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An investigation into vibration control
of gear bearing systems

Considering the importance of gear systems as one of the important vibration and
noise sources in power transmission systems, an active control for suppressing gear
vibration is presented in this paper. A gear bearing model is developed and used to
design an active control gear-bearing system. Two possible configurations of control
system are designed based on active bearing and active gear–shaft torsional coupling
to control and reduce the disturbance affecting system components. The controller for
computing the actuation force is designed by using the H-infinity control approach.
Simulation results indicate that the desired controller can efficiently be used for
vibration control of gear bearing systems.

1. Introduction

Meshing gears are one of the important sources of vibration and noise in power
transmission systems [1].

Vibration analysis of gear systems has been intensively studied. However,
vibration control of gear systems has attracted less attention. Recently, several
control techniques have been proposed to control gear vibrations. Most researches
have mainly centered on control and isolation of the gearbox body vibrations to
reduce vibration, which is transmitted to the supporting structure of the gearbox. In
1997, Sutton et al. [2] proposed an active control of helicopter gearbox, which used
three magnetostrictive actuators attached to a supporting structure to attenuate the
vibration transmitted through the supporting structure.

With development of vibrations control technology, active vibration control of
internal gear system has been considered. Montague et al. [3] proposed an active

B Amin Saghafi, e-mails: a.saghafi@birjandut.ac.ir, a.i.saghafi@gmail.com
1Department of Mechanical Engineering, Birjand University of Technology, Birjand, Iran
2Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

0

© 2021. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives License (CCBY-NC-ND4.0, https://creativecommons.org/licenses/by-nc-nd/4.0/), which
permits use, distribution, and reproduction in any medium, provided that the Article is properly cited, the use is non-
commercial, and no modifications or adaptations are made.

https://orcid.org/0000-0001-8261-0352
mailto:a.saghafi@birjandut.ac.ir
mailto:a.i.saghafi@gmail.com
https://creativecommons.org/licenses/by-nc-nd/4.0/


474 Amin Saghafi, Anooshirvan Farshidianfar

control scheme to reduce vibrations transferred from gear set using the feedforward
control method. A set of piezoelectric actuators mounted on the gear pair shafts was
employed to reduce gear mesh vibration. Up to 70% reduction in gear acceleration
was achieved. Rebbechi et al. [4] proposed an adaptive feedforward control method
for active control of the gearbox, in which four magnetostrictive actuators were
attached at one of the support bearings. An attenuation of 20-28 dB at the first,
5–10 dB at second, and 0–2 dB at third gear mesh frequencies was reported.

Chen andBrennan [5] proposed an active control system that used threemagne-
tostrictive actuators connected on the gear body in order to generate the secondary
forces for reducing the meshing gear vibration, and about 7.5 dB amplitude reduc-
tion was obtained at the mesh frequency. Li et al. [6] presented an experimental
study of active control of internal shaft for reducing gearbox housing responses.
A modified Fx-LMS algorithm with a robust frequency estimate method is applied
to control the gear housing vibration. The actuation force applied to the internal
shaft was provided by using an actuator mounted on the driven shaft. Up to 14 dB
reduction in the gear vibration response was reported. Guan et al. [7] investigated
an active internal gearbox structure experimentally to reduce vibration response.
Guan et al. [8] compared the performance of four actuation schemes for active
control of gearbox vibration due to transmission error excitation.

Li et al. [9] designed a gear vibration active control platform. The active control
was performed using the Fx-LMS algorithm. Gao et al. [10] presented vibration
control of an internal shaft to reduce gear mesh vibration using a modified Fx-
LMS control algorithm. Also, in order to suppress the vibrations of multistage
gear transmission systems, Sun et al. [11, 12] proposed an active vibration control
using piezoelectric actuators acting on the transmission shaft. PID, fuzzy and Fx-
LMS algorithms were used to control the fundamental and harmonic vibrations.
Wang et al. [13] constructed an experimental platform for active vibration control
of the gear system with piezoelectric actuators. The active control was performed
using the adaptive fuzzy proportion integration differentiation control algorithm.
About 10 dB reduction in housing vibrationswas obtained at harmonic frequencies.
However, the application of control techniques to gear systems is relatively new,
and few studies have been reported. In this paper, an active control of gear-bearing
system is presented for suppressing gear mesh vibration response. Accordingly, two
possible configurations of control system are designed based on active bearing and
active gear–shaft torsional coupling to control and reduce the disturbance affecting
system components. One of the ideas in the field of modern control is the use of
the H-infinity control technique, which is selected to design the controller. The H-
infinity controller design is generally based on minimization of the H-infinity norm
of the closed-loop transfer function [14–16]. It can be presented as an optimization
problem. Particle swarm optimization (PSO) algorithm is one of the optimization
methods, which today has many applications in different branches of science [17–
19]. In this study, the PSO algorithm is used to solve the optimization problem.
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The outline of the paper is as follows. The dynamic model of gear-bearing
system is presented in Section 2. The active controller design for gear-bearing
systems based on the H-infinity control approach is formulated in Section 3. Sec-
tion 4 presents the simulations and performance evaluations of the proposed active
controller. Conclusion is presented in Section 5.

