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Abstract. Developing novel methods, approaches and computational techniques is essential for solving efficiently more and more demanding
up-to-date engineering problems. Designing durable, light and eco-friendly structures starts at the conceptual stage, where new efficient design
and optimization tools need to be implemented. Nowadays, apart from the traditional gradient-based methods applied to optimal structural and
material design, innovative techniques based on versatile heuristic concepts, like for example Cellular Automata, are implemented. Cellular
Automata are built to represent mechanical systems where the special local update rules are implemented to mimic the performance of com-
plex systems. This paper presents a novel concept of flexible Cellular Automata rules and their implementation into topology optimization
process. Despite a few decades of development, topology optimization still remains one of the most important research fields within the area
of structural and material design. One can notice novel ideas and formulations as well as new fields of their implementation. What stimulates
that progress is that the researcher community continuously works on innovative and efficient topology optimization methods and algorithms.
The proposed algorithm combined with an efficient analysis system ANSYS offers a fast convergence of the topology generation process and

allows obtaining well-defined final topologies.
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1. INTRODUCTION

Simultaneously with the development of novel ideas and for-
mulations within the topology optimization area, the imple-
mentation of topology optimization algorithms into engineer-
ing practice can be observed. This practical aspect of topol-
ogy optimization becomes one of the most important issues
of contemporary design. It stimulates research progress within
groups working on efficient topology optimization algorithms.
As a result, apart from traditional gradient methods based on
the calculation of sensitivities of design variables applied to
mathematical models, e.g. [1-4], there have been various non-
gradient approaches proposed including efficient heuristic tech-
niques. From the wide range of optimal topologies generators,
one can point out ESO/BESO evolutionary structural optimiza-
tion, e.g. [5-7], genetic algorithms, e.g. [8, 9], other biologi-
cally inspired algorithms, e.g. [10-12], material cloud method,
e.g. [13], spline-based topology optimization, e.g. [14], level set
method, e.g. [15, 16], proportional topology optimization [17],
or moving morphable components approach, e.g. [18], among
other things.

Novel and efficient heuristic optimization techniques in-
spired by biological, physical, or chemical phenomena
(see [19-22]) are becoming increasingly popular within the re-
search community and nowadays they are becoming more of-
ten an alternative to traditional approaches. Three aspects are
raised here in favor of these techniques, namely: there is no
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need to calculate gradients; numerical implementation is rela-
tively easy; any finite element code of structural analysis can be
linked with such an algorithm.

Among techniques based on versatile heuristic concepts, one
can choose Cellular Automata. Since the late 1940s, when von
Neumann [23] and Ulam [24] proposed the concept of Cellular
Automata, this idea has been of interest to the researchers rep-
resenting various fields like social sciences, biology, physics,
transport, or engineering science. Cellular Automata are built
to represent the behavior of complicated systems in a rela-
tively easy way. Special local rules are implemented to mimic
the system performance. Hence, thanks to updating local rules
in sequence, local physical quantities are updated respectively,
which allows us to describe the global behavior of the system.

Over the years, Cellular Automata have been found appro-
priate for the description of different physical phenomena like,
in particular, diffusion of gases [25], turbulence [26], or growth
of crystals [27]. One can also find applications of Cellular Au-
tomata in computer science where, for instance, image analy-
sis [28] and computer graphics can be pointed out.

Inou et al. proposed in [29, 30] to apply Cellular Automata
to structural design and it was probably for the first time when
topology optimization was discussed within the CA approach.
Slightly later, similar ideas were also described in [31-33].
Since then many papers have been published on that sub-
ject. The majority of them have appeared during the last two
decades, see [34-39], for example.

Tovar and co-workers have published a series of papers re-
garding the implementation of Cellular Automata rules in-
spired by the phenomenon of functional adaptation observed
in bones [40—42]. An efficient CA algorithm was also proposed
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and then developed by Bochenek and Tajs-Zieliniska [43—46].

This paper takes a step further and presents a novel con-
cept of flexible Cellular Automata rules and their implemen-
tation into structural topology optimization. The proposed CA
approach applied to topology optimization offers a fast con-
vergence of the topology generation process and allows us to
obtain final topologies without the so-called grey-scale and
checkerboard effects. Some plane and spatial structures have
been selected to illustrate the effectiveness of the implementa-
tion of the Flexible Cellular Automata (FCA) topology algo-
rithm for structure compliance optimization.

The outline of the paper is as follows. In Section 2, the topol-
ogy optimization problem is formulated. The concept of Cellu-
lar Automata with flexible rules is introduced in Section 3, to-
gether with a detailed description of a numerical algorithm built
based on this idea. Original introductory examples discussed in
Section 4 illustrate the implementation of flexible rules in the
topology generation process. Next, utilizing the results of the
preliminary analysis, the Cellular Automaton is combined with
ANSYS as an efficient structural analysis tool and in Sections 5
and 6, its application to selected, both plane and spatial, engi-
neering tasks is presented. To cover a broad area of implemen-
tations, the discussed tasks include irregular cell lattice adding
multiple load cases. Based on the results of the performed tests,
the paper ends with concluding remarks and with some recom-
mendations for the potential users.

