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Robust continuous third-order finite time sliding mode
controllers for exoskeleton robot

In this work, continuous third-order sliding mode controllers are presented to
control a five degrees-of-freedom (5-DOF) exoskeleton robot. This latter is used in
physiotherapy rehabilitation of upper extremities. The aspiration is to assist the move-
ments of patients with severe motor limitations. The control objective is then to design
adept controllers to follow desired trajectories smoothly and precisely. Accordingly, it
is proposed, in this work, a class of homogeneous algorithms of sliding modes having
finite-time convergence properties of the states. They provide continuous control sig-
nals and are robust regardless of non-modeled dynamics, uncertainties and external
disturbances. A comparative study with a robust finite-time sliding mode controller
proposed in literature is performed. Simulations are accomplished to investigate the
efficacy of these algorithms and the obtained results are analyzed.

1. Introduction

Stroke or cerebrovascular accident is the first leading cause to partial or full loss
of motor skills in the upper extremities [1]. Specialized rehabilitation treatments
with physiotherapy sessions are required to recover from these motor deficiencies,
which traditionally are carried out by expert physiotherapists. Recently, robotic
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based solutions named exoskeletonswere introduced in the process of rehabilitation
to enhance the quality of rehabilitation for impaired people [2]. These devices
provide intensive, repetitive, precise and customized therapy while guaranteeing
safety of patients and reducing the work load of therapists.

Exoskeleton robots are rigid external structures that incorporate actuators al-
lowing controlled and precise movements as well as sensors providing information
on movement related to angle, speed, and acceleration. In more advanced de-
vices, they make it possible to capture the patient’s muscular electrical activity
(electromyography signals EMG) or electroencephalography (EEG), related to the
intention of the movement [3, 4]. These devices are placed on the body of the
person (non-invasive) and are mechanically compatible with the anatomy of the
affected limb [5–7]. The main objective is to allow safe movement without resis-
tance. Depending on the rehabilitation mode, patients can actively participate in
the training exercises or be passive to the robot [8], i.e., trained by the exoskeleton
robot.

Designing controllers for rehabilitation exoskeletons is very challenging as it
requires rigorous robust and secure motion regulation. This research focuses on the
application of SlidingModeControl (SMC) to exoskeleton control. This approach is
a powerful robust strategy for controlling robotic systems with unknown dynamics
and bounded disturbances. Generally, conventional first order SMC [9, 10] employs
a linear sliding surface which can only achieve asymptotic stability of the system
during the sliding mode phase. This scheme suffers from chattering. Afterwards,
other advanced approaches were proposed, such as Terminal SMC (TSMC) and
Fast TSMC which guarantee tracking error convergence to zero in finite-time
using a nonlinear surface. However, these approaches have singularity problems.
To overcome this problem, nonsingular TSMC (NTSMC) has been proposed in
[11, 12] as well as integral (ITSMC) [13, 14] to reduce chattering.

On the other hand, a new class of higher-order sliding mode (HOSM) con-
trollers has emerged, extending the super-twisting algorithm (STA) proposed by A.
Levant to higher orders [15–18]. The STA [19–21] is one of the most promising
HOSM controllers, it produces a continuous control signal that attenuates chat-
tering but only ensures asymptotic convergence for mechanical systems of second
order. Therefore, finite time stabilization methods have been incorporated with
STA using homogeneity properties [22].

The key contribution of this paper concerns the exoskeleton robot control is-
sue. A finite-time robust tracking problem for a 5-DOF upper-limb exoskeleton
robot with parametric uncertainties and external disturbances is investigated in
this work. Even if this topic has been examined in the literature, there is room for
improvement of current controllers. Some shortcomings of existing approaches in
the literature that can be cited are the use of simplified linear models instead of
coupled nonlinear models. Also, some works do not consider model uncertainties,
unknown external perturbations which may lead to a lack of robustness. Most of
the controllers ensure asymptotic stability for the closed-loop robotic exoskele-
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ton system, which means that configuration variables of joints reach the desired
trajectories within an infinite time. Motivated by these issues, we suggested two
robust nonlinear sliding mode control strategies for the passive rehabilitation ther-
apy of the shoulder, elbow, and wrist joints of a 5-DOF upper limb exoskeleton.
The key characteristics of the controllers are finite-time convergence, the precision
of tracking, continuity of the input control, and robustness to uncertainties and
disturbances.