2. Model description of the gear bearing system

The gear-bearing dynamic model investigated in this paper is shown in Fig. 1
[20]. The gear mesh is modeled as a pair of rigid disks connected by a damper
and spring along the line of action (LOA). rg and rp are the base circleradius of
gears, (subscripts (g) and (p) indicate the gear and pinion). Ig and Ip are the mass
moments of inertia of the gears. cm and km represent the damping coefficient and
gear mesh stiffness. The internal displacement excitation e(t), is also applied to
represent static transmission error. Tg and Tp represent the external torques acting
on the gear and pinion. Output torque Tg is assumed to be constant to simplify the
dynamic problem, i.e., Tg (t) = Tmg. Static transmission error and external torque
Tp are expressed in a Fourier form as [21, 22]:

e(t) = e
(
t +

2π
ωe

)
=

∞∑
r=1

er cos (rωet + ϕer ) , (1)

Tp (t) = Tmp +

∞∑
r=1

Tf pr cos
(
rωpt + ϕpr

)
. (2)

In this model, the gears are maintained by a pair of deformable shafts and
bearings, which can be represented by equivalent springs and dampers elements
in the LOA, and off-line of action (OLOA), as shown in Fig. 1. The shaft-bearings
stiffnesses in LOA are given by kpx and kgx , and also kpy and kgy are their stiff-
nesses in OLOA. cpx , cgx , cpy and cgy represent the bearing damping coefficients
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Fig. 1. Schematic of the gear bearing model [20]
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of the gears in LOA and OLOA. The centers of the gears are denoted by op and
og, respectively, which are relocated to points óp and óg after the motion. The
displacement of the gears is given by translational coordinates xp, xg, yp, and yg,
and rotational coordinate θp and θg. Under these assumptions, the equations of
motion of the gear bearing system can be expressed as:

Ip
d2θp

dt2 + cmrp

(
rp

dθp
dt
− rg

dθg
dt
+

d xp

dt
−

d xg
dt
−

de(t)
dt

)
+ kmrp

(
rpθp − rgθg + xp − xg − e(t)

)
= Tp ,

Ig
d2θg

dt2 − cmrg

(
rp

dθp
dt
− rg

dθg
dt
+

d xp

dt
−

d xg
dt
−

de(t)
dt

)
− kmrg

(
rpθp − rgθg + xp − xg − e(t)

)
= −Tg ,

mp

d2xp

dt2 + cm

(
rp

dθp
dt
− rg

dθg
dt
+

d xp

dt
−

d xg
dt
−

de(t)
dt

)
+ km

(
rpθp − rgθg + xp − xg − e(t)

)
+ cpx

d xp

dt
+ kpx xp = 0,

mg

d2xg
dt2 − cm

(
rp

dθp
dt
− rg

dθg
dt
+

d xp

dt
−

d xg
dt
−

de(t)
dt

)
− km

(
rpθp − rgθg + xp − xg − e(t)

)
+ cgx

d xg
dt
+ kgx xg = 0,

mp

d2yp

dt2 + cpy
dyp
dt
+ kpyyp = 0,

mg

d2yg

dt2 + cgy
dyg
dt
+ kgyyg = 0.

