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1. INTRODUCTION
The automotive and aerospace industry requires an increasing
level of efficiency in the design of novel structures. The fabri-
cation by additive manufacturing (AM) plays an essential role
in this technological race. Also, the design for additive manu-
facturing using topological optimization methodology is one of
the fields of CAD/CAE engineering software that was subjected
to rapid development in the last years. Thus, numerical bench-
marks can help find the most robust, computationally efficient
topology optimizing algorithms that are essential to support
next-generation practical solutions of lightweight structures.

In Ochoa et al. [1], the authors perform a meta-analysis com-
paring 103 scientific articles according to the benchmark prob-
lems. Finally, they propose to unify stress topology optimiza-
tion benchmarking, with rules of realistic dimensions, materi-
als, and boundary conditions. Furthermore, Fanii et al. [2] com-
pared different topology optimization algorithms with typical
benchmark problems and concluded that the method of mov-
ing asymptotes should be used as the most flexible algorithm
for structural topology optimization. Still, a range of asymp-
totes is needed to be increased in more extensive problems for
computing timesaving. In the paper, Rojas-Labanda et al. [3]
also compared different topology optimization algorithms, to-
gether with validating the performance of nonlinear optimiza-
tion solvers for structural topology optimization. They conclude
that the method of moving asymptotes (MMA), and the vari-
ant of globally convergent MMA are the most efficient and re-
liable. In the article, Yang et al. [4] proposed and compared
two maximum stress constraint schemes for stress-based topol-
ogy optimization. Presented stress correction – stability trans-
formation method indicated application for minimization of
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the material in light-weighting designing. Researchers Pasini
and colleagues [5] analyzed stress-constrained topology opti-
mization for lattice structures. They proposed an optimization
method used for lattice material treated as porous structures.
It was shown that lattice cell topology and stress constraints
had to impact the optimized distribution of density. In the pa-
per, Lee et al. [6] presented stress-constrained optimization for
self-weighted loads of structures. The authors compared mass
and compliance-based optimization with stress constraints. Re-
sults showed that mass minimization optimization resulted in a
globally more stressed structure. Also, to avoid converging into
local minima, for self-weight problems with stress constraints,
a special continuation method was proposed. In the article, Xia
et al. [7] investigated and recommended the evolutionary topol-
ogy optimization method for the stress minimization design of
structures. They studied 2D and 3D structures with the filtering
of sensitivity and topology variables to stabilize the optimiza-
tion process. In the paper, Bulman et al. [8] compared homog-
enization methods, evolutionary methods, and hybrid methods
of optimization for a series of benchmark problems, propos-
ing their hybrid optimization algorithm. In the research, Roz-
vany [9, 10], as well as Rozvany and Lewiński [11], many an-
alytical solutions for topology optimization benchmarks, were
proposed. These solutions are commonly used as a verification
of optimization algorithm. In the paper, Verbart et al. [12] pro-
posed topology optimization with stress constraints, with the
damage approach method. The results indicated that that new
methodology could be used in structural problems. In the ar-
ticle, Goo et al. [13] analyzed the topology optimization of
thin plates with stress constraints. Research provided a method
for effectively controlling maximum stress by avoiding stress
concentrations in notches. In the article, Holmberg et al. [14]
and a Ph.D. dissertation [15], the author presents a method
for stress-based optimization, also with fatigue constraints, for
structural problems. They proposed a methodology for a shown
methodology of designing optimal structures with fatigue and
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stress constraints and uncertainties of loads. Also, the time-
saving aspect of the computational cost of the optimization
process was shown. In the article, Gilbert et al. [16] proposed
a stress-constrained optimization method for the conceptual de-
sign of AM components.

In this paper, we present numerical benchmarks for topology
optimization, and an example of a comparison of two optimiza-
tion algorithms is presented. The benchmark proposed in the
article is “two in one”. They enable qualitative comparison with
analytical examples (Michell structures) and quantitative com-
parison with the presented numerical solutions. The commonly
used SIMP algorithm implemented in ANSYS and a new ver-
sion of the Constant Criterion Surface Algorithm (CCSA) [17]
is to be compared.

2. NUMERICAL BENCHMARKS FOR TOPOLOGY
OPTIMIZATION

In this paper, two types of optimization algorithms were used
for benchmarking, and they were as follows: density-based op-
timization, built on Solid Isotropic Material with Penalization
(SIMP) [18,19], and hybrid algorithm – Constant Criterion Sur-
face Algorithm (CCSA) [17, 20].

