three standard tuning parameters Kp, Ki, Kd (which
correspond to proportional, integral and derivative gains) also
has two order parameters often marked as λ and µ . In this case
parameter λ is an order of integral/summation, while µ is an
order of derivative/difference term of PID controller. Having
regard to the above, standard PID controller can be considered
as a particular case of FOPID with both orders equal to 1. As
it was presented in many papers, the introduction of two addi-
tional tuning parameters in many cases (depending on the na-
ture of the control problem) may help to achieve more accu-
rate and robust control processes [3–11]. An excellent review
of fractional controllers is presented in [12]. The reason why
in the work we focus on digital control is that nowadays the
control of a system performance is mainly carried out with the
aid of micro-controllers and microprocessors which work in a
discrete time domain, see [13]. Additionally, many processes,
described by analog systems, can be successfully controlled by
digital systems.

The current paper focuses on a family of controllers which
can be considered as a generalization of fractional-order PID
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and is called fractional-variable-order PID (FVOPID). The con-
trollers of this type have constant orders of integral/summation
and derivative/difference terms replaced by two non-constant
order functions. It means that integral and derivative orders are
in this case changed during the control process and can de-
pend on e.g. time, or the current control error value as shown
in [14–16]. An introduction to FVOPID controllers theory can
be found in [17]. An example implementations of fractional-
variable-order PID controllers are described in [18, 19]. Al-
though the idea of FVOPID is not new and there are differ-
ent approaches to FVOPID control design described in sev-
eral papers, there are still no fully effective methods of tun-
ing or establishing the stability of fractional-variable-order sys-
tems.

In this paper we introduce the method of determining the
stability of closed loop system with a digital FVOPID con-
troller. Additionally, the implementation and tuning method of
FVOPID controller is presented. The paper is structured as
follows. At the beginning the theoretical basis of fractional-
variable-order Grünwald–Letnikov difference operator is intro-
duced together with stability analysis of fractional-variable-
order systems. Thereafter, the design details of FVOPID con-
trollers are described followed by simulation results obtained
by the implemented controllers. Additionally, the robustness of
optimal controller is determined by checking its responses for
the disturbed plant (modified value of the plant coefficients and
delay) in frequency domain. There are also presented figures
with Nyquist plots confirming stability of the closed loop sys-
tems.

2. PRELIMINARIES AND DESCRIPTIONS
2.1. Sampled-data systems
Computers used in control systems are connected to analog el-
ements of the system with signal converters. The output of the
computer is in this case processed by a digital-to-analog con-
verter. We assume a constant sampling period h > 0. Sampled
data (or a discrete signal), denoted in this work as x(kh), are
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data obtained for the system variables only at discrete inter-
vals. To obtain described sampled data a sampler device is used,
which is basically a switch that closes every h seconds for one
instant time. If the input of such a sampler is a contours signal
r(t), then a sampled value at the moment kh could be written as
r∗(t) = r(kh)δ (t − kh), where δ is the impulse function. In this
case digital-to-analog converter used in the system can be rep-
resented by a zero-order hold circuit. The zero-order hold takes
the value r(kh) and holds it constant for kh ≤ t < (k+1)h. The
transfer function, in Laplace transform, of the zero-order hold is

G0(s) =
1− e−sh

s
. (1)

For discrete-time signals we use Z -transform defined for the
reference continuous signal by

Z [r(t)](z) = Z [r∗(t)](z) =
∞

∑
k=0

r(kh)z−k. (2)

Let us consider a closed-loop, sampled-data control system
shown in Fig. 1. The transfer function of the system is de-
scribed as

Y (z)
R(z)

=
G(z)

1+G(z)
, (3)

where G(z) is the Z -transform of G(s) = G0(s)Gp(s) with
G0(s) being the zero-order hold and Gp(s) the process trans-
fer function. Then G(z) is described as

G(z) = Z
[
L −1 [G0(s)Gp(s)] (kh)

]
(z). (4)

Fig. 1. Closed loop system with zero-order hold and process blocks

When to the presented system we add a digital controller with
the Z -transfer function Gc(z), which is located between sum-
mation and zero-order hold G0(s) blocks, then the Z -transfer
function of the closed-loop system with the mentioned con-
troller is given by

Y (z)
R(z)

=
G(z)Gc(z)

1+G(z)Gc(z)
. (5)

Equation (5) describes in this case the Z -transfer function of
the closed loop control system.

2.2. The Grünwald-Letnikov fractional-variable-order
differences

In a digital fractional-variable-order PID controller we use the
Grünwald-Letnikov summation and backward difference to cal-
culate the output signal. Both operators: summation and differ-
ence use a sequence of values of oblivion function, which is
presented in the following definition.

Definition 1. [20] Let k, i ∈ Z and µ : hZ → R be an order
function. Then, an oblivion function is defined as

aµ(kh)(i) =




0, i < 0
1, i = 0

(−1)i µ(kh)(µ(kh)−1)···(µ(kh)−i+1)
i! , i > 0

. (6)

Note that
µ(kh)(µ(kh)−1) · · ·(µ(kh)− i+1)

i!
=

(
µ(kh)

i

)
.

Hence the sequence
(

aµ(kh)(i)
)

i∈N
can be rewritten as

aµ(kh)(i) = (−1)i
(µ(kh)

i

)
. Presented oblivion function can be

used to define the Grünwald-Letnikov difference operator as
described below.