The dynamic modeling of the considered exoskeleton robot is first introduced.
Then the first scheme of the third order STA is presented to guarantee convergence
of tracking errors to zero in finite-time using a nonlinear sliding surface with
fractional power. The second scheme, on the other hand, does not require the
design of a sliding surface and guarantees finite-time convergence and robustness.
The proposed strategies will be compared with a relevant reference wherein a
NTSMC scheme is developed for the same 5-DOF exoskeleton robot to ensure
finite-time stability of the closed-loop system.

The rest of the paper is structured along the subsequent sections. In section 2,
we present the problem statement wherein the exoskeleton system is presented and
its dynamicmodeling is described. In section 3, the controllers designmethodology
is studied. Simulation results are drawn and analyzed after that in section 4. Finally,
a conclusion is given in section 5, which ends the paper.

2. Problem statement

In thiswork, two control schemeswill be designed to achieve trajectory tracking
of a 5-DOF exoskeleton robot. This latter is employed for the rehabilitation of upper
limbs. The control approaches will be founded on the finite-time robust third-order
STA and the control task is to pursue a desired trajectory smoothly as close as
possible at different points of operation.

2.1. Description of the system

An exoskeleton robot developed to upper limb rehabilitation is a mechatronic
device that is connected in a non-invasive way to the human’s upper extremities. Its
primary functionality is to mimic the movements of the upper limb. Depending on
the degree of motor disability of the patient and the type of rehabilitation assigned
by the physiotherapist, the exoskeleton robot can perform the movement or just
assist the patient into performing the movement. Moreover, it can even exert some
resisting forces.

The exoskeleton robot under study is the one presented in [12, 23–25]. It is
depicted in Fig. 1. In Fig. 1a is illustrated the real structure which is constituted
of five-degrees-of-freedom and duplicates the human upper extremity movements
[23]. The five possible movements are shoulder flexion and extension, shoulder
abduction and adduction, elbowflexion and extension, internal and external rotation
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and finally wrist flexion and extension. At each joint of the exoskeleton robot, a
servomotor is employed to drive the necessary power to the arm. Optical encoders
are used to record absolute positions of each joint (Fig. 1b).

(a) Real view (b) Schematic view

Fig. 1. Structure of the exoskeleton robot [23, 24]

2.2. Modeling of the system

The mathematical dynamic model for the 5-DOF exoskeleton robot is obtained
using the Lagrange formalism of rigid bodies [26] in accordance with the schematic
diagram of the robot depicted in Fig. 1b. It is expressed by:

M (q)q̈ + C(q, q̇)q̇ + G(q) + Fext = τ , (1)

whereby: q ∈ R5 – joint’s angular positions, q̇ ∈ R5 – joint’s angular velocities,
q̈ ∈ R5 – joint’s angular accelerations, τ ∈ R5 – actuators input torques, Fext ∈ R5 –
external disturbances assumed bounded with known bound, Matrix M (q) ∈ R5×5

– inertia matrix, C(q, q̇) ∈ R5×5 – centrifugal forces and Coriolis matrix. G(q) –
gravity vector.

The full description and the different entries of the matrices constituting the
dynamic model of the exoskeleton robot can be found in [23, 24]. The variations
on the joint’s dynamic parameters are given by:

M (q) = Mnom(q) + ΛM (q) ,
C(q, q̇) = Cnom(q, q̇) + ΛC(q, q̇) ,
G(q) = Gnom(q) + ΛG(q) ,

(2)

where Mnom(q),Cnom(q, q̇) and Gnom(q) describe nominal terms while uncertain-
ties are given by ΛM (q),ΛC(q, q̇) and ΛG(q).