The SIMP method discretizes the design domain, into a solid
isotropic microstructure, with a penalization factor from 0 to 1,
where 0 means removing material and 1 is for keeping material
in design, based on density distribution. The discretized 0-1 op-
timization problem for the SIMP method with stress constraints
could be described as follows [19]:

min
ρ

N

∑
e=1

veρe

s.t. Ku = f,
(σe)V M ≤ σ ,

0 < ρmin ≤ ρe ≤ 1,
e = 1, . . . ,N,

(1)

where ve are volumes, rhoe are the design variables (element
densities), K is the stiffness matrix, u and f are the displacement
and load vectors, ρmin are lower bound on density, introduced
to prevent singularity of the problem, (σe)V M is the von Mises
equivalent stress, σ is the von Mises stress bound.

The CCSA is an evolutionary topology algorithm combined
with a simulated annealing procedure, which can generate many
quasi-optimal solutions during the optimization process. The
CCSA discretized 0–1 optimization problem with constraints
can be formulated as follows [17]:

min
η

f (ηi)

s.t. g j (xi)≤ g j, j = [1, 2, . . . , M],
(2)

where: xi = [x1, x2, . . . , xN ] is a set of finite elements,
ηi = [η1, η2, . . . , ηN ] is a vector of design variables

(pseudo-density of finite elements) defined as ηi = Emin or E0,
Emin and E0 are minimum and real Young’s modulus of the ma-

terial of the structure, respectively, g j(x) are criterion parame-
ters (e.g. equivalent stress, compliance, etc.) g j are the bound
of constraints.

The algorithm generates a solution through the iterative elim-
ination of elements with a low value of the constraint criterion
function (e.g. stress) (see Fig. 1a). This process is controlled

a)

b)

Fig. 1. The old version (a) and the new version
of the CCSA algorithm (b)
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by the constant percentage parameter of subtracted volumes
∆F and gives a possibility to set the optimization speed and
additionally stabilizes the optimization process near the quasi-
optimum. To achieve the constant value ∆F during each itera-
tion, the boundary value of the constraint criterion gmin(∆F) is
dynamically determined. When the criterion function is above
the limit g, a layer of finite elements is added to the entire
boundary of the structure. The procedure of increasing the vol-
ume of the structure is continued until the criterion parameter g
returns to admissible values. By increasing and decreasing the
structure volume, the algorithm delivers better solutions after
reaching the subsequent quasi-optimal solution.

In the present work, the new version of CCSA will be used.
The CCSA algorithm was enriched with a new procedure of
surrounding solutions through the layer of finite elements with
the minimum value of the Young modulus Emin has been added
(see Fig. 1b). The “soft layer” increases the stiffness of slender
elements and improves the stability of the algorithm [20].

The CCSA algorithm was applied mostly to design optimiza-
tion problems with stress or fatigue constraints. However, it was
also used in finding solutions dedicated to additive manufactur-
ing design, crashworthiness design, and optimization of tran-
sient thermomechanical loaded structures [17, 20–23].

All presented models were meshed using 20-nodes higher-
order elements (SOLID185). The CCSA algorithm was lim-
ited to 1000 loops. All calculations were done at the worksta-
tion containing dual-CPU Intel Xeon E-5 2643 v2 with 96 GB
of RAM.

3. THE L-SHAPED DOMAINS BENCHMARK
For the first benchmark, the L-shaped domains problem by
Lewiński-Rozvany [24] was selected (see Fig. 2a). The de-
sign space dimension and boundary condition of the benchmark
were shown in Figs. 2b and 2c. The thickness of the design
space for the tested structures was selected arbitrarily, partly
based on tests, to avoid buckling problems and at the same time
not to extend the calculation times too much. Boundary con-
ditions are applied indirectly through geometry (line, surface)
and are evenly distributed over the numerical model. FE mesh
properties were shown in Table 1. The commercial topologi-
cal optimization methods based on the SIMP algorithm require
a validation step in which a numerical solution containing in-
termediate density elements must be converted to a solid body
with constant density. So, the use of 3D benchmark models for
research seems to be justified. For this benchmark, a material
model of steel was used, with Young modulus E = 200 GPa
and Poisson ratio 0.3. The optimization process was conducted
with the objective function in the form of volume minimization
and with the equivalent stress constraints of 150 MPa.