Definition 2. [21] Let h> 0 and x : hZ→R be a bounded func-
tion. The Grünwald–Letnikov fractional-variable-order differ-
ence operator with step h > 0 of function x with an order func-
tion µ : hZ→ R is defined as a finite sum

∆µ(·)x(kh) =
k

∑
i=0

h−µ(ih)aµ(ih)(i)x(kh− ih)

=

[
1

hµ(0)
aµ(h)(1)

hµ(h) · · · aµ(kh)(kh)
hµ(kh)

]




x(kh)
x(kh−h)

· · ·
x(h)
x(0)



. (7)

For negative values of an order function µ(·) Definition 2
can be treated as a discrete-time version of fractional-variable-
order integration that is defined by (7) with the limit of the sam-
ple step h going to zero. For positive values of an order function
µ(·) it becomes a backward difference with memory. Addition-
ally in our calculations we assumed that µ(0) = µ(h).

Observe that having convolution operator we can write that

Z
[
∆µ(·)x

]
(z) = X(z)Aµ(z) , (8)

where X(z) := Z [x] (z) and

Aµ(z) :=
∞

∑
k=0

(−1)k
(

µ(kh)
k

)
z−kh−µ(kh). (9)

It is known that for the linear discrete-time system to be
stable, the closed loop poles must lie within the unit circle in
z-plane. Otherwise the linear system would be unstable.
Hence we are interested in the image of complex numbers
from the unit circle, i.e. complex numbers that belong to
{z ∈ C : |z|= 1}.

Let z = exp( jωh) and

Aµ(e jωh) = aµ(ω)+ jbµ(ω). (10)

Then,

aµ(ω) =
∞

∑
k=0

(−1)k
(

µ(kh)
k

)
cos(kωh)

hµ(kh)
(11)
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and

bµ(ω) =−
∞

∑
k=0

(−1)k
(

µ(kh)
k

)
sin(kωh)

hµ(kh)
. (12)

It is possible to use equations (8)–(12) only if all the series
are convergent.

3. A DIGITAL FRACTIONAL-VARIABLE-ORDER PID
CONTROLLER DESIGN AND STABILITY ANALYSIS

3.1. Discretisation of the plant and construction
of Nyquist contour

The methods of the stability analysis in discrete-time domain
are very much the same as for continuous-time systems [22].
One of the most popular is frequency domain criterion devel-
oped by H. Nyquist in 1932 which remains a fundamental ap-
proach to the investigation of the stability of linear control sys-
tems, see [23, 24]. The Nyquist criterion is a graphical tech-
nique which involves the creation of the Nyquist contour. Gen-
erated contour must encircle the entire unstable region of the
complex plane. tability is determined in this case by looking
at the number of encirclements of the point at (−1, 0). Equa-
tion q

(
e jωh

)
= 0 is one for which the Nyquist stability criterion

is derived and the Argument Variation Principle is used. Apart
from stability the Nyquist method can be utilized to analyze
the frequency characteristics, phase of the input signals and the
time-shift of the system. We follow the ideas given in [25] and
in the presented work we draw the Nyquist contour, the graph
of points (qx(ω), qy(ω)) of one ω , to confirm stability of the
closed loop systems with the designed controllers.

For our research we use a second-order plant with the delay.
Let us consider the general version of the mentioned plant with
the transfer function in a form of

G(s) = G(s)e−s , (13)

where G is a transfer function of some second-order plant.
Then, from [25] we have the following discretization formula:

H(z) = (1− z−1)Z

[
L −1

{
G(s)

s

}∣∣∣∣
t=kh

]
(z).

Then considering the delay in τ steps we receive

H(e jωh) = z−τ H(z)
∣∣
z=e jωh

= (cos(τωh)− j sin(τωh))H(e jωh). (14)

In our simulations we consider the control object described
by the following transfer function:

G(s) =
2e−s

(0.21s+1)(4s+1)
. (15)

The presented transfer function is a plant from the engine con-
trol system which is described in more details in [23]. More-
over, this is a model of second-order plus dead time process for
which we do not have oscillations. More details about the be-
havior of this class of objects under PID classical control one

can find in [26]. Equation (15) can be written in the following
general form:

G(s) =
A

s+a
e−s +

B
s+b

e−s (16)

with A = 0.539868588, a = 4.711074549, B = −A, b =
0.300830213. For our calculations we choose sampling step
h = 0.02. In this case the system delay of 1 [s] gives the num-
ber of steps τ = 50. The dicretization in Z -transform of the
presented plant function is given by

H(z) = z−τ




A
a
(1− e−ah)

z− e−ah +

B
b

(
1− e−bh

)

z− e−bh


 . (17)

3.2. FVOPID controller design and mathematical
description

A digital fractional- variable-order PID controller, which we
use in our simulations, can be described in a similar way as a
standard first-order PID. Let Kp, Ki, Kd be proportional, sum-
mation and difference gains and µi(·), µd(·) are summation and
difference order functions. In this case the controller output sig-
nal is generated according to the following equation:

u(kh) = Kpe(kh)+Ki∆µi(·)e(kh)+Kd∆µd(·)e(kh) . (18)

In equation (18), k is a number of sample, h > 0 is a sampling
step, e(kh) is an input and u(kh) is an output of the controller.

