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A new index for damage identification in beam structures
based on modal parameters

The structural damages can lead to structural failure if they are not identified at
early stages. Different methods for detecting and locating the damages in structures
have been always appealing to designers in the field. Due to direct relation between the
stiffness, natural frequency, and mode shapes in the structure, the modal parameters
could be used for the purpose of detecting and locating the damages in structures.
In the current study, a new damage indicator named “DLI” is proposed, using the
mode shapes and their derivatives. A finite element model of a beam is used, and
the numerical model is validated against experimental data. The proposed index
is investigated for two beams with different support conditions and the results are
compared with those of two well-known indices – MSEBI and CDF. To show the
capability and accuracy of the proposed index, the damages with low severity at
various locations of the structures containing the elements near the supports were
investigated. The results under noisy conditions are investigated by considering 3%
and 5% noise on modal data. The results show a high level of accuracy of the proposed
index for identifying the location of the damaged elements in beams.

1. Introduction

Maintenance of the structures to increase the structural performance and life-
time is of great importance in machine elements design industry. A great deal
of research studies has been conducted to identify and detect damage location
in structural systems. The engineering structures endure some unforeseen exter-
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nal loads during their lifetime; they are likely to be exposed to damages and
catastrophic failure. To this end, structural health monitoring (SHM) has been
an important field to study different methods for identification and localization
of the structural damages. These methods can be classified into i) time domain,
and ii) frequency domain approaches. The time-domain approach has been pro-
posed to detect the damages based on changes in displacement, accelerations,
or strains. The changes in natural frequency [1], mode shapes, power spectral
density [2], or mode shape curvatures [3–6] are used as parameters for iden-
tification of damages in frequency-domain approaches. Most well-known meth-
ods are based on frequency and modal data, which are relatively easy to mea-
sure in real structures. Because of direct relationship between modal parame-
ters (e.g., natural frequency and mode shape) and stiffness of the structures, any
changes in the stiffness lead to changes in the modal frequencies and shapes.
Fayyah et al. [7] proposed an index based on the combined effect of both nat-
ural frequencies and mode shapes when a change in stiffness of the structural
element occurs for detecting the damage severity in structural elements. Their
proposed index compared the factor of reduction in stiffness according to reduc-
tion in natural frequencies and the factor of reduction in stiffness according to
the change in mode shape. Tomaszewska and Szafrański [8] focused on appli-
cability of two modal identification techniques; peak picking based on correla-
tion analysis for ambient vibrations and eigensystem realization algorithm for-
mulated for free-decay vibrations investigation. The techniques were evaluated
on masonry tower and steel railway bridge. Hasni et al. [9] conducted an artifi-
cial intelligence approach for the detection of distortion- induced fatigue crack-
ing of steel bridge girders based on the data provided by self-powered wireless
sensors. In their study, the sensors had series of memory gates that cumula-
tively recorded the duration of the applied strain. They characterized the out-
put from the sensors by Gaussian cumulative density function. They concluded
that their models had acceptable detection performance, specifically for cracks
larger than 10 mm. Ciambella and Vestroni [10] studied the localization of stiff-
ness variation in damaged beams through modal curvatures by applying a per-
turbative solution of the Euler–Bernoulli equation. Donskoy and Liu [11] pro-
posed and investigated a baseline-free Vibro-Acoustic Modulation damage de-
tection approach that does not require the monitoring of relative Modulation
Index change. Farrar et al. [12] adopted a statistical approach in their process
of vibration- based damage detection and applied it to a large-scale laboratory
structure. They showed that changes in frequency would not yield any informa-
tion about the location of damage, though they detect the presence of damage.
Owolabi et al. [13] experimentally investigated damage detection in beams by
measuring changes in the first three natural frequencies and the corresponding
acceleration frequency response function. Fayyadh and Razak [14] proposed a
new damage index based on a combination of mode shape vector and its deriva-
tives. Efficiency of the index was examined by comparing it with COMAC for
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trivial damages. Behera and et al. [15] identified the location and intensity of
an inclined open edge crack in a cantilever beam using finite element method
validated by experimental measurement. Their proposed method was based on
measured frequencies and mode shapes of the beam. There has been another
study conducted by Karimi et al. [16] that focused on free vibration analysis of
damaged functionally graded beams based on the first-order shear deformation
theory.

