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Abstract: A smart control based on neural networks for multicellular converters has been
developed and implemented. The approach is based on a behavioral description of the
different converter operating modes. Each operating mode represents a well-defined con-
figuration for which an operating zone satisfying given invariance conditions, depending
on the capacitors’ voltages and the load current of the converter, is assigned. A control
vector, whose components are the control signals to be applied to the converter switches is
generated for each mode. Therefore, generating the control signals becomes a classification
task of the different operating zones. For this purpose, a neural approach has been devel-
oped and implemented to control a 2-cell converter then extended to a 3-cell converter.
The developed approach has been compared to super-twisting sliding mode algorithm. The
obtained results demonstrate the approach effectiveness to provide an efficient and robust
control of the load current and ensure the balancing of the capacitors voltages.
Key words: multicellular converters, neural networks, smart control

1. Introduction

Power electronics have well-known important technological developments. This is carried
out thanks to the developments of power semiconductors and new energy conversion systems. To
assume the increase of power consumption, converters have to be controlled more efficiently and
increase their power. A solution to obtain both conditions is to use multilevel converters [1, 2].
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Serialmulticellular converters are the only solution among others that providemany degrees of
freedom like the possibility to distribute the voltage constraints among serial-connected switches
and improve the output waveforms [2–4]. On the other hand, the constraint of these converters
is the need for a large number of capacitors, in particular for a three-phase configuration [1–3].
Despite the wide use of multicellular converters in industry as well as in research, one of the
main limitations of these converters is their unregulated voltage and current [5]. To overcome
this problem and ensure an efficient control, various control techniques have been developed and
implemented.

The following is an overview of the well-known developed control techniques widely used in
the domain. We can quote and not limit to Pulse Width Modulation (PWM), Proportional Integral
(PI), Sliding Mode (SM), Hybrid and Petri Net (PN) control techniques.

In [6, 7], a high order SM controller of a mid-point multi-cellular converter is applied, while
in [8] the work has focused on the state observer of a serial multicellular converter. It uses the
principle of high order SM (Super Twisting) observers to force the system dynamic to converge
on the so-called sliding surface [9]. A direct control based on the SM technique for a multicellular
serial chopper and some solutions for direct control of the voltages across the flying capacitors,
in the presence of a fast variation of the input voltage and by reaching an optimal steady-state
trajectory defined by the PWM control technique is presented in [10]. In [11], a direct control
strategy is proposed for a three-phase eight-level flying capacitor inverter. It is shown that the
control strategy is simpler than other control algorithms proposed in the literature, like for example
PWM control, and leads to less expensive hardware implementations. Moreover, its stability is
proven by means of Lyapunov’s theory. This approach has been compared to the conventional
PWM. In [12], hybrid sliding mode control of a multicellular converter is treated. The basic idea
used in this paper is to consider the interconnected systems that represent the hybrid model and
generate commutation surfaces, based on a Lyapunov function to satisfy asymptotic stability.
In [13], two control strategies are proposed for multicellular converters. The first one is the
proportional integral control applied after feedback linearization of the studied converter model.
The second one is the SM control characterized by its efficiency for nonlinear systems. In [14],
two control strategies are proposed, the first is the SM control and the second is the PN control,
and a comparison between them is carried out. In [15,16], the proposed introduces the use of two
PNs to carry out the control action. The first PN generates the needed voltage level to ensure the
output reference current tracking, while the second PN solves the problem of capacitor voltage
balancing, using switching state redundancies.

In this paper, we propose and develop a novel approach based on the Artificial Neural
Networks (ANNs) for multicellular converters control. In contrary to the hybrid and Petri Nets
approaches, which rely on the transition conditions between operating modes, this approach relies
on the invariance conditions for each operating mode of the converter. The approach consists in
classifying the different operating modes associated with their corresponding control signals by
using ANNs. The rest of the paper is organized as follows: In sections 2 and 3, the behavioral
modelling of serial multicellular converters and the different operatingmodes of a 2-cell converter
are presented respectively. In section 4, a neural approach to 2-cell converter control has been
developed and implemented. Then after, an extension to a 3-cell converter has taken place in
section 5. Section 6, presents a comparative study between the obtained results by the neural
approach and those obtained by the second order SM algorithm (Super Twisting algorithm).
Finally, the conclusions drawn from this work are summarized in the conclusion section.
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2. Behavioural modelling of multicellular converters