2. OPTIMIZATION OF STRUCTURAL TOPOLOGY

Research within the topology optimization area has been al-
ready conducted for a few decades and the results have been
widely presented in engineering literature on structural and ma-
terial design. The papers by Bendsoe and Kikuchi [47] and
Bendsoe [1], dating back to the late 1990s, are broadly treated
as pioneering ones. Since then, numerous approaches to the
generation of optimal topology have been presented. Emerg-
ing concepts have been applied to various engineering and re-
search fields. Among them, one can find heat transfer problems,
e.g. [48], aeronautical industry, e.g. [49], through civil engi-
neering, e.g. [50], mechanical engineering, e.g. [51] and archi-
tecture, e.g. [47,48, 52, 53] to material science, e.g. [54, 55].
A broad discussion on various aspects of topology optimiza-
tion has been provided by many survey papers and books,
e.g. [56-59]. The spectrum of numerous applications of topol-
ogy optimization ranges from classic Michell trusses to so-
phisticated contemporary engineering structures. The remark-
able progress within the topology optimization field would not
be possible without versatile, innovative, and efficient meth-
ods and algorithms. The important issue nowadays becomes
the possibility of an easy combination of the developed algo-
rithms with structural analysis solvers built on the finite element
method.

The idea of performing topology optimization for a specified
design domain is to generate a material layout within this do-
main to meet the assumed optimality criteria. The optimized
structure gains a new shape and material layout since some
parts of the material are relocated and others are selectively re-

moved. It allows us to create, for example, a stiffer construction
with a minimal amount of material. Concept solutions gener-
ated this way can be an inspiration for further efforts of engi-
neers and designers.

Structural topology optimization problems are usually for-
mulated as compliance-based or stress-constrained approaches.
Various formulations are discussed for which the compliance or
weight are mainly chosen as objectives whereas volume frac-
tion often plays the role of a constraint. As for the stress-based
approaches, one can pay attention, for example, to the recent
papers [60-62].

The most commonly analyzed structural topology optimiza-
tion problem is to generate within a design domain material
layout which leads to a minimal value of the structure compli-
ance c, the equation (1). The finite element approach has been
applied. The available material volume fraction k is defined and
treated as the constraint imposed on structure volume V' in the
optimization process, the equation (2).

N
min C(d) :llTk u—= ngugknunv (1)
n=1
subjectto V(d) = xVp, 2
ku=f, 3
0 < dmin <d, <1. (4)

The quantity u, represents a displacement vector whereas k,
stands for the stiffness matrix. Both are defined for N elements.
The design variable d,,, which represents the material relative
density, is assigned to each element. In the equation (3), k is
the global stiffness matrix, u stands for the global displacement
vector and f represents a vector of forces. Singularity in the
equation (4) is avoided due to the simple bounds imposed on
the design variables with dpi, as a non-zero minimal value of
a relative density.

As to the material representation, SIMP, solid isotropic ma-
terial with penalization (e.g. [56]) in the form of a power law, is
adapted. For each finite element, the modulus of elasticity E, is
a function of the design variable d,,.

E, = d}/IZEO y Pn=dnpo- ©)
In the equation (5), p (typically p = 3) is responsible for the
penalization of intermediate densities, which facilitates control-
ling the design process and leads to obtaining black-and-white
resulting structures. The quantities Eqy and pg stand for the mod-
ulus of elasticity and material density, both defined for solid
material. The process of topology generation leads to a redistri-
bution of the material within the design domain, which results
in removing parts unnecessary from the design criteria point of
view.

3. FLEXIBLE RULES OF CELLULAR AUTOMATA
While performing the analysis and topology optimization, the
design domain is decomposed into a lattice of cells which are
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usually equivalent to finite elements. Cellular Automata allow
us to mimic physical systems performance by implementing
simple local rules, which govern local interactions between the
neighboring cells. Based on local information gathered within
neighboring cells, a complex problem can be replaced by a se-
quence of simple decisions. Identical rules are applied to all
cells simultaneously. The two schemes can be adapted to cell
states updating, i.e. the Gauss-Seidel update rule, where already
modified values obtained for cell neighbors in the current iter-
ation are taken into account or the Jacobi update scheme, for
which states of neighboring cells determined in the previous it-
eration are the basis for the updating process.

Because all cells have the same neighborhood, for the ones
situated at the boundary, the neighboring cells lay outside the
feasible domain. It is necessary from the topology optimization
point of view to specify and assign design variables values to
them. One can choose from periodic, reflecting, adiabatic, or
specified boundary conditions. The latter option is implemented
in this paper and to all cells lying outside the design domain
zero is assigned as the design variable value.

The original heuristic local update rule utilizing the Jacobi
update scheme has been proposed in [43], see the equations
(6), (7):

d?" =d,+ Ad,, 6)

where

Ad, =
" M+1

M
agl, + Y oy
=1

In the equation (7), the quantity m plays the role of admissi-
ble change of the design variable values. The multiplier ag al-
lows us to modify the value of the component associated with
a central cell, as compared to the components assigned to M
neighboring cells, usually ag = 1:

—Cy if ¢, <,
0y = . (8)
Cq if ¢, > c*.

In the equation (8), ¢, refers to the local compliance associated
with cell n, ¢* stands for a threshold value and Cy, is a constant
value assigned to each cell. Depending on the result of the se-
lection controlled by the equation (8) material is added to or
removed from the cell n.

It is worth noting that, alternatively, instead of threshold
compliance value the threshold number of cells can be consid-
ered. To do this, the cell compliances are sorted in ascending
order and consecutive indices are ascribed to the sorted cells. In
what follows ¢ can be replaced now by N and the equation (8)
can be rewritten in the form of the equation (9):

—Cq if n < N*,
oy = . ©))
Cq if n>N*.