In the paper we discuss the situation, when the order func-
tions are variable along time; however we put constant values
for some intervals of time. Additionally, (as a second exam-
ple of FVOPID controller design) we are also analysing the
case when, in the final stage of the control the difference order
value is set as 1 and summation order value is assigned with
−1, which means that our FVOPID controller starts to act as a
regular first-order PID. Hence, we consider order functions in
the following general form:

µi(kh) =




α1, for kh < t1
α2, for t1 ≤ kh < t2
...
αn, for tn−1 ≤ kh < tn
−1, for kh ≥ tn

, (19)

µd(kh) =




β1, for kh < t1
β2, for t1 ≤ kh < t2
...
βn, for tn−1 ≤ kh < tn
1, for kh ≥ tn

, (20)

where n ∈N, 0 ≤ t1 < t2 < .. . tn−1 < tn. Moreover, values αi,βi
can be both positive and negative.

Since stability is related to the location of closed loop poles
in z-plane and the unit circle is the curve that divides the
z-plane into stable and unstable parts, we take into account
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in our simulations, can be described in a similar way as a stan-
dard first-order PID. Let Kp, Ki, Kd be proportional, summation 
and difference gains and µ i(⋅), µd(⋅) are summation and differ-
ence order functions. In this case the controller output signal is 
generated according to the following equation:
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z = exp( jωh) and check how the image of some points from
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We have similar expressions for the part of difference opera-
tor:
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Considering all the presented equations the Z -transform
of the described fractional-variable-order PID controller is
given by

Gc(z) =
U(z)
E(z)

= Kp +KiAµi(z)+KdAµd (z) , (27)

where E(z) = Z [e(kh)](z).
To draw the Nyquist contour for the presented controller,

which is the graph of points (qx(ω), qy(ω)) we have to per-
form the following calculations.

Let

q(e jωh) = 1+H(e jωh)Gc(e jωh) = qx(ωh)+ jqy(ωh) ,

then

qx(ω) = 1+ReH(e jωh)
[
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]

− ImH(e jωh)
[
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]
, (28)

qy(ω) = ReH(e jωh)
[
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]
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[
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]
, (29)

where aµi , bµi , aµd , bµd are described by equations (22), (23),
(25), (26).

3.3. FVOPID controller parameters searching process
For presented in this paper FVOPID controller design it is as-
sumed that the controller has four possible order values for
summation and four order values for difference gain which de-
pend on time. In this case the control process can be divided
into four phases which are represented by numbers 1-4, where
phase 1 can be considered as the initial phase and 4 as the final
phase of the control process. In every phase the controller has
different values of summation and difference orders which can
be marked respectively as:
• α1, β1 – integral and derivative order values for phase 1,
• α2, β2 – integral and derivative order values for phase 2,
• α3, β3 – integral and derivative order values for phase 3,
• α4, β4 – integral and derivative order values for phase 4.

In this work we use two variants of FVOPID tuning algorithm
which was also presented e.g. in [16]. In the first variant the
algorithm used to find FVOPID controller parameters can be
described by the following steps:
1. Finding parameters Kp, Ki and Kd of the first-order PID con-

troller using some selected method (could be e.g. Ziegler-
Nichols or any other tuning approach).

2. Using Nelder-Mead optimisation to find new parameters
Kp, Ki and Kd of first-order PID controller (as the starting
point for the optimisation Kp, Ki and Kd values calculated
in step 1 should be used).

3. Using Nelder-Mead optimisation to find fractional-order
PID (FOPID) controller parameters (as the starting point for
the optimisation Kp, Ki and Kd values calculated in step 2
should be used). In this step apart from Kp, Ki, Kd param-
eters, additionally the optimisation algorithm searches for
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optimal constant order values α (summation) and β (differ-
ence).

4. Using Nelder-Mead optimisation to find new parameters
Kp, Ki and Kd and order values α1 −α4, β1 − β4 of frac-
tional-variable-order PID controller (as the starting point for
the optimisation Kp, Ki, Kd , α , β values calculated in step
3 should be used).

The described algorithm as a starting point for FVOPID con-
troller parameters searching procedure takes the parameters of
previously found optimal FOPID controller. In other words first
it searches for FOPID controller parameters, which minimise
given error criteria and then use found optimal parameters as a
base for searching optimal FVOPID controller parameters. This
is the reason why we are referring to the algorithm as FOPID
based. What is worth noticing is that instead of Nelder-Mead
any other method of optimisation could be used including bio-
logically inspired algorithms like e.g.: particle swarm, genetic
algorithm, grey wolf optimisation and many others.

The second version of the algorithm is similar to FOPID
based algorithm. The difference is that FVOPID parameters are
searched starting from the parameters of optimal PID controller
instead of FOPID controller. Because of this feature the algo-
rithm is in this work referred as PID based. Note that by optimal
PID controller we understand the PID controller designed with
the Nelder-Mead optimisation to minimise given error criteria.
Furthermore, it is assumed that α4 is set to −1 (first-order sum-
mation) and β4 is set to 1 (first-order difference). The reason of
setting the order values to −1 and 1 for the final phase of the
control is to allow stability analysis of the system, which oth-
erwise cannot be evaluated. Additionally, setting the order of
integral gain to −1 (which makes it first-order integral) could
potentially help to prevent steady state error which is a com-
mon issue of FOPID controllers. The PID based algorithm can
be described by the following steps [16]:
1. Finding parameters Kp, Ki and Kd of the first-order PID con-

troller using some selected method (could be e.g. Ziegler-
Nichols or any other tuning approach).