The structure of multicellular converters is based on the serialization of switching cells
between which capacitor floating voltage sources are inserted. This structure can be adapted
to both configurations: a chopper or an inverter, with a capacitive midpoint, half bridge or full
bridge. The first advantage of this type of converters is the reduction of the voltage constraint on
the switches. Floating voltage sources impose on each cell a voltage that is equal to

E
p
(E is the

input voltage), while the current crossing all cells is identical and equal to the load current [1].
Fig. 1 shows the diagram of the N-level arm of a p-cells converter.

Fig. 1. p-cells serial converter structure

In this section, a behavioral description is adopted instead of using mathematical equations as
it is usually done. It consists in classifying the different operatingmodes of the converter according
to the floating voltages across the capacitors and the load current. Eachmode represents an infinite
set of the vectorsX = (VC1, VC2, I) because the current and the voltages are continuous quantities.
For each mode a control vector S = (s1, s2, . . . , sp), to force the converter to track their reference
values given by (1), is associated.

Xref = (VC1ref, VC2ref, Iref ) . (1)

For practical applications, the control vector has the role of keeping or bringing back the
converter as much as possible in the balancing zone defined by:

Xref ± ∆Xref = (VC1ref ± ∆VC1ref, VC2ref ± ∆VC2ref, Iref ± ∆Iref ) , (2)

where: VCi is the floating voltage across the capacitor Ci , VC1ref =
iE
P

is the reference voltage
of the voltage VCi , I is the load current, ref is the reference load current (desired value of I),
∆VC1ref is the allowable variation of VCi around VCiref , ∆Iref is the allowable variation value of I
around Iref .

When the condition |X − Xref | < ∆X is satisfied, it means that the converter is operating in
the balancing zone.

For reasons of simplicity, we give the abbreviated notations to the following electrical quan-
tities:

I−ref = Iref − ∆Iref , (3)

I+ref = Iref + ∆Iref , (4)
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V+Ciref = VCiref + ∆VCiref , (5)

V−Ciref = VCiref − ∆VCiref . (6)

where: V+
Ciref and V−

Ciref are, respectively, the maximal and the minimal allowed reference voltage
across the capacitor Ci I+ref and I−ref are, respectively, the maximal and the minimal allowed value
of the current flowing through the circuit.

Our development for synthesizing a neural control approach targets two classes of converters:
the first one is a 2-cell converter and the second one is a 3-cell converter.

Before starting, it is worth remembering that each of the cell switches works in a comple-
mentary way, i.e. when the upper switch is ‘ON’ the lower switch is ‘OFF’ and vice versa. The
control signal sk is equal to ‘1’ when the upper switch of the cell is conducting and ‘0’ when the
lower complementary switch of the cell is conducting.

3. Configuration of 2-cell converter

According to the principle of multicellular converters, four possible configurations or modes(
q0, q1, q2, q3

)
are possible for 2-cell converters, which are given by [16, 17]:

(s2, s1) = {(0, 0), (0, 1)(1, 0)(1, 1)}, as it is illustrated in Fig. 2(a), Fig. 2(b), Fig. 2(c) and
Fig. 2(d).

Mode q0 = (s2, s1) = (0, 0)
In this mode, no voltage source is applied to the load; we are in a free-wheel phase. The

floating capacitor voltage does not change, while the load current decreases exponentially. The
system remains in this mode as long as the current is not less than I−ref and the floating voltage
remains balanced, or if the current is greater than Imax (Fig. 2(a)).

Fig. 2(a). 2-cell converter in mode q0

Mode q1 = (s2, s1) = (0, 1)
The energy is provided by the floating source. The capacitor is discharged and its energy is

returned to the load. The system remains in this mode as long as the capacitor voltage does not



Vol. 70 (2021) Smart control based on neural networks for multicellular converters 535

decrease below V+
Cref and the current is between its minimal value Imin and its maximal value Imax

or if the converter is operating in the balancing zone (Fig. 2(b)).