In the present research study, a new damage index is proposed based on
mode shapes and their derivatives. One of the advantages of this new indicator is
its applicability on beams to locate single and multiple structural damages. The
numerical model was created based on finite element method which is programmed
in MATLAB. To validate the model, its results are compared with those of an
experimental test. The efficiency of the proposed index is examined in different
boundary conditions using various numerical examples and comparing the results
with those of some other indices. The paper is organized as follows: A summary of
governing equations are presented. Then, the proposed damage index is introduced.
In the next step, accuracy of the numerical modeling is validated through an
experimental model. After that, the application and efficiency of the proposed
index is evaluated using numerical examples. To demonstrate the accuracy of
the proposed index in locating damaged elements, the results of the index are
compared with those of some other indices. Finally, a summary of the results is
presented.

2. Theory of the problem

2.1. Governing equations

Generally, the linear free vibration equation of an undamped system is ex-
pressed as:

[M] { ẍ} + [K]{x} = 0 , (1)
where, [M] is the mass matrix, [K] is stiffness matrix, {x} is the displacement
vector, and { ẍ} is second derivative of the displacement vector. The solution of
the differential equation can be generally written as x = Aert , with r being a
complex number expressed as r = ±iw. Substituting x and its derivatives into the
above equation leads to ([k] − w2[M]){x} = 0. In this equation, w represents the
natural frequency. Eigenvalue and eigenvector matrix that are the natural frequen-
cies, w, and mode shapes, {ϕ}, respectively, are built by performing the eigenvalue
decomposition of this equation.

2.1.1. Beam element formulation

As shown above, the stiffness and mass matrices of a structure are used for
finding the modal data. The stiffness and mass matrices of the beam element in
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a finite element model, by considering the transverse displacement and rotation as
the two degrees of freedom (Fig. 1) in each node, are as follows [17]:

[k] =
EI
L3



12 6L −12 6L
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, (2)
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ρAL
420
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, (3)

where, E, I, L, and ρ are the modulus of elasticity, the moment of inertia, the
length, and the mass density of the beam, respectively.

It is noteworthy that, by “height”, the authors mean the “thickness”.

Fig. 1. Demonstration of the degrees of freedom for beam element
and positive sign convention based on FEM method

2.2. Proposed damage index

In this study, to detect the damages in the structure, a new index called Dam-
age Localization Index (DLI) based on mode shape and its derivatives has been
proposed as follows:

DLI(i) =

nm∑
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}
, (5)

where nm is the number of modes considered, n denotes the number of nodes,
ϕ′′h(i.n) and ϕ

′′
d(i.n) are mode shapes of the undamaged and damaged beams at n-th

mode in the i-th degree of freedom (dof ) respectively, and ϕ′′h(i.n) and ϕ
′′
d(i.n) are
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the curvature mode shapes of the undamaged and damaged beams at n-th mode in
i-th dof , respectively [18].

Curvature mode shape (ϕ′′i.n) would be obtained by using a central difference
approximation as follows:

ϕ′′i.n =
ϕi−1.n − 2ϕi.n + ϕi+1.n

h2 , (6)

where: ϕi.n – mode shape at n-th mode in i-th dof , ϕ′′i.n – curvature mode shape at
n-th mode in i-th dof , h – length of element.

For a better presentation of the proposed index values, theDLI is normalized in
each node of structure, considering the mean and standard deviation. Also, negative
values have been replaced with zero.

2.3. Validation of the numerical model

2.3.1. Beam

To verify the applied model, an undamaged cantilever beam which has been
examined by Behera et al. [15] is studied in this section. Length, width, and height
(i.e., thickness) of the beam are 800 mm, 60 mm, and 6 mm, respectively. The
modulus of elasticity, the material density, and Poisson’s ratio are 7 · 1010 N/m2,
2710 Kg/m3, and 0.346, respectively.

The first three natural frequencies resulted from the undamaged numerical and
experimental models are compared in Table 1. Also, comparisons of the three mode
shapes are displayed in Fig. 2.