Merging equations of (1) and (2), the dynamic model becomes:

Mnom(q)q̈ + Cnom(q, q̇)q̇ + Gnom(q) = τ(t) + ζ (t) , (3)
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with (4) a term gathering uncertainties and disturbances.

ζ (t) = −ΛM (q)q̈ − ΛC(q, q̇)q̇ − ΛG(q) − Fext . (4)

Further, rewriting (3) and (4) using state space representation with state vari-
ables z1 = q and z2 = q̇ and ν = τ

ż1 = z2 ,

ż2 = f (z1, z2, t) + g (z1) ν ,
(5)

wherein

f (z1, z2, t) = Mnom
−1(z1)(−Cnom(z1, z2) − Gnom(z1) + ζ (t)) ,

g(z1) = M−1
nom(z1) .

(6)

Let ν be defined as in (7):

ν = g−1 (z1) u . (7)

The closed loop system of the exoskeleton robot to be controlled is then
presented as:

ż1 = z2 ,

ż2 = u + f (z1, z2, t) .
(8)

Notation: In the following, the notation b.er = |.|r sign(.), is used due to
expressions becoming too long. Where r ∈ R. To make it clearer, here are some
examples of the new notation:

bye0 = sign(y), bye0yr = |y |r, bye0 |y |r = byer .

3. Controllers design

In this section, two robust finite-time third-order sliding mode control algo-
rithms are examined, which extend characteristics of second order STA, that is,
they are relevant to second order systems having a relative degree of two and in
addition stabilize the state variables in finite-time via a continuous control signal u
such that the states of system (8) stabilize in finite-time regardless to disturbances
and uncertainties f (z1, z2, t).

Accordingly, to address the trajectory tracking control task applied to the upper
limb exoskeleton robot, desired trajectories qd for each joint are first proposed. They
are considered twice differentiable. Therefore, the angular position tracking error
vector is given by e1 = q− qd while its time derivative is expressed by e2 = q̇− q̇d.
Consequently, the closed loop error dynamics model is expressed in (9).

ė1 = e2 ,

ė2 = u + f (z1, z2, t) − q̈d .
(9)
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Assumption : uncertainties and disturbances are assumed Liptchitz.

| ḟ (z1, z2, t) | < ∆ ,

∆ a known bound.

3.1. Third order super-twisting algorithm

The second order STA algorithm proposed by A. Levant in [19] is expressed
in terms of system’s state variables as:

u2−sta = −k1be1e
1
2 + L ,

L̇ = −k3be1e
0 .

(10)

This control algorithm generates a continuous signal, however, it establishes
asymptotic convergence. This algorithm will be extended to third-order in the
sequel. A nonlinear sliding surface ψ is first designed using (11)

ψ = e2 + k2be1e
2
3 , (11)

where k2 is a positive gain.
Based on the previous system description (9), a robust control scheme is

designed using (11) to control the upper limb rehabilitation exoskeleton robot.
Theorem 1. [18] The control law defined by:

u3sta = −k1bψe
1
2 + L ,

L̇ = −k3bψe
0 ,

(12)

where k1 and k3 are positive gains. This control law establishes robustly and in
finite-time stabilization of the states of the system (9) for any disturbance f (z1, z2, t)
that is Lipschitz with respect to time, as long as gains k1, k2 and k3 are appropriately
designed. �

Substituting the control law (12) into system (9):

ė1 = e2 ,

ė2 = −k1bψe
1
2 + L + f (z1, z2, t) ,

L̇ = −k3bψe
0 .

(13)

Setting e3 = L + f (z1, z2, t)

ė1 = e2 ,

ė2 = −k1bψe
1
2 + e3 ,

ė3 = −k3bψe
0 + ḟ (z1, z2, t) .