2. Using Nelder-Mead optimisation to find new parameters
Kp, Ki and Kd of the first-order PID controller (as the start-
ing point for the optimisation Kp, Ki and Kd values calcu-
lated in step 1 should be used).

3. Using Nelder-Mead optimisation to find new parameters
Kp, Ki and Kd and order values α1 −α3, β1 − β3 of frac-
tional-variable-order PID controller (as the starting point
for the optimisation values Kp, Ki, Kd calculated in step 2
should be used).

The controllers presented in this work were designed to min-
imise the objective function given by:

OF = w1

N

∑
k=0

|e(kh)|kh2 +w2OS+w3|Ess|+w4ts , (30)

where e(kh) is a control error, OS is an overshoot, Ess is steady-
state error, ts is a settling time and N is a total number of steps.
Similar objective function was used for continuous-time con-
trollers e.g. in [27]. Symbols w1–w4 are weighting coefficients

whose values were set according to [27] as: w1 = 1, w2 = 0.02,
w3 = 1, w4 = 5.

The initial values of searched parameters for Nelder-Mead
optimisation were selected by MATLAB® pidtune function.
Obtained by the mentioned function initial PID parameters
(which will be referred to as initial PID controller) are: Kp =
1.06, Ki = 0.252, Kd = 0.172.

Step response of the closed loop system with initial PID
(tuned by pidtune function), optimal PID and FOPID con-
trollers (by optimal we mean controllers which minimise the
objective function OF) are shown in Fig. 2. Parameter values
found with the qualitative criteria which are: rise time, over-
shoot (OS), settling time (ts), steady-state error (Ess) and the
objective function value (OF value), are presented in Table 1.
What is worth noticing is that the rise time and the settling time
used in the objective function definition were calculated with
MATLAB® stepin f o function. In this case the rise time is de-
fined as time it takes for the response to rise from 10% to 90%
of steady-state response. By the settling time we define a time
it takes for the error to fall within 2% of the final system re-
sponse [28].

Fig. 2. Step response of the closed loop system with PID controllers

Table 1
Obtained constant order controllers results

Initial Optimal Optimal
PID PID FOPID

Kp 1.06 1.048256 1.018652
Ki 0.252 0.225139 0.277876
Kd 0.172 0.183689 0.468006
α −1 −1 −1.009685
β 1 1 0.685430
Rise time [s] 1.8261 1.9486 1.4869
OS [%] 6.0740 1.9989 1.8432
ts [s] 6.2440 3.7113 3.0932
Ess 0.000296 0.0070 −0.0144
OF value 34.363102 21.828096 18.290935

When it comes to FVOPID controller design we have to decide
how to set up the time intervals of controller’s orders, or in other
words determine the moments when order values are changed.
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1.06, Ki = 0.252, Kd = 0.172.

Step response of the closed loop system with initial PID
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When used in real life control systems, optimal time intervals
for every control phase should be individually selected for the
plant type, to optimise given control quality criteria. What is
worth mentioning is that when it comes to controller parame-
ters searching process another possibility, apart from searching
only for the values of orders, would be looking at the same for
both: the order values and the time intervals during which given
orders should be used. The separated aspect is also a selection
of the optimisation method which can provide satisfying solu-
tion for this kind of optimisation problem. Because this paper
mainly focuses on the stability criteria of variable order sys-
tems, the time intervals for control phases were selected arbi-
trarily and are based on initial (obtained before optimisation
process) step responses of the system with constant order con-
troller. In this case three different sets of the control phases
(three different order functions setup) were created and used
to design three different FVOPID controllers. Described sets of
the control phases are presented below:
• Order function I setup

– phase 1 for t < 1.4 [s],
– phase 2 for 1.4 [s]≤ t < 1.8 [s],
– phase 3 for 1.8 [s]≤ t < 2.2 [s],
– phase 4 for t ≥ 2.2 [s].

• Order function II setup
– phase 1 for t < 1.9 [s],
– phase 2 for 1.9 [s]≤ t < 2.8 [s],
– phase 3 for 2.8 [s]≤ t < 3.7 [s],
– phase 4 for t ≥ 3.7 [s].

• Order function III setup
– phase 1 for t < 3.0 [s],
– phase 2 for 3.0 [s]≤ t < 5.0 [s],
– phase 3 for 5.0 [s]≤ t < 7.0 [s],
– phase 4 for t ≥ 7.0 [s].

For order function I all the phases are located in the initial
stage of the control process, where the output signal of the
closed loop system is rising, but not yet reaching the set-point.
After that for time t = 2.2 [s] the controller orders are set to
their final values – α4, β4. In order function II all the phases
are longer and FVOPID controller orders change to their fi-
nal values for t = 3.7 [s], which corresponds to the time when
closed loop output signal is close to its highest/peak value. Or-
der function III contains the longest phases which means that
FVOPID controller orders are set with their final values after
t = 7 [s] from the beginning of the simulation. In this case the
orders are also changed after the process reaches the set-point
value.