Fig. 2(b). 2-cell converter in mode q1

Mode q2 = (s2, s1) = (1, 0)
In this mode, the capacitance takes on importance, and the energy is supplied by the source

E. The system remains in this mode as long as the capacitor voltage does not exceed V−
Cref and the

current is between Imin and Imax or if the converter is working in the balancing zone (Fig. 2(c)).

Fig. 2(c). 2-cell converter in the mode q2

Mode q3 = (s2, s1) = (1, 1)
In this mode, the energy is supplied by the source E. The load current increases and the

voltage across the capacitor remains constant. The system remains in this mode as long as the
current does not exceed I+ref and the capacitor voltage is between V−

Cref and V+
Cref or if the current

is less than Imin (Fig. 2(d)).
Noting that the floating source participates in the evolution of the system dynamics only in

the modes q1 and q2, i.e. (s2, s1) = {(0, 1), (1, 0)}. Thus, if these modes continue for the same
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Fig. 2(d). 2-cell converter in the mode q3

time with a constant charging current, then the average power transmitted by the floating source
over a switching period is zero. We note also that these two modes allow obtaining the additional
level

E
2
at the output voltage V0.

Fig. 3 illustrates graphically the invariance conditions, where each mode condition forms
a continuous space delimited by a correspondent voltage and current intervals, and for which the
balancing zone belongs to all modes [1].

Fig. 3. Operating mode zones in 2-cell converter

The analytical invariance conditions for each mode, i.e. the condition X (qi) for which the
converter remains in the mode qi are expressed by Equations (7), (8), (9) and (10) [1].
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We mentioned that |VC − VCref | < ∆V means V−
Cref < VC < V+

Cref and (|I − Iref | < ∆I means
I−ref < I < I+ref . Therefore, the invariance conditions are given as follows: (7) for the mode q0, (8)
for the mode q1 (9) for the mode q2 and (10) for the mode q3, as it is illustrated respectively in
Fig. 2(a), Fig. 2(b), Fig. 2(c) and Fig. 2(d).

X (q0) =
{
X ∈ R2 :

[
(|VC − VCref | < ∆V ) ∧ (I−ref < I < Imax)

]
∨ (I > Imax)

}
, (7)

X (q1) =



X ∈ R2 :
[
VC > V+

Cref ) ∧ (Imin < I < Imax)
]

∨ [( |VC − VCref | < ∆V ) ∧ ( |I − Iref | < ∆I)]



, (8)

X (q2) =



X ∈ R2 :
[
VC < V−

Cref ) ∧ (Imin < I < Imax)
]

∨ [( |VC − VCref | < ∆V ) ∧ ( |I − Iref | < ∆I)]



, (9)

X (q3) =
{
X ∈ R2 :

[
(|VC − VCref | < ∆V ) ∧ (Imin < I < I+ref )

]
∨ (I < Imin)

}
. (10)

4. Neural control approach

Fig. 4 is the global scheme of the neural controller for 2-cell converter constituted of:
– An input layer (2 inputs) for VC and I.
– Two hidden layers, with 6 neurones for each one.
– An output layer (two outputs) for s2 and s1.

Fig. 4. Global scheme of 2-cell neural converter controller

A sigmoid activation function has been used in the hidden layer and a linear activation function
has been used in the output layer. Since that the computed outputs (the net outputs) are never
exactly equal to ‘0’ or ’1’, two relays have been inserted to force the output to zero ‘0’ if it is
inferior to a lower threshold (set to 0.2) or to one ‘1’ if it is superior to a higher threshold (set to
0.8) as it is shown in Fig. 4.

4.1. Learning phase
The performance of an ANN depends heavily on what it has learned. Hence, in order to

generate vectors (VC, I) that present all possible cases that may be encountered during the
converter work; we have done a uniform sampling of the operating mode zones (more than
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900 vectors have been generated). The components of the vectors (VC, I) are normalized with
respect to VCref and Iref , respectively and associated with their corresponding outputs (s2, s1) to
form the training patterns. The vectors normalization allows one to use the neural controller for
different values of VCref and Iref . The size of training patterns is a compromise between the ANN
complexity and the desired precision. It is worth noting that for the cases where I and VC are not
bounded (I > Imax in the mode q0 and VC > V+

Cref in the mode q1), we have limited the surface
sampling to 2Imax for I and to 2VCref for VC , which is considered largely sufficient (see Fig. 5).