(14)



Robust continuous third-order finite time sliding mode controllers for exoskeleton robot 401

The system in (14) is homogeneous [27] with negative degree d = −1 and the
corresponding weights are r = [3 2 1]. Note that this algorithm coincides with the
class of second order sliding mode controllers wherein only states z1 and z2 are
required to stabilize in finite-time the system’s states e1, e2 and e3 through a contin-
uous input control signal. The main idea is to include an additional discontinuous

integral term f (z1, z2, t) =
∫ t

T

−k3bψe
0dt to cancel out the disturbance.

3.1.1. Necessary conditions for the convergence of the 3-STA

Considering the following candidate Lyapunov function from [18]:

V (e) = w1 |e1 |
4
3 − w12 be1e

2
3 ψ + w2 |ψ |

2

+ w13 be1e
2
3 be3e

2 − w23ψ be3e
2 + w3 |e3 |

4 .
(15)

This Lyapunov function is homogeneous of degree 4 with weights [3 2 1]. Its
time derivative is:

V̇ (e) =l1 be1e
1
3 e2 − l2 |e1 |

− 1
3 e2

2 − 2k1w2 |ψ |
3
2 − w23 |e3 |

3

− l3 |e1 |
− 1

3 e2 be3e
2 + k1w12 be1e

2
3 bψe

1
2 − l̄4 be1e

2
3 e3

+ l̄5e3ψ + w23k1bψe
1
2 be3e

2 − l̄6 be3e
3 bψe0 ,

(16)

wherein:

l1 = *
,

4w1
3
−

4k2w12
3

+
4w2k2

2
3

+
-
,

l2 =

(
2w12

3
−

4w2k2
3

)
,

l3 =

(
2w23k2

3
−

2w13
3

)
,

l̄4 =
(
w12 + 2w13k3 bψe

0 bw3]0 − 2w13 be3]0 ḟ (z1, z2, t)
)
,

l̄5 =
(
w12 + 2w23k3bψe

0 bw3e
0 − 2w23 be3]0 ḟ (z1, z2, t)

)
,

l̄6 =
(
4k3w3 − 4w3 ḟ (z1, z2, t) bψe0

)
.

The conditions on the coefficients (w1,w12,w2,w13,w23,w3) ,
(
l1, l2, l3, l̄4, l̄5, l̄6

)
and (k1, k2, k3) of (14) such V > 0 and V̇ < 0 are given by:



402 Ratiba Fellag, Mohamed Guiatni, Mustapha Hamerlain, Noura Achour

w1 > 0 ,

w1w2 >
1
4
w2

12 ,

w1

(
w2w3−

1
4
w2

23

)
+
w12
2

(
−
w12w3

2
+
w13w23

4

)
+
w13
2

(
w12w23

4
−
w2w13

2

)
>0 .

(17)
For α1, α2, ϑ(α1), ϑ(α1), the following inequalities must be satisfied [28]:

l1k2
1w12 − k1w12 −

√√√ 22 l̄3
4

32
(
w23 − l̄6

) > α1 > 0 ,

ϑ ≥ β (λ, α1) ,

2k2
1w2w23 − α2

k3
1w23w12

> ν (α1) > 0

(18)

and
2k2

1w2w23 > α2 > 0 ,

ϑ (α2) ≥ max {β (λ1, α2) , β (λ2, α2)} ,

1
(k1w12)2

*..
,
w23 −

���l̄6
��� −

22 ���l̄4
���
3

33
(
l1k1 −

α1
k1w12

)2
+//
-
> ϑ (α2) > 0 .