In this paper, a modification of these rules is proposed. Namely,
to make local rules more flexible, instead of one threshold value
N*, two values N| and N, are introduced. The structural analysis
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is performed first and, based on the obtained results, the values
of local compliances are calculated for all cells/elements. Then,
compliances are sorted in ascending order, and those having the
lowest and the highest values are identified. Having finished
that, Ny, N, are selected and F (n) = —Cy if n < Ny and F (n) =
Cy if n > N, are assigned. As to the intermediate interval Ny
< n < Ny, it is proposed to introduce a special monotonically
increasing function representing element compliances and then
assign the values to the design elements, respectively:

—Cy if n< Ny,
F(n): f(n) if N <n<N;, (10)
Ca if n> N2 .
The update rule takes now the following form:
M m
Ad, = |agF (n) +k;F(k) M1’ (11)

where o, from the equation (9) has been here replaced by F (n).
In the proposed formulation, the CA algorithm performance is
influenced by the choice of f(n). Here, the function of n pre-
sented below has been adapted:

. tanh [[3 (1:]12_1331 - ;)} |
tanh (;;3)

The parameter 3 decides about the form of the f(n) function.
In what follows for 8 tending to zero, f(n) tends to a linear
function, whereas for large values of 8, f(n) tends to a step
function, see Fig. 1. One can observe that the first case refers
to the linear representation of sorted compliances as proposed
in [63], whereas the step function case denotes the original ver-
sion of the CA algorithm as presented in [43]. This paper fo-
cuses on the intermediate values of . Adjusting 3 values in-
fluences the algorithm performance ensuring the flexibility of
update rules.

fn) = 12)

F(n)

0 200 400 600 800

Fig. 1. Function F(n) for selected values of f3
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3.1. Implementation of irregular lattices

The proposed flexible CA rules can be easily adjusted to the
case when the lattice of cells is irregular. Such lattices are im-
plemented mostly when a design domain is highly irregular and
covering the domain with uniform, usually regular, cells may
be difficult or even impossible. The advantage of introducing an
unstructured cell layout can be visible also when the structure
geometry includes sharp edges or holes, which are the sources
of stress concentration. In such cases, the regions of stress in-
tensity should be covered with a fine mesh, whereas for the rest
of the structure regular mesh remains sufficient. The main ad-
vantage regarding the implementation of a non-uniform layout
of cells/mesh is that it allows us to obtain an accurate solu-
tion without increasing the number of cells necessary if one
wants to cover the whole structure with the fine mesh. From
the numerical point of view, it is important to underline that the
non-uniform layout of cells can be related to the finite element
mesh, although not necessarily. Along with the implementation
of irregular mesh, the local Cellular Automata rules have to be
reformulated taking into account the sizes of the neighboring
cells or the lengths of mutual boundaries. These aspects influ-
ence the relations between the central cell and its neighbors.
Considering the above, it is proposed to modify the rule update
according to the following:

A, U Av| m
Ad, = |agF (n) =2 F(k) == | —— 13
= |+ Y PO e 09
where
M
A=A+ ) Ar. (14)
k=1

In the equations (13)-(14), A, denotes the area of the n-th cell
whereas A stands for the area of the n-th cell neighborhood.

3.2. The numerical algorithm in use
The implementation of the local CA rules proposed above re-
quires a numerical algorithm to be developed. In what follows,
the FCA algorithm was built. A sequential approach was cho-
sen which means that the structural analysis performed for each
iteration is followed by the application of the local update rules.
Simultaneously, in each iteration, the volume constraint is ap-
plied for the updated design elements. Therefore, the generated
topology preserves a defined volume fraction of the solid ma-
terial that allows us to keep this fraction constant during the
optimization procedure. As to the neighborhood, either the von
Neumann type one (the neighboring cells share common edges
with the central cell) or the Moore type one (the neighboring
cells share common vertices with the central cell) was adopted.
The assumed change of the objective function value for sub-
sequent iterations was implemented as the stopping criterion,
but in general, it can be defined also as performing a selected
number of iterations.

The topology generation was performed using the in-house
code written in Matlab for introductory examples, whereas for
engineering problems an optimization module was linked to

a professional system ANSYS, which is responsible for per-
forming structural analyses.

To control the effectiveness of the proposed basic concept,
the implementation of the adaptive technique is suggested.

Therefore, the threshold values N; and N, can be adjusted
so that the width of the interval [N, N,;] can be modified dur-
ing the iteration process. The leading idea while working on the
strategy of adjusting [N, N,] interval is to find the preliminary
layout first (the exploration phase) and then to drive the solu-
tion to a distinct solid/void structure (the exploitation phase).
Then, one starts with a relatively wide initial interval [Ny, N>]
and successively reduces the interval width. It means that at the
beginning the Automaton searches the large design domain and
preliminarily outlines the structure layout by eliminating void
cells. As the iterative process continues, a temporary solution is
tuned. Tuning by subsequently reducing interval [N, N,] width
leads to eliminating the cells/elements of intermediate density,
the so-called grey ones, and finally leads to a distinct solid/void
structure. The abovementioned strategy of tightening the search
domain resembles the one which is known from the simulated
annealing process. The described strategy results in modifying
the shape of the F(n) function, which is illustrated in Fig. 2.