(3)

Eq. (3) can be written into Eq. (4) by introducing a new variable δ = rpθp −
rgθg + xp − xg − e(t).

m
d2δ

dt2 − m
d2xp

dt2 + m
d2xg
dt2 + cm

dδ
dt
+ km(δ) = F̂m + F̂p (t) + F̂e (t),

mp

d2xp

dt2 + cm
dδ
dt
+ km(δ) + cpx

d xp

dt
+ kpx xp = 0,

mg

d2xg
dt2 − cm

dδ
dt
− km(δ) + cgx

d xg
dt
+ kgx xg = 0,

mp

d2yp

dt2 + cpy
dyp
dt
+ kpyyp = 0,

mg

d2yg

dt2 + cgy
dyg
dt
+ kgyyg = 0,

(4)
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where

F̂m(t) = m
(
Tmprp

Ip
+

Tmgrg
Ig

)
,

F̂e (t) = −m
d2e
dt2 =

∞∑
r=1

(rωe)2F̂er cos(rωet + ϕer ),

m =
Ip Ig

Igr2
p + Ipr2

g

,

F̂p (t) =
∞∑
r=1

m
(
rp
Ip

)
Tf pr cos

(
rωpt + ϕpr

)
=

∞∑
r=1

F̂pr cos
(
rωpt + ϕpr

)
.

Here, m is the equivalent mass, F̂m is the average force, F̂p (t) is the fluctuating force
from the input excitations, and the internal excitation F̂e (t) is related to the static
transmission error. Equation (4) presents the dynamic equation of a gear-bearing
system. This model is employed in order to design an active control system.

3. Active control system schema and control concept

This section presents two applicable models for active control of gear-bearing
system. Themain purpose of designing this control system is to reduce the vibration
response due to disturbances and unwanted design parameters.

In the first proposed concept, an active shaft is presented to reduce the distur-
bance affecting system components [8]. In this case, actuators are attached between
the gear and corresponding shaft for one set of shaft and gear, as shown in Fig. 2. The
actuators transfer the torque (Tp), and simultaneously generate excitation torque
up (t), which represents the component of the active system. A feedback controller
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is employed to determine the appropriate excitation torque of the actuators for
suppressing gear mesh vibration response. For this control system, the dynamic
equations of the system can be written as:

m
d2δ

dt2 − m
d2xp

dt2 + m
d2xg
dt2 + cm

dδ
dt
+ km(δ) = F̂m + F̂p (t) + F̂e (t) + u(t),

mp

d2xp

dt2 + cm
dδ
dt
+ km(δ) + cpx

d xp

dt
+ kpx xp = 0,

mg

d2xg
dt2 − cm

dδ
dt
− km(δ) + cgx

d xg
dt
+ kgx xg = 0,

mp

d2yp

dt2 + cpy
dyp
dt
+ kpyyp = 0,

mg

d2yg

dt2 + cgy
dyg
dt
+ kgyyg = 0.

(5)

Here, the first governing equations for the torsional motion are coupled to the
next two equations that represent translations in the LOA direction. The last two
equations (translations in the OLOA direction) are uncoupled from the other three
coordinates, which can be ignored. In this paper, the static feedback H-infinity con-
trol problem is formulated to suppress disturbance. The construction of controller
is based on the model shown in Fig. 3. In this control problem, w(t) represents
the disturbances, and the control input u(t) = mup (rp/Ip) corresponds to the ex-
citation force. The control objective is to minimize the effect of disturbance on the
dynamic responses of the system. Hence, the controller objectives (z), which are
used as outputs of the control system, can be stated as transmission error (δ(t)),
gear mesh force (F = kmδ(t) + cmδ̇(t)), translation displacements and acceler-
ations of gears (xp, xg, ẍp, and ẍg). Considering practical application, velocity
and acceleration of the pinion centers can be easily measured and are proposed as
measured outputs (y).
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( )
K

controller
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Fig. 3. General structure of control system

Choosing the generalized displacements x1 = xp, x2 = xg, x3 = δ(t), and
velocities x4 = ẋp, x5 = ẋg, x6 = δ̇(t) as states, and w(t) = F̂m + F̂p + F̂e
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as disturbances, the gear-bearing control system can be described into the state
space as:



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6



=



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−
kpx
mp

0 −
km
mp

−
cpx
mp

0 −
cm
mp

0 −
kgx
mg

km
mg

0 −
cgx
mg

−
cm
mg

−
kpx
mp

kgx
mg

−
km
m
−

km
mp
−

km
mg

−
cpx
mp

cgx
mg

−
cm
m
−

cm
mp
−

cm
mg





x1

x2

x3

x4

x5

x6



. . .