(19)

If these conditions (17), (18) and (19) are satisfied, the Lyapunov function
(15) will be positive definite and its time derivative will be negative definite (16)
[18, 28]. In this case, V̇ satisfies the differential inequalities

V̇ ≤ −κV 3/4 (20)

for some positive κ.
Theorem 2. [29]: Suppose there exists a continuous function V satisfying :
• V is positive definite
• There exist real numbers c > 0 and κ ∈ (0, 1) and an open neighborhood of
the origin such that

V̇ (x) + c(V (x))κ ≤ 0 ,

then the origin is a finite-time stable equilibrium.

�
On the basis of Theorem 2, it is concluded that finite-time convergence is

obtained using the 3-STA control strategy.
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3.2. Discontinuous integral controller

The second third-order sliding mode controller extending the STA proper-
ties discussed in this work, is the discontinuous integral controller (DIC). This
algorithm is stated in Theorem 3.

Theorem 3. [15, 16] The control law of the DIC algorithm is described by

uDIC = −k1be1e
1
3 − k2be2e

1
2 + L ,

L̇ = −k3be1e
0 .

(21)

This control law robustly stabilizes in finite-time the states of the system (9) for
whatever disturbance f (z1, z2, t) having bounded time derivative for some positive
gains k1, k2 and k3. �

Introducing (21) into the system (9) yields the closed loop system (22):

ė1 = e2 ,

ė2 = −k1be1e
1
3 − k2be2e

1
2 + L + f (z1, z2, t) ,

L̇ = −k3be1e
0 .

(22)

Considering e3 = L + f (z1, z2, t), yields:

ė1 = e2 ,

ė2 = −k1be1e
1
3 − k2be2e

1
2 + e3 ,

ė3 = −k3be1e
0 + ḟ (z1, z2, t) .

(23)

It is to be noted that the controller (21) has the same properties as the 3-STA
presented in the previous subsection. The only difference is that the DIC does
not necessitate the design of a sliding surface (ψ(e1, e2)) as in the 3-STA. The
principle to reject disturbances is the same, by adding an extra discontinuous state
that nullifies the disturbance. It achieves convergence in finite-time via a continuous
control signal and has a simpler form.

3.2.1. Necessary conditions for the convergence of the DIC algorithm

The following homogeneous Lyapunov candidate function (24) [15] is consid-
ered for the finite-time convergence of the closed-loop system:

V (e) = w1 |e1 |
4
3 + w2 |e2 |

2 + w3 |e3 |
4 + w13e1e3 − w23e2be3e

2 . (24)

This function (24) is homogeneous of degree 4, and is positive definite if coefficients
(w1,w13,w2,w23,w3) and gains k1, k2, k3 are properly designed. This leads also to
have a negative definite time derivative of the Lyapunov function [15].
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V̇ (e) =
4
3
w1 be1e

2
3

e2 − 2w2k1 be1e
1
3

e2 − 2w2k2 |e2 |
3
2 + 2w2e2e3

− 4w3k3 be1e
0 e3

3 + w13e3e2 − w13k3 |e1 | + w23k1 be1e
1
3 be3e

2

+ w23k2 be2]
1
2 be3e

2 − w23 |e3 |
3 + 2w23k3 be1e

0 e2 |e3 | .

(25)

The conditions that must be fulfilled for the Lyapunov function to be positive
globally definite and for its derivative to be negative definite and that provide
stability in finite-time of the system (9) are the following:

0 <
33w4

13w2

43w3
1

< 4w2w3 − w2
23 , (26)

w1,w2,w13 > 0 .

V̇ is negative definite for every Lipschitz disturbance if:

k3,w23 > 0

and if there exist α such that:

q12 =

(
2w2k1 −

4
3
w1

)
,

α < 2
w2
w23
−

1
w23k2

√
32 |q12 |

3

27w13 (k3 − ∆)
,

φ(α) < v(α) ,

(27)

where

v(α) ,
1

w23k2

(
w23 − 4w3(k3 + ∆) −

√
τ
)
,

τ =
4w3

23k3
1 (2w2k2 − w23k2α)2

27w13 (k3 − ∆) (2w2k2 − w23α)2 − 32 |q12 |
3 .