When it comes to the implementation details of the FVOPIDs
presented in the paper, the output of the controllers was calcu-
lated strictly according to Definition 2. The moments of switch-
ing/changing the order values were determined by the simula-
tion time, which was calculated by multiplying the sampling
time by the current number of the input signal sample. In other
words during the simulation process the controller, based on
the current simulation time, was changing the order values in
accordance with the previously presented rules. What is impor-
tant to mention is that in real-life applications the order changes
should be triggered by some external events like e.g. changes in

the control error, or modified process setup. But as it was men-
tioned before in the presented work we are mainly focusing on
the stability of variable-order systems and this can be evaluated
when we represent orders as a function of time.

4. SIMULATION RESULTS
All the FVOPID controllers presented in this section were tuned
by a previously described algorithm which utilise Nelder-Mead
optimization method. As a result of the tuning process for every
controller the values of Kp, Ki, Kd , α1 −α4, β1 −β4 parameters
were obtained which were later used in the simulations whose
results are described in the following subsections.

4.1. Step response results comparison
All the simulations have been carried out for continuous time
plant described by equation (15) and discrete controllers with
the sampling time set to h = 0.02 [s]. Step response of designed
FOPID-based FVOPID controllers (the controllers designed
with FOPID-based algorithm) and reference optimal FOPID
controller (which was also a starting point for FVOPID param-
eters searching process) are presented in Fig. 3. Table 2 con-
tains values of designed controllers parameters, obtained step
response, rise time, overshoot, settling time, steady state error
and the value of minimised objective function. When it comes
to the naming convention FVOPID controllers with the previ-
ously presented order functions setup I, II and III were named
respectively as FVOPID I, FVOPID II and FVOPID III.

Table 2
FOPID based FVOPID controllers parameters

Optimal
FOPID

FVOPID I FVOPID II FVOPID III

Kp 1.018652 1.129751 1.055163 1.061935

Ki 0.277876 0.281097 0.309236 0.310343

Kd 0.468006 0.483578 0.637718 0.759846

α1 −1.009685 −0.248836 −1.043217 −1.230921

α2 −1.009685 −0.293109 −1.023013 −0.965040

α3 −1.009685 −1.945047 −1.082247 −1.011194

α4 −1.009685 −1.009975 −0.981024 −0.987937

β1 0.685430 0.705681 0.710755 0.698173

β2 0.685430 1.533361 0.924323 0.556207

β3 0.685430 −0.280578 0.350890 0.621507

β4 0.685430 1.054745 0.719598 0.704262

Rise time [s] 1.4869 1.2114 1.2643 1.1600

OS [%] 1.8432 1.9986 1.9795 1.9995

ts [s] 3.0932 2.6543 2.7330 2.5836

Ess −0.0144 −0.000121 0.000274 0.000051

OF value 18.290935 15.246906 15.674142 14.97931

Figure 4 presents step response of the designed PID-based
FVOPID controllers. The parameters and qualitative criteria of
the mentioned controllers can be found in Table 3.
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Ess −0.0144 −0.000121 0.000274 0.000051

OF value 18.290935 15.246906 15.674142 14.97931

Figure 4 presents step response of the designed PID-based
FVOPID controllers. The parameters and qualitative criteria of
the mentioned controllers can be found in Table 3.
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When used in real life control systems, optimal time intervals
for every control phase should be individually selected for the
plant type, to optimise given control quality criteria. What is
worth mentioning is that when it comes to controller parame-
ters searching process another possibility, apart from searching
only for the values of orders, would be looking at the same for
both: the order values and the time intervals during which given
orders should be used. The separated aspect is also a selection
of the optimisation method which can provide satisfying solu-
tion for this kind of optimisation problem. Because this paper
mainly focuses on the stability criteria of variable order sys-
tems, the time intervals for control phases were selected arbi-
trarily and are based on initial (obtained before optimisation
process) step responses of the system with constant order con-
troller. In this case three different sets of the control phases
(three different order functions setup) were created and used
to design three different FVOPID controllers. Described sets of
the control phases are presented below:
• Order function I setup

– phase 1 for t < 1.4 [s],
– phase 2 for 1.4 [s]≤ t < 1.8 [s],
– phase 3 for 1.8 [s]≤ t < 2.2 [s],
– phase 4 for t ≥ 2.2 [s].

• Order function II setup
– phase 1 for t < 1.9 [s],
– phase 2 for 1.9 [s]≤ t < 2.8 [s],
– phase 3 for 2.8 [s]≤ t < 3.7 [s],
– phase 4 for t ≥ 3.7 [s].

• Order function III setup
– phase 1 for t < 3.0 [s],
– phase 2 for 3.0 [s]≤ t < 5.0 [s],
– phase 3 for 5.0 [s]≤ t < 7.0 [s],
– phase 4 for t ≥ 7.0 [s].

For order function I all the phases are located in the initial
stage of the control process, where the output signal of the
closed loop system is rising, but not yet reaching the set-point.
After that for time t = 2.2 [s] the controller orders are set to
their final values – α4, β4. In order function II all the phases
are longer and FVOPID controller orders change to their fi-
nal values for t = 3.7 [s], which corresponds to the time when
closed loop output signal is close to its highest/peak value. Or-
der function III contains the longest phases which means that
FVOPID controller orders are set with their final values after
t = 7 [s] from the beginning of the simulation. In this case the
orders are also changed after the process reaches the set-point
value.