Table 1.
Comparison between the calculated natural frequencies of the undamaged beam from the FE model

and the measured ones from experimental model [15] for first three mode shapes

Results
First
natural

frequency

Second
natural

frequency

Third
natural

frequency
Numerical model 7.696 48.732 135.095

Experimental model [15] 8.217 50.256 141.13

Error (%) 4.12% 4.81% 4.47%

The comparison, as demonstrated in Table 1, reveals that the natural frequen-
cies and mode shapes obtained from the numerical model and the experimental
measurements [15] are in ideal agreement. That confirms the accuracy of the
present numerical model.
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Fig. 2. Mode shapes for numerical model and experimental test [15]

3. Numerical examples

3.1. Numerical model

In this section, to assess the applicability of the proposed index, different
numerical examples are presented. A beamwith different supporting conditions and
damage scenarios is considered. Characteristics of the studied beam are presented
in Table 2.

Table 2.
The properties of the numerical modeled beam

Density (ρ) 7850 Kg/m3

Elasticity modulus (E) 200 GPa

Poisson’s ratio (ν) 0.3

Moment of Inertia (I) 1.953 · 10−4 m4

Area (A) 0.375 m2

Length (L) 1 m
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To better evaluate the proposed index, the obtained results are compared with
two indicators, MSEBI [19] that is shown in Eq. (7) through (11), and CDF [20]
that is defined in Eq. (12), as follows:

MSEBIe = max

0,

mnmsee
d
− mnmsee

h

mnmseeh
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, (7)
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ϕeTi Keϕ

e
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mseei
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nmseei

nm
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CDF =
1

nm

nm∑
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(
ϕ′′hi − ϕ

′′
di

)
n
. (12)

In the above equations, nm is the number ofmodes considered. The nte and ndf
are element numbers and the total degrees of freedom of the structure, respectively.
mseei and nmseei are the modal strain energy of the e-th element in i-th mode and
the normalized MSE, respectively. mnmsee is the mean of the normalized MSE.
ϕ′′hi and ϕ

′′
di are the mode shape curvature of undamaged and damaged structures,

respectively.
Dimensions and finite element model of the beam are illustrated in Fig. 3.

It should be noted that the mesh sizes are selected in such a way that decreasing

Fig. 3. Finite element modeling of the beam
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these sizes does not have any special effect on results. In other word, the grid
independency analysis has been performed, and the values reported in this study
are from the models with no grid size sensitivity.

3.2. Simply supported beam

The first example studied here is a beam with two simply supported ends at
nodes 1 and 21, as shown in Fig. 3. Different damage scenarios are considered
as defined in Table 3. Damages in elements are simulated for different modulus
of elasticity, E. According to Eq. (2), the stiffness of the structural elements, K ,
and the bending stiffness, EI, are linearly correlated. Reducing either the modulus
of elasticity or the moment of inertia is equivalent to reducing the reduction in
stiffness of the beam. If, for instance, 20% reduction in the thickness of the element
is considered as a damage, the moment of inertia will reduce to (1− 0.2)3 = 0.512
of its initial value i.e., about 50% reduction inmoment of inertia of the cross section
of the beam happens. In other word, the modulus of elasticity can be multiplied by
this coefficient (0.512), which leads to the same EI, thus K reduction. However,
reduction in the modulus of elasticity results in the same reduction of the K
value. That means the modulus of elasticity can be manipulated to account for the
thickness reduction, accordingly. For instance, a 20% reduction in stiffness K , that
is modeled by 20% reduction in E, is equivalent to having the beam section with
3
√

(1 − 0.2) = 92.8% of its original thickness.
Table 3.

Damage scenarios

Damage scenarios Element number Reduction in elasticity
modulus of the element(s)

Damage-1 5, 10 10%, 20%
Damage-2 2, 20 20%, 10%
Damage-3 6, 12, 17 15%, 5%, 10%

The proposed damage index (DLI) is applied to the abovementioned scenarios
and the results are presented in Fig. 4. During the damage detection process for
all the three scenarios, only the first flexural mode is applied and no noise in the
modal data is considered.

For “damage-1” scenario, the damaged elements are introduced in quarter-span
and mid-span. For “damage-2” scenario, the damaged element is located adjacent
to the support. For “damage-3” scenario, multiple damages are investigated. In the
following, the results of the calculation of DLI, MSEBI and CDF are presented
for the different damage scenarios defined in Table 3. To better compare and
evaluate the cases, maximum absolute values of indicators – DLI, are set to unity.
Additionally, the number of modes for different scenarios are similar. To eliminate,
or at least decrease, any false detections, values of indicator – DLI, less than 0.05
are ignored.
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(a) case 1 (considering one mode) (b) case 2 (considering one mode)

(c) case 3 (considering one mode)

Fig. 4. The results of damage detection based on DLI index in simply supported beam for noise free
condition

Fig. 5 demonstrates the comparison between DLI, CDF, and MSEBI values
for different damage scenarios. “Damage-1” is clearly and exactly identified by
DLI and CDF, while incorrect detections occurs at undamaged location (element
no. 7, 15, 19) using MSEBI. Accurate detection is also conducted for “damage-2”
and “damage-3”, by both DLI and CDF. However, “damage-2” and “damage-3”
are missed by MSEBI. Furthermore, MSEBI results show that damages occur
at intact elements (for “damage-2”, element no. 12 and 15, and for “damage-3”,
element no. 17).