(28)

In this case, the Lyapunov function V and its derivative V̇ satisfy the following
inequality [15]:

V̇ ≤ −κV
3
4 (29)

Based on Theorem 2 [29], finite-time convergence is guaranteed using the DIC
controller.
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4. Simulation results

In the interest of highlighting the operation of the proposed third-order super-
twisting algorithms, it is discussed, in this section, results of simulation of trajectory
tracking control task of the five-degrees-of-freedom upper limb exoskeleton robot
with the application of the two algorithms introduced previously (3-STA and DIC).
A comparison with the finite-time NTSMC controller [12] is achieved to evaluate
the performance of proposed controllers. Passive rehabilitation simulations will be
performed afterwards with the algorithm having the best efficiency.

4.1. Methodology

At first, the full dynamic model of the exoskeleton robot (9) is implemented
in Matlab/Simulink. Information on the inertial constants of the robot and the
gravitational constants are provided in [23] as well as the uncertainties affecting
these physical elements.

Initial angular positions and velocities of the joints are chosen as: q(0) =
[−π/4 − π/5 π/6 π/4 π/5]T (rad) and q̇(0) = [0 0 0 0 0]T (rad/s) respectively.

Whereas the desired trajectories are defined by:

qd j =

(
sin

(
t + n

π

5

))
(30)

where j = 0, . . . 5 the joints number and n = n + 1; n(0) = 0.
The disturbance vector τdis is considered as:

τdis = 0.15q̇ + 0.1q

+
[
0.2sin(3t) 0.1cos(4t) 0.1sin(3t) 0.1cos(4t) 0.15sin(4t)

]T . (31)

When applying the method of design of the gains and parameters proposed
in [15, 18], it happens that it is really hard to find a set of gains and parameters
that satisfy all the necessary conditions (presented in the previous section) using
the proposed Lyapunov functions due to the fact that there are too many nonlinear
inequalities that must be satisfied and the fact that the exoskeleton system’s model
is complex, nonlinear, uncertain and coupled with five input torques. Therefore,
it was not possible to find the set of parameters that would validate the stability
demonstration.

The selected gains used for the 3-STA and DIC are shown in Table 1. Through
simulations, it is possible to get an idea of the effect that each of the gains has on the
controllers to have the best performance outcomes. The procedure was to choose
first the gain k3 > ∆ as k3 influences disturbance rejection, then adjust k2 and
k1 accordingly which affects the speed of convergence and the position tracking
precision respectively. On the other hand, gains of the NTSMC (in Table 2) are
kept from the [12] to be able to make the comparison after.
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Table 1.
Parameters of the 3-STA and DIC controllers

3-STA DIC
k1 [5.5 10.5 20.5 20.1 10.5] [25.5 23.2 28.5 37.3 23.6]
k2 [1.7 1.7 1.7 5.5 1.7] [3.2 3.2 20.2 16.2 3.2]
k3 [10.2 10.2 20.2 5.2 10.2] [2.02 24.8 25.3 28.2 14.7]

Table 2.
Parameters of the NSTMC control [12]

Sliding surface gains controller gains
ρ = [0.5 0.5 0.5 0.5 0.5] k1 = [1 1 1 1 1]

k2 = [0.01 0.01 0.01 0.01 0.01]
Ω1 = 3/4, Ω2 = 5/4

4.2. Analysis of obtained results

To assess the functioning of the proposed algorithms in terms of the efficiency
of achieving the trajectory tracking control task, we will first consider the position
error, as it is the only direct measurement that we obtain from the sensors in
actuated joints. In Fig. 2 and Fig. 3 the trajectory tracking results as well as the

Fig. 2. Exoskeleton robot Trajectory tracking results
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Fig. 3. Tracking error curves for the exoskeleton robot joints

corresponding errors for the five joints of the upper limb exoskeleton robot are
illustrated.