When it comes to the implementation details of the FVOPIDs
presented in the paper, the output of the controllers was calcu-
lated strictly according to Definition 2. The moments of switch-
ing/changing the order values were determined by the simula-
tion time, which was calculated by multiplying the sampling
time by the current number of the input signal sample. In other
words during the simulation process the controller, based on
the current simulation time, was changing the order values in
accordance with the previously presented rules. What is impor-
tant to mention is that in real-life applications the order changes
should be triggered by some external events like e.g. changes in

the control error, or modified process setup. But as it was men-
tioned before in the presented work we are mainly focusing on
the stability of variable-order systems and this can be evaluated
when we represent orders as a function of time.

4. SIMULATION RESULTS
All the FVOPID controllers presented in this section were tuned
by a previously described algorithm which utilise Nelder-Mead
optimization method. As a result of the tuning process for every
controller the values of Kp, Ki, Kd , α1 −α4, β1 −β4 parameters
were obtained which were later used in the simulations whose
results are described in the following subsections.

4.1. Step response results comparison
All the simulations have been carried out for continuous time
plant described by equation (15) and discrete controllers with
the sampling time set to h = 0.02 [s]. Step response of designed
FOPID-based FVOPID controllers (the controllers designed
with FOPID-based algorithm) and reference optimal FOPID
controller (which was also a starting point for FVOPID param-
eters searching process) are presented in Fig. 3. Table 2 con-
tains values of designed controllers parameters, obtained step
response, rise time, overshoot, settling time, steady state error
and the value of minimised objective function. When it comes
to the naming convention FVOPID controllers with the previ-
ously presented order functions setup I, II and III were named
respectively as FVOPID I, FVOPID II and FVOPID III.

Table 2
FOPID based FVOPID controllers parameters

Optimal
FOPID

FVOPID I FVOPID II FVOPID III

Kp 1.018652 1.129751 1.055163 1.061935

Ki 0.277876 0.281097 0.309236 0.310343

Kd 0.468006 0.483578 0.637718 0.759846

α1 −1.009685 −0.248836 −1.043217 −1.230921

α2 −1.009685 −0.293109 −1.023013 −0.965040

α3 −1.009685 −1.945047 −1.082247 −1.011194

α4 −1.009685 −1.009975 −0.981024 −0.987937

β1 0.685430 0.705681 0.710755 0.698173

β2 0.685430 1.533361 0.924323 0.556207

β3 0.685430 −0.280578 0.350890 0.621507

β4 0.685430 1.054745 0.719598 0.704262

Rise time [s] 1.4869 1.2114 1.2643 1.1600

OS [%] 1.8432 1.9986 1.9795 1.9995

ts [s] 3.0932 2.6543 2.7330 2.5836

Ess −0.0144 −0.000121 0.000274 0.000051

OF value 18.290935 15.246906 15.674142 14.97931

Figure 4 presents step response of the designed PID-based
FVOPID controllers. The parameters and qualitative criteria of
the mentioned controllers can be found in Table 3.
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(three different order functions setup) were created and used
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value.

When it comes to the implementation details of the FVOPIDs
presented in the paper, the output of the controllers was calcu-
lated strictly according to Definition 2. The moments of switch-
ing/changing the order values were determined by the simula-
tion time, which was calculated by multiplying the sampling
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tioned before in the presented work we are mainly focusing on
the stability of variable-order systems and this can be evaluated
when we represent orders as a function of time.
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All the FVOPID controllers presented in this section were tuned
by a previously described algorithm which utilise Nelder-Mead
optimization method. As a result of the tuning process for every
controller the values of Kp, Ki, Kd , α1 −α4, β1 −β4 parameters
were obtained which were later used in the simulations whose
results are described in the following subsections.

4.1. Step response results comparison
All the simulations have been carried out for continuous time
plant described by equation (15) and discrete controllers with
the sampling time set to h = 0.02 [s]. Step response of designed
FOPID-based FVOPID controllers (the controllers designed
with FOPID-based algorithm) and reference optimal FOPID
controller (which was also a starting point for FVOPID param-
eters searching process) are presented in Fig. 3. Table 2 con-
tains values of designed controllers parameters, obtained step
response, rise time, overshoot, settling time, steady state error
and the value of minimised objective function. When it comes
to the naming convention FVOPID controllers with the previ-
ously presented order functions setup I, II and III were named
respectively as FVOPID I, FVOPID II and FVOPID III.
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FOPID based FVOPID controllers parameters

Optimal
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FVOPID I FVOPID II FVOPID III
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β2 0.685430 1.533361 0.924323 0.556207
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ts [s] 3.0932 2.6543 2.7330 2.5836

Ess −0.0144 −0.000121 0.000274 0.000051

OF value 18.290935 15.246906 15.674142 14.97931

Figure 4 presents step response of the designed PID-based
FVOPID controllers. The parameters and qualitative criteria of
the mentioned controllers can be found in Table 3.
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Table 3
PID based FVOPID controllers parameters