Fig. 5. Sample vectors {(VC, I)} for neural net training

It should also be pointed out, that the balancing zone is not considered by the training patterns
since it belongs to all the modes. Hence, if the converter slides to this zone, (s2, s1) remains
unchanged until its exit.

A supervised learning using the famous Back-Propagation Algorithm (BPA), with the follow-
ing parameters:

E = 1200 V, ∆V = 2%VCref, Iref = 80 A, ∆I = 2%Iref,

has been performed and a convergence precision of 10−12 has been reached. The difficulty met in
the learning phase lies in the input patterns choice, especially in the zone borders which prevent
the algorithm convergence. Once the convergence is reached, the network is ready to be used by
the application.
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4.2. Application phase
MATLAB allows converting the neural network to a Simulink block that will be inserted into

the global control diagram. The electrical diagram of the neural controller associated with a 2-cell
converter is illustrated in the appendix (see Fig. A1).

The application of a 2-cell chopper connected to RL load, with the following parameters:

C = 40 µF, R = 10 Ω , L = 0.5 mH,

has given excellent results, as they are shown in Fig. 6 and Fig. 7, either for the capacitors voltages
balancing or for the load current control.

(a) Evolution of the capacitor voltage VC (b) Zoom of the capacitor voltage VC

Fig. 6

(a) Evolution of the load current I (b) Zoom of the load current

Fig. 7

5. Extension to 3-cell converter

We consider a 3-cell converter, which connects in series three elementary cells. As the
switching orders of the cells are independent, one obtains (23 = 8) possible configurations, which
are illustrated by the following figures (Fig. 8(a) to Fig. 8(h)). At the output voltageV0, one obtains

four possible levels
(
0,

E
3
,
2E
3
, E

)
.
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Fig. 8. 3-cell converter modes

Now, the question that arises is how to elaborate the invariance conditions with 3 variables and
for each mode? Our idea is as follows: since the current flowing through all cells is the same, we
consider a 3-cell converter as a juxtaposition of 2-cell converters, where the middle cell is used by
both 2-cell converters and the voltage VC is replaced by VC1 for the first converter and by VC2 for
the second converter. Therefore, each 3-cell converter mode can be obtained by combining 2-cell
converter modes. The invariance conditions for a 3-cell converter is a logical ‘and’ between two
invariance conditions of 2-cell converters.

For an analytical writing, we adopt the following notation:
X1(qi) is the invariance condition in the mode qi for the first 2-cell converter,
X2(qi) is the invariance condition in the mode qi for the second 2-cell converter,
X (Ti) is the invariance condition in the mode Ti for the 3-cell converter.
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Therefore, we can explain the invariance conditions {X (Ti)} by the following set of equations
(11)–(18).

X (T0) = X1(q0) and X2(q0), (11)
X (T1) = X1(q0) and X2(q1), (12)
X (T2) = X1(q1) and X2(q2), (13)
X (T3) = X1(q1) and X2(q3), (14)
X (T4) = X1(q2) and X2(q0), (15)
X (T5) = X1(q2) and X2(q1), (16)
X (T6) = X1(q3) and X2(q2), (17)
X (T7) = X1(q3) and X2(q3). (18)

For example, Fig. 9 shows a 3-cell converter in the mode T5(s3 = 1; s2 = 0; s1 = 0) as
a combination of the mode q2(s3 = 1; s2 = 0) and the mode q1(s2 = 0; s1 = 1).

Fig. 9. T5 as combination of q2 and q1

The invariance condition for this mode given by (16) can be obtained by a logical ‘and’
between the invariance condition of the mode q2 for the first 2-cell converter and the invariance
condition of the mode q1 for the second 2-cell converter.