F(n)

0 200 400 600 800

m—N2=0.1 N |
—N2=0.3 N
——N2=05N|
——N2=07 N
——N2=09 N|

F(n)

0 200 400 600 800
n

1000

Fig. 2. Function F(n) implementation based on Ny, N, = 0.98 N
(above) or N, Ny = 0.02 N (below)

3.3. The algorithm performance in detail

In this section, the performance of the numerical algorithm
is discussed in detail. Two basic structures considered earlier
in [43] were chosen to illustrate the topology generation pro-
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cess. It allows us to link the discussion in this section to the
approach presented in [43].
The square structure shown in Fig. 3 is considered first.

Fig. 3. The initial structure with applied load and support
(basic structure 1

The mesh of 1600 (40 x 40) square elements was generated
to perform structural analysis and topology optimization for the
data: load P =100 N, a =4 m, the Young modulus E =20 GPa,
and the Poisson ratio v = 0.3. As reported in [43], the compli-
ance found for this structure for the volume fraction 0.5 equals
1.04-107° Nm.

Now, the approach proposed in the present paper is applied.
The strategy of F(n) implementation is as follows: one starts
with Ny = N -0.3 and then for it > 25 Ny = N -0.5, for it >
50 Ny = N-0.7 and for it > 75 Ny = N-0.9, where N is the
total number of elements. N, = N - 0.98 remains unchanged for
the whole iteration process. The Moore-type neighborhood is
applied.

The FCA algorithm found the final topology for § = 1.5, see
Table 1. In Fig. 4, the final topology obtained, together with the
iteration history in Fig. 5, are shown. The value of compliance
for the obtained result equals 1.0335-107° Nm.

The number of iterations which refers to 1% and (0.01%)
change of the objective function value for subsequent iterations

Table 1
The values of compliance [10~¢ Nm] obtained while implementing
the FCA algorithm for various values of 3

B 0.1 1.0 1.5 2.0
Compl. 1.0343 1.0370 1.0335 1.0339
Iter. 13 (35) 13 (38) 13 (38) 12 (38)

B 3.0 4.0 5.0 6.0
Compl. 1.0339 1.0356 1.0382 1.0427
Iter. 11 (39) 11 (39) 10 (39) 10 (37)

Bull. Pol. Acad. Sci. Tech. Sci. 69(5) 2021, e138813

Fig. 4. The final topology
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Fig. 5. Results: Compliance history

is given in the third row of Table 1. The final topology obtained
for B = 1.5 is presented in Fig. 4.

In Fig. 5, the history of 100 iterations is illustrated. A sharp
change in the objective function values is related to the imple-
mented strategy, namely the flexibility of update rule was acti-
vated, the interval [Ny, N,] was reduced, and this caused signif-
icant changes of the design variables values. It is worth empha-
sizing that this feature can be observed also for other examples
discussed in the subsequent sections of the paper.

The comparison of the solutions obtained for the selected val-
ues of B is presented in Fig. 6. As can be seen from this picture,
only slight differences between the topologies are observed.

Moreover, for comparison, the Ny = N, = N* strategy is im-
plemented: one starts with N* = N -0.3 and then for it > 25
N*=N-0.5, for it > 50 N* = N-0.7 and for it > 75 N* =
N -0.9, where N is the total number of elements. The compli-
ance for the obtained topology, presented in Fig. 7, is equal to
1.0411-10°° Nm.

In Fig. 8 the history of 100 iterations is illustrated.

The rectangular structure shown in Fig. 9 is discussed next.

The mesh of 3200 (80 x 40) square elements is generated
to perform structural analysis and topology optimization for
the data: load P = 100 N, a = 40 mm, the Young modulus
E =10 GPa, and the Poisson ratio v = 0.3. As reported in [43],
the compliance value, found for this structure for the volume
fraction 0.5, equals 14.04 Nmm.
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Fig. 6. The comparison of the solutions obtained for different values
of B: 0.1 (a), 1.5 (b), 5 (c)

Fig. 7. The final topology
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Fig. 8. Results: Compliance history

A, a

P

Fig. 9. The initial structure with applied loads and supports (basic
structure 2)

As for the strategy of F(n) implementation, one starts with
N; = N-0.02 and then for it > 15 Ny = N -0.5 and for it >
30 N; = N-0.55, where N is the total number of elements. N> =
N - 0.6 remains unchanged for the whole iteration process. The
Moore-type neighborhood was applied.

The FCA algorithm found the final topology for = 4, see
Table 2. In Fig. 10, the final topology obtained, together with
the iteration history in Fig. 11, are shown. The value of compli-
ance for the obtained result equals 13.930 Nmm.

Table 2
The values of compliance [Nmm] obtained while implementing the
FCA algorithm for various values of 3

B 0.1 1.0 2.0 3.0
Compl. 13.952 13.953 13.956 13.942
Iter. 15 (42) 15 (39) 14 (41) 13 (41)

B 4.0 5.0 6.0 7.0
Compl. 13.930 13.955 14.005 14.018
Iter. 12 (41) 11 (44) 10 (43) 10 (41)

Fig. 10. The final topology

The comparison of the solutions obtained for the selected
values of 3 is presented in Fig. 12. As can be seen from this
picture, only slight differences between the topologies are ob-
served.

For comparison, the Ny = N, = N* strategy was imple-
mented: one starts with N* = N-0.25 and then for it > 15N* =

Bull. Pol. Acad. Sci. Tech. Sci. 69(5) 2021, e138813
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1]
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(=3

5 L
20 +
15}
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0 20 40 60 80 100
Iteration

Fig. 11. Results: Compliance history

Fig. 12. The comparison of the solutions obtained for different values
of §:0.1 (a), 4 (b), 7 (c)

N-0.5 and for it > 30 N* =N -0.7, where N is the total num-
ber of elements. The compliance for the obtained topology, pre-
sented in Fig. 13, is equal to 14.021Nmm. In Fig. 14, the history
of 100 iterations is illustrated.