. . . +
[
0 0 0 0 0

1
m

]T
w +

[
0 0 0 0 0

1
m

]T
u, (6)



z1

z2

z3

z4

z5

z6



=



0 0 km 0 0 cm
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0

0 −
kgx
mg

km
mg

0 −
cgx
mg

cm
mg

−
kpx
mp

0 −
km
mp

−
cpx
mp

0 −
cm
mp





x1

x2

x3

x4

x5

x6



. . .

. . . +
[
0 0 0 0 0 0

]T
w +

[
0 0 0 0 0 0

]T
u, (7)



y1

y2


=



−
kpx
mp

0 −
km
mp

−
cpx
mp

0 −
cm
mp

0 0 0 1 0 0





x1

x2

x3

x4

x5

x6



+



0
0


w +



0
0


u. (8)

We can express (6), (7), and (8) in compact form as:



ẋ
z
y


=



A B1 B2

C1 D11 D12

C2 D21 D22





x
w

u


. (9)



480 Amin Saghafi, Anooshirvan Farshidianfar

In the second proposed model, an active bearing is presented [20]. The main
idea is similar to that in an active control model of rotating machinery, as described
in Ref. [23]. The central idea of this control is to reduce vibration responses by
the excitation forces (or excitation displacements) applied on the bearing. For this
purpose, two actuators are placed parallel to LOA between the bearing and the
supporting structure, as shown in Fig. 4. The actuator’s force (Factuator = cpx ẋp +

kpx xp + u(t)), applied on the bearing, is controlled by feedback and represents the
component of the active system.
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Fig. 4. Schematic of the second active gear-bearing model

For this control system, the controlled output, z, are defined as δ(t), F =
kmδ(t) + cmδ̇(t), xp, xg, ẍp, and ẍg. Relative displacement and velocity between
the gears centers are proposed as measured output for this active system. Similar
to the first concept, by choosing x1 = xp, x2 = xg, x3 = δ(t), x4 = ẋp, x5 = ẋg,
x6 = δ̇(t) as states, and w(t) = F̂m + F̂p + F̂e as disturbances. Matrices A, B1, B2,
C1, C2, D11, D12, D21 and D22 for this model are expressed as:

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−
kpx
mp

0 −
km
mp

−
cpx
mp

0 −
cm
mp

0 −
kgx
mg

km
mg

0 −
cgx
mg

−
cm
mg

−
kpx
mp

kgx
mg

−
km
m
−

km
mp
−

km
mg

−
cpx
mp

cgx
mg

−
cm
m
−

cm
mp
−

cm
mg



,
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B1 =



0
0
0
0
0
1
m



, B2 =



0
0
0

−
1

mp

0

−
1

mp



,

C1 =



0 0 km 0 0 cm
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0

0 −
kgx
mg

km
mg

0 −
cgx
mg

cm
mg

−
kpx
mp

0 −
km
mp

−
cpx
mp

0 −
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mp



, D11 =



0
0
0
0
0
0



,

D12 =



0
0
0
0
0

−
1

mp



, C2 =



1 −1 0 0 0 0
0 0 0 1 −1 0





x1

x2

x3

x4

x5

x6



,

D21 =



0
0


, D22 =



0
0


.

For the design of a static feedback controller, we consider the following controller
K as:

u = K y =⇒ u = K (I − D22K )−1 (C2x + D21w) . (10)

Where K =[k1k2] is a feedback control gain to be determined. Substituting (10) into
(6) and (7), the closed loop system (9) and so, transfer function of the closed-loop
system from w to z are obtained as:



ẋ
z


=



Acl = F1


*
,

A B2

C2 D22
+
-
, K


Bcl = F1


*
,

B1 B2

D21 D22
+
-
, K



Ccl = F1


*
,

C1 D12

C2 D22
+
-
, K


Dcl = F1


*
,

D11 D12

D21 D22
+
-
, K







x
w


, (11)
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Tzw (s) = Dcl + Ccl (sI − Acl)−1 Bcl , (12)

where

F1


*
,

X11 X12

X21 X22
+
-
, Y


= X11 + X12Y (I − X22Y ) X21 .