In conclusion, the proposed index accurately performed damage detection at
different locations, even near the support. It can be deduced that CDF has also
localized damage with proper precision. However, MSEBI has errors in the di-
agnosis of damaged elements. Additionally, for evaluating the sensitivity of dam-
age localization against the noise-polluted modal information, the noisy signals
are generated at a rate of 3% and 5%. Considering 3% noise, for “damage-1”,
“damage-2”, and “damage-3”, it was clearly found that significant values of DLI
appeared in damaged elements, as shown in Fig. 6. MSEBI has not identified dam-
aged element (element no. 5) for “damage-1”. For instance, as demonstrated in
Fig. 6a, the element no. 5 and element no. 10 (embedded in between node no. 5
and 6) are supposed to be the damaged elements. The DLI accurately inspects
the node no. 5 and node no. 11 as the damage locations. Therefore, detections
are exact location detection, corresponding to the damage locations, elements 5
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(a) case 1 (considering one mode) (b) case 2 (considering one mode)

(c) case 3 (considering one mode)

Fig. 5. Comparison of the results of damage detection based on DLI, MSEBI and CDF indices in
simply supported beam for noise free condition

(a) case 1 (considering one mode) (b) case 2 (considering one mode)

(c) case 3 (considering one mode)

Fig. 6. Comparison of the results of damage location detection for DLI, MSEBI and CDF indices in
simply supported beam, considering 3% noise
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and 10. As can be seen from Fig. 6a, CDF also accurately detects node 5 (left-
hand side of element 5) and nodes 10 and 11 (the left-hand side and right-hand
side nodes of element no. 10). However, MSEBI does not detect the damage ele-
ment 5 with a significant value at node 6, compared to those of DLI and CDF at
node 5. In a similar fashion, node 11 is detected by only a relatively small MSEBI
value.

Fig. 6b demonstrates the inefficiency of MSEBI and CDF detecting healthy
elements (nodes), while representing a descent detection by DLI. Fig. 6c demon-
strates a decent detection of the damaged elements (corresponding nodes) by all
three indicators, at the first two damages. However, CDF detects a healthy element
(nodes 5 and 8) with relatively significant values.

Overall, the proposed index performed better in detecting damage than the
other two indicators, especially at the boundaries.

In the following, considering 5% noise, the proposed index performance is
evaluated in higher noise conditions.

The results of DLI are compared to two indicators CDF and MSEBI, consider-
ing 5% noise, and are demonstrated in Fig. 7. Like the previously obtained results,
and despite 5% noise, damage localization by DLI is acceptable. Comparison of
the results shows that the DLI can accurately locate the damage in both noise free
and noisy conditions.

(a) case 1 (considering one mode) (b) case 2 (considering five modes)

(c) case 3 (considering five modes)

Fig. 7. Comparison of the results of damage location detection for DLI, MSEBI and CDF indices in
simply supported beam, considering 5% noise
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3.3. Fixed-end beam

In this section, a fixed boundary of the damaged beamwith the same parameters
as the simply supported beam is studied. It means that in nodes 1 and 21, there is
no rotation and transverse motion. Damage scenarios are defined in Table 4.

Table 4.
Damage scenarios of the fixed end beam

Damage scenarios Element number Reduction in elasticity
modulus of the element(s)

Damage-1 7, 12 15%, 10%

Damage-2 5, 6, 13 5%, 10%, 15%

Fig. 8 demonstrates the damage location detection results in the fixed end beam
for “damage-1” and “damage-2”. Considering the two adjacent damaged elements
in second scenario, the capability of the proposed index is investigated. Fig. 8
shows that the damaged elements are correctly localized by DLI.