It can be seen from the presentation of this section that due to
the introduced flexibility of the update rules, the FCA algorithm
allows us to obtain the results which can outperform the ones
found in [43].

Bull. Pol. Acad. Sci. Tech. Sci. 69(5) 2021, 138813

Fig. 13. The final topology
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Fig. 14. Results: Compliance history

4. INTRODUCTORY EXAMPLES

To illustrate how the FCA algorithm works, a set of original
introductory examples was proposed and detailed calculations
were performed for them.

4.1. The bird-like test structure

The structure shown in Fig. 15 was selected as the first test
example. The mesh of 6300 elements was generated to per-
form structural analysis and topology optimization. For: load
P =50N, a =10 mm, the Young modulus £ = 10 GPa and
the Poisson ratio v = 0.3, the FCA algorithm found the final

P
< :

a a a a

Fig. 15. Results: The final topology (test structure 1)
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topology for B = 4. The Moore-type neighborhood was ap-
plied. In Fig. 16, the final topology obtained for the volume
fraction 0.3 (concerning the initial rectangle 120 x 90) or 0.51
(with initial voids neglected), together with the iteration history
in Fig. 17, are shown. The value of compliance for the obtained
result equals 220.91 Nmm. To facilitate comparison, the com-
pliances for various values of  are given in Table 3. The pro-
cess of topology generation is illustrated in Fig. 18.

Fig. 16. Results: Compliance history

1000
800f
600}

400}

Compliance

200}

of
0 10 20 30 40 50 60 70 80 90
Iteration

Fig. 17. Results: Compliance history (test structure 1)

100

Table 3
The values of compliance [Nmm] obtained while implementing the
FCA algorithm for various values of 3

B 0.1 1.0 2.0 3.0 4.0
Compl. | 22292 | 222.66 | 221.96 | 22120 | 220.91
Iter. | 18(56) | 18(55) | 18(48) | 18(49) | 17 (47)
B 5.0 6.0 7.0 80 | Ni=N,
Compl. | 221.57 | 222.58 | 224.13 | 22536 | 229.97
Iter. | 16(47) | 1548) | 14(51) | 13(47)

Tt s
e L
Nz

Fig. 18. An overview of the topology generation process. The middle
topologies for iterations 2 (a), 4 (b), 10 (c), 20 (d), 30 (e) and 100 (f),
respectively

The strategy of F(n) implementation is as follows: one starts
with Ny = N-0.02 and then for it > 25 N; = N -0.6 and for it >
50 N; = N-0.8, where N is the total number of elements. N, =
N -0.98 remains unchanged for the whole iteration process.

For comparison, the Nj = N, = N* strategy has been im-
plemented: one starts with N* = N -0.6 and then for ir > 10
N*=N-0.7,forit >20 N* =N-0.75, forit > 30 N* =N -0.8,
for it > 40 N* = N-0.85 and for it > 50 N* = N -0.9, where N
is the total number of elements.

4.2. The gripper-like test structure

The structure shown in Fig. 19 was proposed as test example
2. The value of applied load equals 50 N. The Young modu-
lus E = 10 GPa and the Poisson ratio v = 0.3 stand for the
material data. The volume fraction was selected as 0.35 (with
respect to the initial rectangle 100 x 100) or 0.365 (with initial
voids neglected), and parameter a = 20 mm. The regular mesh
of 9600 elements was implemented. The Moore-type neighbor-
hood was applied. The topology generation was performed and
the resulting structure is presented in Fig. 20, while in Fig. 21,
the history of 100 iterations is illustrated. For the final topol-
ogy, compliance equal to 26.84 Nmm was found. This result
was obtained for § = 2. To facilitate a comparison, the compli-
ances for selected values of 3 are given in Table 4. Moreover,
selected middle topologies and the final one obtained for the
gripper structure are shown in Fig. 22.

Bull. Pol. Acad. Sci. Tech. Sci. 69(5) 2021, e138813
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Fig. 19. An initial structure with applied loads and support

(test structure 2)

Fig. 20. Results: The final topology (test structure 2)
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Fig. 21. Results: Compliance history (test structure 2)
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100

a)

e) E f) E
Fig. 22. An overview of the topology generation process. The middle

topologies for iterations 2 (a), 4 (b), 10 (c), 20 (d), 30 (e) and 100 (f),
respectively

Table 4
The values of compliance [Nmm] obtained while implementing the
FCA algorithm for various values of

B 0.1 1.0 2.0 3.0 4.0
Compl. 26.92 26.88 26.84 26.94 27.04
Iter. 20 (44) | 20(51) | 20(45) | 20(46) 20 (43)

B 5.0 6.0 7.0 80 | =N,
Compl. | 27.07 | 2709 | 27.11 | 27.19 29.48
Iter. | 20(46) | 20 (47) | 20(45) | 19 (50)

The strategy of F(n) implementation is the same as for the
previous example.