After observing the obtained results for each of the exoskeleton joints with
the two third-order sliding mode controllers and comparing them with the results
of the NTSMC algorithm obtained in [12], it is quite clear that the efficiency of
the system is significantly improved when controlled with the schemes proposed
in this work, i.e., using the controllers founded on the third-order super twisting
algorithm (3-STA) as well as the discontinuous integral controller (DIC). The
responses obtained from the system are extremely fast, without overshoot and with
great precision. On the other hand, comparing the performance of both controllers
by sliding modes it can be said that in general the behavior is very similar, however
the 3-STA produces faster responses.

The finite time settling times obtained for the responses of each joint of the
exoskeleton robot deduced from Fig. 2 and Fig. 3 are listed in Table 3. These
settling convergence times are consistent with the above discussion and the 3-STA
controller offers the fastest convergence times to the desired trajectories despite of
disturbances and uncertainties.
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Table 3.
Settling time of the trajectory tracking

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5
3-STA 1.517 s 1.617 s 2.597 s 2.456 s 0.965 s
DIC 1.981 s 3.073 s 2.967 s 2.479 s 1.514 s
NTSMC 4.181 s 4.238 s 3.278 s 3.004 s 3.781 s

Fig. 4 shows the control signals of the three controllers by continuous sliding
mode algorithms. Something that must be commented on these graphs is the
amplitude of the control. Fig. 4 illustrates that the signals produced by the 3-STA
are a little softer and are less saturated than those produced by the DIC, so they
inject less energy into the system. On the other hand, the NTSMC necessitate more
energy to achieve the control task which is clearly observed on the plots. Table 4
shows the maximum values taken by the control signals. It is noticed that much
power is required by the first two joints with the three controllers since they are
joints of the shoulder movement with are associated to more powerful motors.

Another comparative metric that allows us to give some conclusions about
the performance of each algorithm is the Root Mean Square Error (ε ) defined in

Fig. 4. Control input torques applied to the exoskeleton robot
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Table 4.
Root mean square error and max torques of the joints of the robot

ε (rad) Max Torque (Nm)
3-STA DIC NTSMC 3-STA DIC NTSMC

Joint 1 0.2920 0.2634 0.6335 6.947 30.90 12.16
Joint 2 0.2812 0.3169 0.6127 11.92 29.54 47.9
Joint 3 0.2398 0.2077 0.4502 0.8974 0.8383 8.287
Joint 4 0.0514 0.0841 0.1455 0.6876 1.2094 2.422
Joint 5 0.1198 0.1039 0.3427 0.0490 0.1853 0.4854

(32). It is the measure of the accumulated error through each simulation. Table 4
enumerates the results of obtaining ε for each controller and each joint of the
exoskeleton robot.

ε i =



N .δ∑
t=0

(
qi (t) − qid (t)

)2 /N


1/2

(32)

with i = 1, . . . 5 is the joint’s number, N is the sample’s number and δ = 1 ms is
the sampling period.

It can be read from Table 4, that the best performance was the one that resulted
from using the 3-STA, closely followed by DIC. The NTSMC did not show good
results although it achieves the trajectory tracking task.

In theory, by increasing the order of the controller, the precision obtained
in the sliding surface increases, but in turn, the complexity of the control law
and the consumption of computational resources increases. On the other hand, in
the physical implementation of controllers, the maximum achievable precision is
restricted by the presence of imperfections (limited precision and speed in sensors
and actuators, and time sampling, etc.) that do not allow the properties of sliding
modes to be exploited to the maximum as an exact compensation for certain types
of disturbances coupled to the control channel, convergence in finite-time and the
increase in precision with respect to the increment of the order of the controller.
Throughout this work, we observed that the higher order super twisting algorithms
(3-STA, DIC) have simpler forms but complicated method to adjust gains using
the proposed Lyapunov functions when it comes to complex systems. On the other
hand, the NTSMC has a complex form of the control law which allows to achieve
a continuous control, however, no method to adjust the gains is provided.