Optimal
PID

FVOPID I FVOPID II FVOPID III

Kp 1.048256 1.206551 1.123921 1.097999

Ki 0.225139 0.271086 0.272832 0.225264

Kd 0.183689 0.281758 0.374317 0.175048

α1 −1 −0.811067 −0.580050 −0.938975

α2 −1 −0.747638 −1.392419 −1.031497

α3 −1 −0.481482 −0.912055 −1.029915

α4 −1 −1 −1 −1

β1 1 1.088148 0.749115 0.995860

β2 1 1.114045 0.189669 1.055026

β3 1 1.206448 0.926764 1.119200

β4 1 1 1 1

Rise time [s] 1.9486 1.6123 1.3802 1.8105

OS [%] 1.9989 1.9968 1.9995 1.9999

ts [s] 3.7113 3.1276 2.8917 3.4801

Ess 0.0070 −0.0060 0.000038 0.0186

OF value 21.971737 18.320159 16.459438 20.479537

As we can see in all the cases systems with fractional-
variable-order controllers obtained lower values of minimised
objective function in comparison to corresponding closed loop
systems with constant order control. It means that FOPID-
based FVOPID controllers gave better results than the optimal
FOPID, while PID-based FVOPID controllers achieve smaller
values of minimised objective function than the systems with
optimal first-order PID controller. What we can also observe
is that the systems with FVOPID controllers are characterised
by very low rise time at the same time with overshoot similar to
constant order controllers. Characteristics obtained by FVOPID
controllers highly depend on the approach to searching param-
eters. In general FVOPID controllers whose parameters were
searched taking as a starting point FOPID controller parameters
achieved lower values of minimised objective function (which
in this case also means lower values of overshoot, rise time and
settling time). On the other hand PID-based controllers whose
order values in the final phase of the control are set to −1 and
1 allow us to analyse mathematically the stability of the system
which is described in detail in the next subsection.

4.2. Robustness and stability analysis
The mathematical theory presented in the previous sections
facilitates stability analysis only for fractional-variable-order
controllers whose order values in the final phase of the con-
trol are set to −1/1 (first-order summation/difference). It means
that for the robustness and stability analysis we have to chose
one of the designed PID-based FVOPID controllers. The con-
troller which obtained the lowest values of minimised objective
function and whose stability is checked in the current section is
in this case FVOPID with Order Function II. The parameters of
the mentioned controller are presented in Table 4.

Table 4
PID-based FVOPID controller parameters with Order Function II

Parameter
name

Parameter
value

Simulation
time

Kp 1.123921 All

Ki 0.272832 All

Kd 0.374317 All

α1 −0.580050 t < 1.9 [s]

α2 −1.392419 1.9 [s]≤ t < 2.8 [s]

α3 −0.912055 2.8 [s]≤ t < 3.7 [s]

α4 −1 t ≥ 3.7 [s]

β1 0.749115 t < 1.9 [s]

β2 0.189669 1.9 [s]≤ t < 2.8 [s]

β3 0.926764 2.8 [s]≤ t < 3. 7[s]

β4 1 t ≥ 3.7 [s]

The purpose of robustness analysis is to ensure stability and
high quality of the step response in the case of changed param-
eters values of control object or some disturbances occurrence.
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As we can see in all the cases systems with fractional-
variable-order controllers obtained lower values of minimised
objective function in comparison to corresponding closed loop
systems with constant order control. It means that FOPID-
based FVOPID controllers gave better results than the optimal
FOPID, while PID-based FVOPID controllers achieve smaller
values of minimised objective function than the systems with
optimal first-order PID controller. What we can also observe
is that the systems with FVOPID controllers are characterised
by very low rise time at the same time with overshoot similar to
constant order controllers. Characteristics obtained by FVOPID
controllers highly depend on the approach to searching param-
eters. In general FVOPID controllers whose parameters were
searched taking as a starting point FOPID controller parameters
achieved lower values of minimised objective function (which
in this case also means lower values of overshoot, rise time and
settling time). On the other hand PID-based controllers whose
order values in the final phase of the control are set to −1 and
1 allow us to analyse mathematically the stability of the system
which is described in detail in the next subsection.

4.2. Robustness and stability analysis
The mathematical theory presented in the previous sections
facilitates stability analysis only for fractional-variable-order
controllers whose order values in the final phase of the con-
trol are set to −1/1 (first-order summation/difference). It means
that for the robustness and stability analysis we have to chose
one of the designed PID-based FVOPID controllers. The con-
troller which obtained the lowest values of minimised objective
function and whose stability is checked in the current section is
in this case FVOPID with Order Function II. The parameters of
the mentioned controller are presented in Table 4.

Table 4
PID-based FVOPID controller parameters with Order Function II

Parameter
name

Parameter
value

Simulation
time

Kp 1.123921 All

Ki 0.272832 All

Kd 0.374317 All

α1 −0.580050 t < 1.9 [s]

α2 −1.392419 1.9 [s]≤ t < 2.8 [s]

α3 −0.912055 2.8 [s]≤ t < 3.7 [s]

α4 −1 t ≥ 3.7 [s]

β1 0.749115 t < 1.9 [s]

β2 0.189669 1.9 [s]≤ t < 2.8 [s]

β3 0.926764 2.8 [s]≤ t < 3. 7[s]

β4 1 t ≥ 3.7 [s]

The purpose of robustness analysis is to ensure stability and
high quality of the step response in the case of changed param-
eters values of control object or some disturbances occurrence.
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based FVOPID controllers gave better results than the optimal
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order values in the final phase of the control are set to −1 and
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which is described in detail in the next subsection.
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The plant that we analyse is described by a second-order trans-
fer function which can be given by a general expression:

G(s) =
2e−sτ

as2 +bs+1
. (31)

The original (initial) plant parameters are τ = 1, a = 0.84 and
b = 4.21. Images 5, 7, 9 show the step response of the de-
signed FVOPID controller for modified plant parameters. Fig-
ure 5 presents the system step response for the plant object with
modified a parameter. In Figs. 7 and 9 we can see the system
response for modified b and τ (delay) parameters, respectively.
Presented figures show that the system with the designed con-
troller should remain stable even when the parameters of the
controlled process are slightly changed.