The final topology obtained for the volume fraction 0.48
(with respect to the initial rectangle 100 x 100) or 0.50 (with
initial voids neglected), is presented Fig. 23. The value of com-
pliance for the obtained topology equals 21.063 Nmm. This re-
sult was obtained for § = 1.
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Fig. 23. Results: The final topology (test structure 2,
volume fraction 0.5)

This paper aims to introduce the original idea of the FCA
topology generator. The algorithm, which is based on flexi-
ble local rules, is the extension and generalization of formerly
presented concepts. To sum up the results of the topology
generation performed for the test structures, it is worth com-
paring them with the ones which can be found using other
approaches. The well-recognized algorithm presented by An-
dreassen et al. [3] was chosen for this purpose. The results are
shown in Table 5. It can be seen that the CA algorithm intro-
duced in this paper allows us to find the results which can be
better in terms of the objective function values.

Table 5
The algorithm effectiveness
Algorithm Structure No 1 Structure No 2
FCA 22091 26.84
Top88 [3] 220.40 27.59

5. PERFORMANCE IN 2D

To examine the effectiveness of the introduced concept of Cel-
lular Automata topology generator, a series of illustrative ex-
amples including engineering ones was selected to show the al-
gorithm performance. To show the versatility of the approach,
both regular and irregular cell lattices are considered.

The proposed topology generator is versatile and can be eas-
ily combined with any solver built on the finite element method.
Next, the optimization module was linked to the professional
system ANSYS, which is responsible for performing structural
analyses. It is worth noting that the proposed algorithm does
not require additional density filtering, the so-called grey el-
ements are eliminated and generated topologies are free from
the checkerboard effect.

Based on numerical tests performed, including these consid-
ered in Sections 3.3 and 4, the following unified strategy of

10

interval [Ny, N>] adjustment can be recommended: one starts
with Ny = N -0.02 and then for it > 25 Ny = N -0.5, where N
is the total number of cells/elements. N> = N -(0.98 remains un-
changed for the whole iteration process. The algorithm utilizes
the Moore type of neighborhood for the examples of this sec-
tion.

5.1. The mechanical part — an engineering example

The two-dimensional mechanical part presented in Fig. 24 was
chosen as an example of an engineering structure. The Young
modulus E of the employed linear, elastic, isotropic material
equals 207.4 GPa, the Poisson ratio v = 0.3. Within the struc-
ture, the non-optimized region is shown in Fig. 25 as the blue
area, whereas the design domain is presented as the red area.
The regular grid of 17865 finite elements is adapted with the
element edge length equal to 0.5 mm. As mentioned before, the
ANSYS software was used as a static analysis tool with a two-
dimensional 4-node element Plane42. The volume fraction was
selected as 0.5. The concentrated forces are equal to 2000 N
each and the distributed supports applied along the inner edge
of left holes are shown in Fig. 25. The compliance for the ini-
tial structure equals 105.09 Nm, whereas the one for the final
topology found for B = 4 is equal to 58.42 Nm. For compari-
son, Table 6 presents the values of final compliances obtained
for different values of 3. Figures 26 and 27 show he final topol-
ogy and the iterations history, respectively.

51,85

Fig. 24. The geometry of the structure

Fig. 25. Design domain, loads, and support
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Fig. 26. Results: The final topology of the mechanical part
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Fig. 27. Results: Compliance history for the mechanical part

Table 6
The values of compliance [Nm] obtained while implementing the FCA
algorithm for various values of 3

B 0.1 4.0 8.0
58.66 58.42 58.68

Compl.

5.2. The windmill structure — generation of topology
for irregular lattice

As the numerical example of the efficiency of the method for
the irregular lattice of finite elements, a two-dimensional wind-
mill structure under torsion was selected. The structure is sym-
metric with respect to the vertical and horizontal axes. Two con-
centrated forces with an equal value of 1 kN are applied at the
corners of the wings, two corners of the structure are supported
as shown in Fig. 28. The irregular mesh of 9558 elements was
applied, where the regions surrounding acting loads and inner
corners are covered with finer mesh. It is worth underlining that
to implement finer mesh for the whole structure, 50655 ele-
ments would be needed. The ANSYS software with a 4-node
element Plane42 was used for static analysis. The element edge
length for the coarse mesh was defined as 0.025 m, and then the
refinement at the selected key points was implemented with the
depth of the refinement equal to 3 and the minimal level of the
refinement. The material data for this example are the Young
modulus £ = 210 GPa and the Poisson ratio v = 0.3 (mate-
rial is linear, elastic, and isotropic). The volume fraction equals

Bull. Pol. Acad. Sci. Tech. Sci. 69(5) 2021, e138813

0.5. The compliance value for the initial structure is equal to
7.381-10~* Nm. The optimization was performed and the gen-
erated final topology is shown in Fig. 29, whereas the iterations
history is given in Fig. 30. The calculation of the compliance for
the solution obtained for 8 = 6 gives 5.053 10~* Nm. For com-
parison, Table 7 presents values of final compliances obtained
for different values of 3.

1000,0

1000,0

1000,0

1000,0

1000,0 1000,0

Fig. 28. The windmill structure: the structure dimensions,
design domain, applied loads, and support

Table 7
The values of compliance [10’4 Nm] obtained while implementing
the FCA algorithm for various values of

B 0.1 6.0 8.0
5.08 5.05 5.07

Compl.

It is worth pointing out that for the examples discussed in this
section the iterative process converged quickly and activation of
only one reduction of the interval [Ny, N;] (after 25 iterations)
was sufficient to obtain the solution. In general, the proposed
unified strategy of [Ny, N»] adjustment can include a further re-
duction of the interval, namely, for it > 50 Ny = N -0.7 and for
it>75N; =N-0.9.
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Fig. 29. Results: The final topology of the windmill structure

0.003f

0.002f

Compliance

0.001F
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Iteration

Fig. 30. Results: Compliance history for the windmill structure

6. PERFORMANCE IN 3D

In this section, a series of illustrative examples, regarding spa-
tial structures, both under single and multiple load cases, was
selected to present the effectiveness and the versatility of the
proposed algorithm performance.