X1(q2) and X2(q1) are deduced directly from (8), (9) and given by (19a), (19b) as follows:

X1(q2) =



X ∈ R2 :
[(

VC2 < V−
C2ref

)
∧ (Imin < I < Imax)

]

∨ [( |VC2 − VC2ref | < ∆V ) ∧ (|I − Iref | < ∆I)]



, (19a)

X2(q1) =



X ∈ R2 :
[(

VC1 > V+
C1ref

)
∧ (Imin < I < Imax)

]

∨ [( |VC1 − VC1ref | < ∆V ) ∧ (|I − Iref | < ∆I)]



. (19b)

Based on these conditions,more than 27 000 input vectorswhose components are (VC1, VC2, I)
associated with their corresponding output vectors whose components are (s1, s2 and s3) have
been generated by a program separately. A neural network having the following structure:

– an input layer of 3 inputs for VC1, VC2 and I,
– two hidden layers of 10 neurones each,
– an output layer of three neurones for s1, s2 and s3,
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has been developed. Furthermore, the same convergence precision for the 2-cell converter has
been obtained using the following parameters:

E = 1200 V, V = 2%VCref, Iref = 80 A, ∆I = 2%Iref .

Now, the neural controller is ready to be inserted into the control scheme. The electrical
scheme of the neural controller associated with the 3-cell converter is illustrated in the appendix
(see Fig. A2 in the appendix).

For the following converter parameters: C1 = C2 = 40 µF and for different RL loads (resistive
loads and inductive loads), the obtained results for the capacitors voltage and for the load current
evolution are shown in Fig. 10 and Fig. 11.

5.1. Evolution of the capacitor voltages VC1 and VC2

In this section, we present the evolution of the voltages VC1 and VC2 for four different loads.
This is done by applying four different combinations (resistance–inductance), the values of which
are given as follows:

R = 10 Ω, L = 0.1 mH, R = 10 Ω, L = 1 mH, R = 1 Ω, L = 10 mH, R = 1 Ω, L = 100 mH.

In Fig. 10, the evolution of VC1 and VC2 is illustrated for the first 10 000 µs of the inverter
operating, which is the period that represents the critical phase; where the big change at the
floating capacitor voltages occurs. Therefore, the voltages VC1 and VC2 converge respectively to

(a) R = 10 Ω, L = 0.1 mH (b) R = 10 Ω, L = 1 mH

(c) R = 1 Ω, L = 10 mH (d) R = 1 Ω, L = 100 mH

Fig. 10. Evolution of the voltages VC1 and VC2



Vol. 70 (2021) Smart control based on neural networks for multicellular converters 543

their desired values
E
3

and
2E
3

and consequently, the capacitors voltage balancing is realized.
What is remarkable and concluded from the above figures is that the convergence time (settlement
time) increases each time the value of the inductance increases, i.e. the load becomes more and
more inductive.

5.2. Evolution of the load current I

In this section, we present the evolution of the load current for four different loads as we
have done for the floating voltages in the previous section: R = 10 Ω, L = 0.1 mH, R = 10 Ω,
L = 1 mH, R = 1 Ω, L = 10 mH, R = 1 Ω, L = 100 mH.

It is very clear that the load current converges to its reference Iref = 80 A after a transition
time, which varies depending on the load nature. Each time, the load becomes more inductive, the
transition time increases and the trajectory of the evolution of the load current becomes smoother
(the current ripples decrease) (Fig. 11).

(a) R = 10 Ω, L = 0.1 mH (b) R = 10 Ω, L = 1 mH

(c) R = 1 Ω, L = 10 mH (d) R = 1 Ω, L = 100 mH

Fig. 11. Evolution of the load current I

5.3. Control sequences

Fig. 12(a) shows the transition between modes during the time range [0 µs, 1000 µs] for the
3-cell converter connected to RL load (R = 1 Ω, L = 1 mH). In this period, a large number of
transitions between modes occurs with an irregular manner, on the contrary to the permanent
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regime in which the transitions between modes are regular. The neural controller generates
automatically the control sequence according to its inputs (I, VC1 and VC2).

For a better visibility of the transitions diagram, a zoom of two-time ranges [0 µs, 200 µs]
and [600 µs, 700 µs] has been provided (see Fig. 12(c) and Fig. 12(b)).