The method of stability analysis utilized in this work can
be easily applied even for the systems with delays or the sys-
tems described by non-rational transfer functions, which may
be problematic using the other methods. Stability is determined
by looking at the number of encirclements of the point (−1, 0).
The range of gains over which the system remains stable can be
determined by looking at crossings of the real axis. Figures 6,
8, 10 present Nyquist contours of the closed loop system with
designed FVOPID controller and with modified values of plant
parameters.

Fig. 5. Step response of closed loop system with PID-based FVOPID
controller for different values of a parameter

In Fig. 6 we see that the Nyquist contours are confirm-
ing that stability is preserved for modified plant a coefficient
where a ∈ {0.54, 0.84, 1.14}. Figure 8 presents the Nyquist
contours for modified b coefficient of the plant where b ∈
{3.71, 4.21, 4,71}. In Fig. 10 we see that the Nyquist con-
tours are confirming that stability is preserved when we slightly
change the value of delays: τ ∈ {0.8s, 1s, 1.2s}. We see from
Figs. 6, 8, 10 that our diagrams cross the real axis on the right
side of point (−1, 0) and do not encircle it. It means that con-
sidered closed loop systems are stable, see for example [29].

In the last stage of the research we have checked the sys-
tem behavior when a White Noise is added to the control
signal generated by the controller (control disturbance) or to
measured feedback signal (measurement noise). Power spectral
density (PSD) value of control disturbance was in this case set
to 0.0001, while for measurement noise PSD = 0.00001. The

Fig. 6. The Nyquist contour for stable closed loop system with various
a coefficients from the plant transform, a ∈ {0.54, 0.84, 1.14} with

coefficients of FVOPID controller from Table 4

Fig. 7. Step response of closed loop system with PID-based VFOPID
controller for different values of b parameter

Fig. 8. The Nyquist contour for stable closed loop system with various
b coefficients from the plant transform, b ∈ {3.71, 4.21, 4,71} with

coefficients of FVOPID controller from Table 4

way mentioned disturbance values were included in the closed
loop schema is presented in Fig. 11. Note that in the presented
simulations it is assumed that the Sensor block has a transfer
function equal to 1.

The results of the system behavior with described distur-
bances added to the closed loop system are presented in Fig. 12.

As we can see also in case of disturbed control and measure-
ment signals (with selected PSD values), obtained results of the
step responses show that the system persists stable.
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Fig. 9. Step response of closed loop system with PID-based VFOPID
controller for different values of τ (delay) parameter

Fig. 10. The Nyquist contour for stable closed loop system with differ-
ent delays τ ∈ {0.8s, 1s, 1.2s} with coefficients of FVOPID controller

from Table 4

Fig. 11. Closed loop control schema with added disturbances

Fig. 12. Step response of closed loop system with PID-based VFOPID
controller with added disturbances

5. CONCLUSIONS AND FUTURE WORKS
Closed loop systems with fractional-variable-order controllers
presented in the work obtained low values of minimised objec-
tive function and very short rise time in comparison to the sys-
tems with constant order controllers. What is more the stability
analysis of FVOPID controller with the order values converging
(in the final phase of the control) to −1 and 1 can be performed
with well known Nyquist criterion, which paves the way for fur-
ther research and mathematical analysis of this kind of systems.
As the future work we plan to extend the stability analysis to the
systems which use different definitions of Grünwald-Letnikov
backward difference. Additionally, we want to make it appli-
cable also for the controllers with the order functions which
depend not directly on time but also on the current controller
error value. Simultaneously with stability research, new opti-
mal methods of finding the values of FVOPID controller order
functions should be developed and evaluated.
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As we can see also in case of disturbed control and measure-
ment signals (with selected PSD values), obtained results of the 
step responses show that the system persists stable.

5.	 CONCLUSIONS AND FUTURE WORKS
Closed loop systems with fractional-variable-order control-
lers presented in the work obtained low values of minimised 
objective function and very short rise time in comparison to 
the systems with constant order controllers. What is more the 
stability analysis of FVOPID controller with the order values 
converging (in the final phase of the control) to –1 and 1 can be 
performed with well known Nyquist criterion, which paves the 
way for further research and mathematical analysis of this kind 
of systems. As the future work we plan to extend the stability 
analysis to the systems which use different definitions of Grün-
wald-Letnikov backward difference. Additionally, we want to 
make it applicable also for the controllers with the order func-
tions which depend not directly on time but also on the current 
controller error value. Simultaneously with stability research, 
new optimal methods of finding the values of FVOPID control-
ler order functions should be developed and evaluated.
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