The H-infinity controller design is in general based on the minimization of the
H-infinity norm of the closed-loop transfer function (min . ‖Tzw ( jω)‖∞). The
objective is to determine the controller gain K = [k1 k2], such that the closed-loop
system would be stable and ‖Tzw ( jω)‖∞ will be the minimum value possible [24].
In view of the limited power of actuators, we cannot consider controller gain
more than a given limit. In other words, the controller gain should be limited to
a certain range, which is also applied on optimization problem as ‖K ‖∞ 6 Kmax.
Thus, the control problem can be briefly summarized as the following constrained
optimization problem:

min
(


Tzw

(
jω�� K =

[
k1 k2

] )


∞
)

s. t.



Tzw (s) is stable ,
‖K ‖∞ 6 Kmax.

(13)

To solve the above constrained optimization problem, the PSOmethod is used. The
PSO algorithm can solve complex optimization problems efficiently. In detail, the
PSO algorithm employs a swarm of particles which are spread in search space.
The performance of each particle is measured based on the objective function.
All of the particles share information obtained from the other particles. Commu-
nications between the particles cause the search to be efficient. Each particle has
two characteristics of velocity (transfer vector), v, and position, x. In initial stage
of algorithm, the velocity and position of each particle are initialized by random
within the limited ranges. During the evolution process, the position and velocity
of each particle are updated. The particles use their memories of the best position
experienced so far, xbest, and share memories of the best position so far experienced
by all particles, xg best, at every iteration. Then use these memories to regulate their
new transfer vectors, and thus further positions. Transfer vector of the i-th particle
in (k+1)-th iteration is thus formulated as [16–19]:

v
j
i [k + 1] = wv

j
i [k] + r1c1

(
x j
i,best[k] − x j

i [k]
)
+ r2c2

(
x j
g best[k] − x j

i [k]
)
, (14)

where i = 1, 2, . . . , n (n is the number of particles), j = 1, 2, . . . , d (d stands for the
dimension of problem). Coefficient w is called the inertia weight. r1 and r2 are also
random numbers in the range [0, 1] with uniform distribution. Positive constants c1
and c2 are the cognitive and social parameters; usually, the value 2 is suggested for
both factors in the literature. The new particle position is updated by adding the
updated velocity to the current position according to the following equation (see
Fig. 5)

x j
i [k + 1] = x j

i [k] + v ji [k + 1]. (15)
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In this way, the particles search for the best solution via the above iterations until
convergence to the possible optimum value. In the next section, simulation results
are investigated.

x2[k+1]

x2[k]

x2[k-1]

xg,best[k]
 v1[k]

 

x1[k+1]

x1[k-1]

x1[k]

x2,best[k]

x1,best[k]

Fig. 5. Movement of particles in PSO algorithm [20]

4. Numerical simulations and performance evaluation

In this section, numerical simulations are presented to demonstrate the per-
formance of the proposed active vibration controller. The simulation parameter
values are listed in Table 1. Simulation is done through applying the bounds on
the controller gain as, ‖K ‖∞ 6 10000 and ‖K ‖∞ 6 50000 for model one and
‖K ‖∞ 6 5000 and ‖K ‖∞ 6 100000 for second model. After solving the optimiza-
tion problem (13), the controller achieved optimum H-infinity norms of transfer
function. The optimum H-infinity norms values and the controller gain values are
presented in Table 2.

Table 1.
Parameter values of gear-bearing model

Mass moments Base circles Stiffness Damping
Mass (kg) inertia (kgm2) diameter (m) coefficient coefficient

(N/m) (N/ms−1)

Model 1 mp = 0.72 Ip = 8e − 4 dp = 0.07894 Kpx = 5e9 Cpx = 565
(Fig. 2) mg = 1.98 Ig = 4.8e − 3 dg = 0.12122 Kgx = 3e9 Cgx = 1554

km = 5.68e8 cm = 290

Model 2 mp = 1.18 Ip = 9.579e − 4 dp = 0.071 Kpx = 3e9 Cpx = 987
(Fig. 4) mg = 1.82 Ig = 2.259e − 3 dg = 0.0904 Kgx = 7e9 Cgx = 1522

km = 8.88e8 cm = 471

Performance of the active controller is examined by the frequency analysis.
As for the first simulation, the frequency response of the transmission error δ(t)
for model 1, is shown in Fig. 6, where uncontrolled (open-loop) and controlled
(closed-loop system for two above controller gains) systems are compared. It is
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Table 2.
The optimum H-infinity norms and the controller gain values