(a) Transitions between modes for 3-cell converter (R = 1 Ω, L = 1 mH)

(b) Zoom of the transitions in the time range [600 µs, 700 µs]

(c) Zoom of the transitions in the time range [0 µs, 200 µs]

Fig. 12



Vol. 70 (2021) Smart control based on neural networks for multicellular converters 545

In order to show the control sequence and to confirm its correspondence with the operating
modes of the converter, the evolution of s3, s2 and s1 during [0 µs, 200 µs] has been illustrated
in Fig. 12(d).

(d) Evolution of s1, s2 and s3 during [0 µs, 200 µs]

Fig. 12

6. Comparison with the sliding mode approach

To better show the performance of our developed approach (neural approach), a comparative
study with the Sliding Mode approach (the famous second order SM algorithm called Super
Twisting) is presented in this section. The study focuses on the evolution of the floating capacitors
voltages VC1 and VC2 and the load current, for different load values seen in section 5. The left
column (column a) presents the results related to the neural approach and the right column
(column b) presents the results related to the SM approach, as it is illustrated in Fig. 13 and
Fig. 14.

Fig. 13 shows that the balancing of the floating voltages is ensured by both approaches,
nevertheless it is a little faster and regular in the case of the SM approach. Fig. 14 shows that
the evolution of the load current obtained by the neural approach is very close and presents
similar performances to that obtained by the SM approach; which justifies the efficiency and the
correctness of the neural approach.

7. Conclusion

A smart control based on artificial neural networks for multicellular converters has been
developed and implemented. It has been shown that this approach constitutes a very efficient
tool for the control of multicellular converters, in terms of either accuracy or settlement time,
especially when doing good learning for the neural network. In addition to the very satisfactory
results obtained in our application, the controller can be used by other applications having other
reference values for the capacitors voltages and the load current; this requires only a simple
normalization of the capacitors voltages and the load current before being entered into the
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(a) 1 (b) 1

(a) 2 (b) 2

(a) 3 (b) 3

(a) 4 (b) 4

Fig. 13. Evolution ofVC1 andVC2 in the neural and in the SM approaches, column (a) – the neural approach;
column (b) – the SM approach. (a) 1 and (b) 1: R = 1 Ω, L = 0.1 mH; (a) 2 and (b) 2: R = 1 Ω, L = 1 mH;

(a) 3 and (b) 3: R = 1 Ω, L = 10 mH; (a) 4 and (b) 4: R = 1 Ω, L = 100 mH
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(a) 1 (b) 1

(a) 2 (b) 2

(a) 3 (b) 3

(a) 4 (b) 4

Fig. 14. Evolution of the load current I in the neural approach and in the SM approach, column (a) – the
neural approach; column (b) – the SM approach. (a) 1 and (b) 1: R = 1 Ω, L = 0.1 mH; (a) 2 and (b) 2:

R = 1 Ω, L = 1 mH; (a) 3 and (b) 3: R = 1 Ω, L = 10 mH; (a) 4 and (b) 4: R = 1 Ω, L = 100 mH
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neural controller. Since this approach is based on a behavioural description of the converter,
no mathematical equations development is required. Furthermore, the neural approach works
independently of the operating point of the converter, hence the control law is insensitive to the
changes in the operating point and the converter dynamics.

The difficulty was in generating the learning pattern vectors for a 3-cell converter that en-
compasses all cases which may be encountered during the converter operating. To overcome this
problem, a novel idea has been developed and implemented.

Appendix

The electrical schemes below illustrate the Simulink neural control modules connected to
the multi-cell converter (chopper in our case). For both cases, 2-cell and 3-cell converters, it is
worth noting that the converter structure is developed manually using Simulink/SimPower, while
the neural net modules (neural controllers) are generated automatically by the Matlab program
once the learning phase is achieved. Afterwards, each module is inserted into the corresponding
global scheme to ensure the converter control. The component named ‘convert’ in the scheme
is to convert the input to the data type and scaling of the output. We also point out that these
electrical schemes appear a little blurry since they have been inserted directly from the Simulink
environment.

Fig. A1. The electrical scheme of 2-cell converter connected to its neural controller
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Fig. A2. The electrical scheme of 3-cell converter connected to its neural controller
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