The same unified strategy of adjusting [Ny, N;] interval, as
used in Section 5, was applied. The algorithm utilizes the von
Neumann type of neighborhood for the examples of this sec-
tion.

6.1. The cylindrical shell under torsion

As the first example of a spatial structure, a cylindrical shell
under torsion was selected. The thickness of the shell wall
is constant and equals 0.005 m, while the diameter is equal
to 0.8 m. Distributed loads of 100 N are applied at selected
nodes across the upper edge section, the shell is supported as
shown in Fig. 31. The material data are as follows: the Young
modulus £ = 210 GPa, the Poisson ratio v = 0.3 (the mate-
rial is linear, elastic, and isotropic). The supported nodes of
the bottom edge of the cylinder are fixed. The regular mesh

12

of 27720 three-dimensional 8-node elements (Solid45) was ap-
plied for a static analysis made by the ANSYS software (the
element edge length: 0.01 m). The results of the structural anal-
ysis for the initial structure give a value of compliance of
7.779 - 1073 Nm. The final compliance for the volume fraction
0.5 and for B = 0.1 equals 5.909 - 10~3 Nm. The final topology
and the compliance history are presented in Figs. 32 and 33,
respectively. Table 8 presents the values of final compliances

Fig. 31. Design domain, applied loads, and support

Fig. 32. Results: The final topology of the cylindrical shell

0.025¢
0.02}
0.015}

0.01f

Compliance

0.005}

0 10 20 30 40 50
Iteration

Fig. 33. Results: Compliance history for the cylindrical shell
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obtained for different values of . To make a comparison, the
original CA rule of [39] was implemented to the considered
structure. The resulting compliance obtained this way equals
6.323-1073 Nm.

Table 8
The values of compliance [10*3 Nm] obtained while implementing
the FCA algorithm for various values of 8

B 0.1 4.0 8.0
591 6.30 6.51

Compl.

6.2. The flange structure

The flange structure shown in Fig. 34 is considered. The
structure consists of 48326 three-dimensional 8-node (Solid45)
elements in mesh discretization (the element edge length:
0.002 m). The data for linear, elastic, isotropic material are:
E =210 GPa, v = 0.3 and volume fraction 0.5. The load of
60 kN is evenly distributed along the width of the central hole.
The type of the performed analysis for the ANSYS software
is static. Two cases are considered, i.e., one loading directed
downward and a two-load case with downward/upward load-
ing. The inner walls of smaller holes are fully supported, see
Fig. 35.

~~ R40,0

! 100

200,0

Fig. 34. The structure dimensions

R125,1 M

200,0

L300
40,0

provides the values of final compliances obtained for different
values of 3. The resulting values refer to 1/4 of the structure
due to the employed symmetry.

Fig. 36. Results: The final topology of the flange structure for the
single load case

Compliance

Iteration

Fig. 37. Results: Compliance history for the flange structure — the
single load case

Table 9
The values of compliance [Nm] obtained while implementing the FCA
algorithm for various values of 3

B

0.1

4.0

8.0

Compl.

1.74

1.73

1.73

Fig. 35. An initial structure with applied loads and support

The topology generation for the single load case was per-
formed first. Final compliance, obtained for § = 4, equals
1.734 Nm. The resulting topology together with the iteration
history is presented in Figs. 36 and 37, respectively. Table 9

Bull. Pol. Acad. Sci. Tech. Sci. 69(5) 2021, e138813

It is worth noting that it is possible to extend the FCA al-
gorithm to facilitate dealing with multiple load cases. The ap-
proach described in [3] can easily be adopted here. According
to [3], equilibrium equations are solved for all load cases and
the objective is defined as the sum of compliances referring to
each case.

To illustrate this approach, the structure shown in Fig. 3 is
revisited, and the second load, namely the vertical one acting at
the upper right corner and directed upward has been added, see
Fig. 38.

The topology generation has been performed for 150 x 150
element mesh using both the top88 algorithm [3] and the FCA
one. The resulting topologies obtained for the volume fraction
0.4 are presented in Fig. 39. As can be seen from these results,
the approach presented in [3] works also with the FCA algo-
rithm.
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VP

Fig. 38. The two-load case

Fig. 39. The final topologies for the two-load case: [3] — left, FCA —
right

The approach for the multiple-load case presented above is
now applied to the flange structure considered in this section.

The topology generation has been performed and the final
compliance obtained for § = 0.1 is equal to 1.918 Nm. Table 10
presents the values of the final compliances obtained for differ-
ent values of 3. The resulting topologies together with iteration
histories are presented in Figs. 40 and 41, respectively.

Fig. 40. Results: The final topology of the flange structure for the
two-load case

Moreover, to make a comparison, the original CA rule of [43]
was implemented to the above cases. The resulting compliances
obtained this way equal 1.781 Nm and 1.935 Nm, respectively.

14

Compliance

0 10 20 30 40 50
Iteration

Fig. 41. Results: Compliance history for the flange structure — the
two-load case

Table 10
The values of compliance [Nm] obtained while implementing the FCA
algorithm for various values of f3

B 0.1 4.0 8.0
1.92 1.93 1.95

Compl.