(a) case 1 (considering one mode) (b) case 2 (considering one mode)

(c) case 1 (considering two modes)

Fig. 8. The results of damage locating for DLI index in fixed end beam for noise free condition

DLI, MSEBI, and CDF are calculated and compared for two damage cases
as listed in Table 4, in Fig. 9. As previously mentioned, for better comparison,
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maximum absolute values of DLI indicators that equals to 1 and the same number
of modes are used in their calculations. Also, DLI values that are less than 0.05 are
set to zero.

“Damage-1” is clearly identified using the first two modes, as shown in Fig. 9a.

(a) case 1 (considering one mode) (b) case 2 (considering two modes)

Fig. 9. Comparison of the results of damage locating for DLI, MSEBI and CDF indices in fixed end
beam for noise free condition

“Damage-1” and “damage-2” were located with high accuracy by DLI and
CDF indicators. However, MSEBI is not able to identify the damaged element (for
“damage-1”, element no. 7, and for “damage-2”, all damaged elements).

A comparison of the results obtained from calculations shows that DLI and
CDF indicators more accurately predict the damage locations than MSEBI index.
To have a better comprehension of the DLI capability, 3% and 5% noise was added
to the calculated mode shapes. Fig. 10 and Fig. 11 represent the comparisons
between the results from DLI, CDF, and MSEBI referenced in literature.

(a) case 1 (considering two modes) (b) case 2 (considering one mode)

Fig. 10. Comparison of the results of damage locating for DLI, MSEBI and CDF indices in fixed
end beam for 3% noise condition

The DLI represents more reliable results compared to the other two indicators,
CDF and MSEBI, in the presence of noise, as shown in Fig. 10 and Fig. 11.
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(a) case 1 (considering two modes) (b) case 2 (considering one mode)

Fig. 11. Comparison of the results of damage locating for DLI, MSEBI and CDF indices in fixed
end beam for 5% noise condition

3.4. Cantilever beam

In this part, a cantilever beam is studied as another numerical example. Rota-
tion and transverse motion are restricted on node 1. For the cantilever, the same
properties of the beam described in section 2.3, such as damage type and number
of elements, are used in this section. The proposed index values are investigated for
three different states: noise-free, 3% noise, 5% noise. Three different damage sce-
narios are presented in Table 5. To evaluate the accuracy of the proposed indexes,
damage detection is tested on two adjacent damaged elements, for the damage type
“damage-1”. By determining one of the end elements (free end of the beam) for
“damage-2”, the ability of the proposed index is measured in this case, as well. For
“damage-3”, the damage was created in the boundary element (element no. 20).

Table 5.
Damage scenarios of the cantilever beam

Damage scenarios Element number Reduction in elasticity
modulus of the element(s)

Damage-1 4, 5, 13 10%, 15%, 5%
Damage-2 19 10%
Damage-3 20 15%

As demonstrated in Fig. 12, to increase the accuracy of locating the damaged
element, 3 mode shapes are needed for “damage-1” while only 1 mode shape is
considered for “damage-2”. For accurately detecting the location of the damage,
4 mode shapes must be considered for “damage-3”, because of the boundary
element used as the damaged element. As shown in Fig. 12c, the highest value of the
DLI ismeasured in element 20. Applying on the boundary element, some detections
also occurred at undamaged points. The performance of DLI in comparison against
MSEBI and CDF is demonstrated in Fig. 12. It is obvious that the proposed index
– DLI, performs better than the other two indicators, as shown in Fig. 13c.
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(a) case 1 (considering two modes) (b) case 2 (considering one mode)

(c) case 3 (considering four modes)

Fig. 12. Comparison of the results of damage detection in the cantilever beam from DLI, for noise
free conditions

(a) case 1 (considering two modes) (b) case 2 (considering one mode)

(c) case 3 (considering four modes)

Fig. 13. Comparison of the results of damage detection based on DLI, MSEBI, and CDF indices in
cantilever beam for noise free conditions
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Due to unavoidable use of forward (or backward) finite difference at the bound-
aries, the precision of detecting methods is often reduced in these areas. An im-
portant advantage of the proposed index is the proper diagnosis of the damaged
elements at the boundaries (as shown for “damage-3”).