4.3. Simulation of passive rehabilitation exercises

A rehabilitation robot’s primary function is to carry out therapeutic exercises
prescribed by a physiotherapist. These exercises can be translated into specific
trajectories for the exoskeleton robot to train the patients’ limbs. Given that the 3-
STA controller gave the best tracking results, wewill simulate in this subsection two
passive rehabilitation exercises of the shoulder and the elbow. The cubic polynomial
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technique [30] is used to produce desirable trajectories for this purpose. The range
of motion of the joints of the exoskeleton robot is given in Table 5 is used to design
these trajectories. The initial conditions for angular positions and velocities, as well
as the disturbance vector, remain unchanged.

Table 5.
Exoskeleton robot joint’s range of motion[31]

Item rotation range (deg)
Shoulder abduction/adduction 0 ∼ 90
Shoulder flexion/extension 90 ∼ −45
Elbow flexion/ extension 0 ∼ 125
External / internal rotation −90 ∼ 90
Wrist flexion / extension −75 ∼ 75

Fig. 5 demonstrates a cooperative movement of the elbow (flexion/extension)
and shoulder joint (internal/external rotation). The goal is to perform repetitive
movement at the shoulder joint while keeping the elbow at 90 degrees. The first
row of results (from top) shows the tracking results, while the second depicts the
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Fig. 5. Cooperative movement of the shoulder and the elbow joints
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tracking error. The third row displays the input torques of the shoulder internal/ex-
ternal rotation and the elbow joints, respectively. It can be seen that the output
trajectories (dotted line) nicely overlap with the desired trajectories (solid lines).
The convergence time of the elbow joint is 1.329 s while that of the shoulder joint
is 0.996 s which are acceptable times.

Frommulti-joint movement exercises, reaching movements are frequently em-
ployed and suggested. Fig. 6 depicts a repeating straight-ahead reaching movement
in which the individual slides his hand softly over the surface of a table with the
elbow’s position starts at 90 degrees. This motion is similar to dusting a table
because it requires simultaneous and repetitive rotation at the elbow (flexion/ex-
tension) and shoulder (flexion/extension). The first row depicts the tracking results
while the second row the tracking error and finally the input torque is displayed in
the third row. The settling convergence time of the elbow joint is 0.953 s and that
of the shoulder joint is 1.365 s.

The obtained results Fig. 5 and Fig. 6 confirm the efficiency and robustness
of 3-STA finite-time control strategy to achieve passive rehabilitation exercises.
And thus should be adequate for the purpose of performing passive arm movement
therapy.
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5. Conclusion

In the present work, two new higher-order sliding mode control algorithms
were examined for the first time to control a five-degrees-of-freedom upper limb
exoskeleton robot, obtaining highly satisfactory results. The objective of trajectory
tracking control task of the exoskeleton robot with these controllers was carried out
with a fairly good performance and exceeding the results obtainedwith other control
schemes found in the literature. In addition, a comparison was also accomplished
between the presented control algorithms.

The 3-STA and the DIC algorithms that were used, are both controllers of
third-order sliding modes, these have the property of bringing the system output
and its first two derivatives to desired reference in finite-time. It is to implement
these controllers directly to second order systems having a relative degree of two,
such as the exoskeleton robot, that is, the design of a sliding variable is not required
as in other sliding mode control algorithms. They produce continuous control sys-
tem which alleviates the chattering problem and compensate for disturbances and
uncertainties. Furthermore, through passive rehabilitation exercises simulations,
it can be concluded that these algorithms should be adequate for the purpose of
performing passive arm movement therapy. As an improvement of this work, an
adaptation scheme for the gains would facilitate the design of gains and enhance
the completion of the control tasks.

Manuscript received by Editorial Board, February 25, 2021;
final version, August 27, 2021.
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