6.3. The hook structure

As the final example, a hook structure shown in Fig. 42 was
selected. The thickness of the plate is equal to 4 mm. Loads
of 10 kN are applied. The structure is supported along the inner
walls of the bottom plate as shown in Fig. 43. The hook example
was discretized with a regular mesh of 38459 three-dimensional
(Solid185) elements. For the design domain, the 8-node hexa-
hedral elements with the element edge length equal to 0.002 m
and for the hook base, the tetrahedral 4-node elements were de-
fined with the element edge length equal to 0.005 m. The Young
modulus £ = 210 GPa and the Poisson ratio v = 0.3 stand for
the data of the linear, elastic, and isotropic material. The results
of the structural analysis performed were applied. The result of
the structural analysis for the initial structure gives the value of
compliance of 46.880 Nm. The final compliance for the volume
fraction is 0.35 and for § = 8 is 24.350 Nm.

160
300,0 .

2914

180.0

40,0

180,0 il 1360 i

Fig. 42. The structure dimensions
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Fig. 43. Design domain, loads, and support

Table 11 presents the values of final compliances obtained
for different values of f3. The resulting values refer to 1/2 of the
structure due to the employed symmetry. In Figs. 44 and 45,
the resulting topology and iteration history are presented. The
implementation of the original CA rule of [43] to the considered
structure results in the compliance of 24.984 Nm.

Fig. 44. Results: The final topology

100

Compliance

0 10 20 30 40 50
Iteration

Fig. 45. Results: Compliance history

Bull. Pol. Acad. Sci. Tech. Sci. 69(5) 2021, e138813

Table 11
The values of compliance [Nm] obtained while implementing the FCA
algorithm for various values of 3

B 0.1
25.38

4.0
24.78

8.0
24.35

Compl.

7. ABOUT THE ALGORITHM PERFORMANCE

The versatility and usefulness of the proposed approach are
very important, especially from the engineering implementa-
tion point of view. Two points were considered: the strategy of
adjusting [N, N;] interval and the 8 value choice.

Based on numerical tests performed (Sections 3.3 and 4), the
strategy of adjusting [N}, N>] interval is recommended, namely:
one starts with Ny = N -0.02 and then for it > 25 Ny =N-0.5,
for it > 50 Ny =N-0.7 and for it > 75 Ny =N -0.9, where N is
the total number of elements. N, = N - 0.98 remains unchanged
for the whole iteration process. This unified strategy was ap-
plied to all engineering examples in Sections 5 and 6. It is worth
pointing out that for these examples the iteration process con-
verged quickly and only one reduction, after 25 iterations, of
the interval [Ny, N,] within the above strategy was activated.

Another question to be raised is the 8 value choice. Usu-
ally, test calculations must be performed for small, middle, and
large values to detect how they influence structure compliance.
This means the selection of the function f(n) between a linear
one for small 3, and close to step one for large  values, see
Fig. 1. In the paper, the interval [0.1, 8] was adopted for the
systematic 8 value selection. Based on the results of the tests
performed and considering that the differences in the compli-
ances obtained for the various f are not large, using an average
B = 4 value as the first/basic choice can be recommended. It
seems that for engineering computations this choice can also be
recommended. What is worth stressing, it usually offers a better
solution than the original CA algorithm [43]. Nevertheless, de-
pending on the problem considered by selecting the 8 value, the
solution can be further improved. Having obtained a solution
for the middle value (8 = 4), it is then additionally proposed to
choose B = 0.1 (small) and 3 = 8 (large) values.

Discussing the possible automation of the topology gener-
ation process, the concept of the switching procedure can be
implemented. In what follows, taking into account that the 8
choice is between small, middle, and large values, it is proposed
to consider all of them at each iteration step. The algorithm
finds a new solution for the three 3 values, namely, § = 0.1
(small), B = 4 (middle), and B = 8 (large), and then proceeds
to the next iteration with the solution for which the compliance
is the smallest one. This way the best solution can be found. To
illustrate this concept the topology generation was performed
for the example discussed in Section 5.1. The result is as fol-
lows, see Fig. 46.

The obtained topology is almost identical to the one pre-
sented in Fig. 26 and the compliance value equals 58.32 Nm
which is close to the best solution from Table 6. It seems that
the concept of the above-proposed switching technique, which
is the extension of the discussed FCA algorithm, can be the
subject of further research.
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Fig. 46. The final topology obtained using the switching technique

8. CONCLUDING REMARKS

The concept of the cellular automaton based on the flexi-
ble update rules and its application to the generation of the
stiffest topologies were discussed. The numerical tests of op-
timal topologies generation were performed for selected struc-
tures including both test examples and engineering structures.
Based on the results of the performed tests, one can conclude
that the proposed FCA approach allows us to obtain the final
structures effectively in 2D and 3D cases. It is possible to ob-
tain the results which have lower values of compliance as com-
pared with the results of formerly proposed CA approaches. It is
worth mentioning that one of the most important issues related
to the development of a topology algorithm is the possibility of
its easy implementation to solving engineering problems. The
proposed algorithm is versatile and can be easily combined with
any solver built on the finite element method. Since the com-
putational cost of numerical calculations is caused mostly by
the time spent on structural analyses, it is crucial to implement
a sufficiently efficient structural analysis tool. The response of
topological algorithm is almost immediate. Having this in mind,
in this paper the efficient structural analysis module of the pro-
fessional finite element system ANSYS is linked to the topol-
ogy generator. Some other features worth pointing out are: the
proposed algorithm does not require additional density filter-
ing, the so-called grey elements are eliminated and generated
topologies are free from the checkerboard effect.
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