As shown in Fig. 13a, damaged elements 4, 5, and 13 are correctly detected by
DLI whereas CDF incorrectly detected element 20 as the damaged element. Addi-
tionally, MSEBI does not detect the damaged element 4. To make more accurate
detection, two first bending modes are used for “damage-1”. For “damage-2”, DLI
and CDF identifies element no. 19 with high accuracy, whereas an acceptable ac-
curacy is not observed fromMSEBI values. For “damage-3”, as shown in Fig. 13c,
DLI and CDF can detect damaged location by displaying the maximum value in
the damaged element – element no. 20, while the maximum value of MSEBI is
indicated in an intact element.

In the following, the measurement noise is incorporated by 3% and 5% error
values for mode shapes. The results of the comparison between three indicators are
shown in Fig. 14 and Fig. 15.

(a) case 1 (considering two modes) (b) case 2 (considering one mode)

(c) case 3 (considering four mode)

Fig. 14. Comparison of the results of damage detection based on DLI, MSEBI, and CDF indices in
cantilever beam for 3% noise condition

Figs. 14 and 15 show the results in which the effect of measurement noise on
the performance of the proposed index and two other indicators is considered. The
results reveal that the proposed index is more precise than the other two indicators
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(a) case 1 (considering two modes) (b) case 2 (considering one mode)

(c) case 3 (considering four mode)

Fig. 15. Comparison of the results of damage detection for DLI, MSEBI and CDF indices in
cantilever beam for 5% noise condition

(CDFandMSEBI) under noisy condition. It also providesmore accurate identifying
than free noisy state in three scenarios. In conclusion, the proposed index can be
considered as an effective indicator for cantilever beams.

4. Conclusion

The purpose of the present work is the detection of the presence and location
of damage(s) in beam structure. Regardless of the type of the damage, any form
of damage in the beam can be represented by reduction of the stiffness value of
the beam at that section(s), thus the stiffness value of the whole beam structures.
To this end, the decrease in the stiffness of the beam is how the damage detection
is performed in this study. The decrement of the stiffness is incorporated as the
decrement of the modulus of elasticity in the analytical part of the present study.
However, the type of the damage can be in the form of reduction of the thickness
of the element(s) of the beam. The stiffness of the beam is related to EI, thus
Et3, with E and t being the modulus of elasticity and the thickness of the beam
section, respectively. As a result, thickness reduction can be easily represented
by a decrease in E, instead. As an example, corrosion in a beam section(s) can
be represented by corresponding decrease of the second moment of inertia, thus
decrease of the stiffness that can also be simulated by a corresponding change in
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the beam’s modulus of elasticity. In general, the damages in structures differs per
the application of them, and thus can be caused by different circumstances such as
external load, interactions with other parts of the structure, fatigue, thermal effects,
humidity, etc. However, all those circumstances can be interpreted as a change
of the stiffness of the element(s) of the beam thus modulus of elasticity of the
structure.

In the present study, a new index called “DLI” is introduced for the purpose
of damage location detection in beams. To validate the numerical modeling of the
beam, the experimental models are used, and the first three frequencies obtained
from the numerical study are validated against the experimental data. The compar-
ison proved the accuracy of the numerical model. The beams with three different
supporting conditions and various damage scenarios are then studied. The obtained
results demonstrate the robustness of the proposed indicator, DLI, to locate both
single and multiple damages at different locations including the mid-elements, ele-
ments near the supporting, and adjacent elements. The results showed that in most
cases, the proposed index can identify the correct location of the damage in the
beam, using only one shape mode. Damage detection by the DLI is also assessed
in minor damaged areas and the efficiency of detection is verified. To investigate
the performance of the proposed index, a comparison is made between DLI and
two other well-known indices reported in the literature - MSEBI and CDF. The
results show that the proposed index performs better than the other two indicators
in locating the damages. Additionally, noise-sensitivity of the proposed index is
studied. The results demonstrate that DLI is more effective than MSEBI and CDF
in detecting the damage locations. Overall, based on the obtained results, it can
be concluded that the proposed index can identify the damage locations in real
engineering structures, with reasonable accuracy. It is always desired to detect the
damage(s) in the beam with considering a smaller number of shape modes, as the
implementation will be easier in practice. However, the greater number of damages
present in the beam, or larger the noise in the information obtained from the beam,
the larger the number of shape modes required to perform the detection. For the
sake of demonstration of this point, a variety of examples in this article are pre-
sented. As can be deduced from the results, in most circumstances, the proposed
method can precisely detect the damage location with least number of modes, in
comparison to other methods proposed in literatures.

Manuscript received by Editorial Board, May 22, 2021;
final version, August 11, 2021.
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