Optimum H-infinity norms of transfer function Controller gain
(min 

Tzw ( jω)

∞) [K]

Model 1
‖Tzw ( jω)‖∞ = 15.12 st. ‖K ‖∞ 6 10000 Kopt,1 =

[
1.5651 10000

]
‖Tzw ( jω)‖∞ = 4.95 st. ‖K ‖∞ 6 50000 Kopt,2 =

[
8.8134 50000

]
Model 2

‖Tzw ( jω)‖∞ = 20.46 st. ‖K ‖∞ 6 5000 Kopt,1 =
[
−5000 5000

]
‖Tzw ( jω)‖∞ = 6.29 st. ‖K ‖∞ 6 100000 Kopt,1 =

[
98459 29861

]
shown that a considerable reduction of the transmission error is achieved due to
disturbances, especially in the range of resonance frequency (around 4890, 7390,
and 14200 Hz). Therefore, the performance is improved for the controlled active
gear system compared to the uncontrolled system.

On the other hand, the optimization algorithm has found the best solution under
higher conditions and converged to the universal optimal control gain, whichmeans
an improvement has been achieved. From the results in Fig. 6, it can be seen that
the performance of controlled system with control gain Kopt,2, which has the least
value of H-infinity norm, is improved compared with the closed-loop system with
control gain Kopt,1. More precisely, the reduction of maximum transmission error
is around 69% for the active system with control gain Kopt,1, and is also reduced
by 89% with higher control condition Kopt,2.
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Fig. 6. Frequency response of transmission error
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Furthermore, for model 2, Fig. 7 shows the effect of active control for the
transmission error δ(t). About 70% and 91% of reduction are observed in the
maximum response when the active control is applied.

The time-domain responses of the controlled system under random and har-
monic excitation are shown in Figs 8–11. It can be seen that an active control
system can achieve a lower magnitude for transmission error response when com-
pared with the uncontrolled system. It demonstrates the effectiveness of the active
controller for vibration suppression of gear-bearing system. Also, the root-mean-
square (RMS) values of the responses are presented in Table 3. These results
confirm the observation in Figs 8–11.
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Fig. 8. Transmission error responses under harmonic excitation for model 1

In order to further illustrate, the frequency responses of the displacement and
accelerations of gears and also gear mesh force are shown in Figs. 12 and 13. It
can be seen from these figures that disturbance rejection can be achieved if the
controller is active, especially around the resonances. These diagrams indicate that
the H-infinity controller presented in this paper satisfies different objectives, and
the disturbances acting on the system are good reduction.
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Table 3.
RMS values of the responses

Model 1 Model 2

Uncontrolled
system

Controlled
system
(control

gain Kopt,1)

Controlled
system
(control
gain

Kopt,2)

Uncontrolled
system

Controlled
system
(control
gain

Kopt,1)

Controlled
system
(control
gain

Kopt,2)

Transmission
error responses
under harmonic
excitation

0.6702e–5 0.2277e–5 0.2234e–5 0.6296e–5 0.2433e–5 0.1658e–5

Transmission
error responses
under random
excitation

0.2329e–5 0.2248e–5 0.2234e–5 0.1637e–5 0.1604e–5 0.1591e–5
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Fig. 12. Frequency response of system to the disturbance input for model 1 for uncontrolled system
(.....), controlled system with control gain Kopt,1 (—), and controlled system with control gain Kopt,2
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Fig. 13. Frequency response of system to the disturbance input for model 2 for uncontrolled system
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5. Conclusions

In this paper, an active vibration control system for suppressing gear vibration
responses has been presented. Two possible configurations of the control system
have been designed based on active bearing and active gear–shaft torsional cou-
pling. An active control based on the H-Infinity feedback controller approach has
been presented, and optimizing was performed by using PSO algorithm. The con-
troller’s performance has been validated with numerical simulations. Simulation
results show that the controller presented in this paper satisfies the vibration control
objectives for disturbance attenuation, which can be utilized to guide experimental
studies.

Manuscript received by Editorial Board, March 25, 2021;
final version, September 13, 2021.
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