The ANSYS/SIMP optimization workflow was presented
(see Figs. 3a–3c). After performing the static analysis (Fig. 3a),
the topology optimization was done (Fig. 3b). When the topol-
ogy optimization procedure was finished, the quasi-optimum
solution of design density was exported as an STL file to ge-
ometry rebuild in Space Claim-Geometry (Fig. 3c). Finally, the
structural solution passes validation if it accomplishes assumed

a)

b)

c)

Fig. 2. The L-shaped domains benchmark: analytical solution of case
of long-distance of the point P to the support (a) [23], the dimension
of the design space (b), and boundary conditions for optimization (c)

Table 1
Mesh parameters

Mesh parameters

Element size 1.5 mm

No. of elements 75 852

Type of element Higher-order 3-D 20-node solid element
(SOLID185)t

constraints. This step makes it difficult due to STL adapting
process, where optimal design could be lost during facets clean-
ing and rebuilding to a solid model. Small notches can appear,
affect final stress results, as shown in Fig. 4.
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(a) (b) (c)

Fig. 3. Optimization workflow in ANSYS: “Static Structural” – preliminary FE analysis (a), “Topology Optimization” (b), “Static Structural” –
validation of optimal solution (c)

Fig. 4. Notch in model geometry after STL rebuild

For the CCSA algorithm, optimization results were shown in
Fig. 5a. The optimum design is presented with a soft layer and
the contour map of Huber–Mises–Hencky’s equivalent stress
(see Fig. 5b).

(a) (b)

Fig. 5. The CCSA algorithm: the optimal structural solution with
a soft layer (a), the contour map of Huber–Mises–Hencky’s equivalent

stress [Pa] (b)

All results were compared due to volume fraction % of the
original volume of the design space, measured in mm3. For the
SIMP algorithm, the result was shown in Figs. 6 and 7. Fig-
ure 6 presents the solution that did not pass the validation step,
with a maximum stress level of about 284 MPa and a volume

fraction of about 7%. As presented, the optimized model had
regions where the assumed constraints were not met (maxi-
mum equivalent stress of 150 MPa). For that reason, a few it-
erations of increasing the structure volume were performed to
lower the stress level. The SIMP solution finally passed the val-
idation step with the maximum equivalent stress of 103 MPa
(see Fig. 7). In Table 2, a comparison of the objective function
(the volume) and constraints (the maximum equivalent stress)
between the CCSA and SIMP algorithm was shown. Further-
more, for the L-bracket benchmark, CCSA achieved better re-
sults with the lower value of volume and passed the validation
step without corrections. Approximate times to find the solution
was 3 h 41 minutes for CCSA, 3 h 28 minutes for the SIMP so-
lution, and 10 h 58 minutes for SIMP to obtain a validated so-

(a) (b)

Fig. 6. The SIMP algorithm: the solution (a), the contour map
of Huber–Mises–Hencky’s equivalent stress [MPa] (b)

(a) (b)

Fig. 7. The SIMP algorithm: the validated solution (a), the contour
map of Huber–Mises–Hencky’s equivalent stress [MPa] (b)
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lution. The solutions for both methods differ. However, both so-
lutions are similar to the analytical solution (see Fig. 2a), while
the SIMP solution is more spatial.

Table 2
Results of optimization for the L-bracket problem

Algorithm
The objective function:

volume fraction [%]
The constraints: maximum

equivalent stress [MPa]

SIMP 17 284

SIMP after
validation

11 103

CCSA 16 145

4. THE SQUARE-SHAPED LINE SUPPORT BEAM
BENCHMARK

The square-shaped line support beam benchmark by Lewiński-
Rozvany [11] was considered as the second optimization prob-
lem in this paper (see Fig. 8a). The dimension of the design
space and applied boundary conditions were shown in Figs. 8b
and 8c and mesh parameters in Table 3. The thickness for the
design space was equal to 10 mm. For the investigation, the ma-
terial model of PEI (Polyethylenimine) with Young modulus
2965 MPa and Poisson ratio 0.39 was assumed. The same opti-
mization assumptions were made for both algorithms. The op-
timization process was conducted with the objective function in
the form of volume minimization and with the equivalent stress
constraints of 20 MPa.

a)

b)

c)

Fig. 8. The analytical solution of the Lewiński-Rozvany benchmark
IV: analytical solution (a) [11], the dimension of the design space (b),

and boundary conditions for optimization (c)

Table 3
Mesh parameters for the L–R beam

Mesh parameters

Element size 2 mm

No. of elements 24 875

Type of element Higher-order 3-D 20-node solid element
(SOLID185)t

A comparison of optimization results was presented in Ta-
ble 4. The solution of the SIMP algorithm of volume fraction
about 8% and the maximum equivalent stress level of 53 MPa
level was shown in Fig. 9. The validated solution, with an in-
creased volume fraction of 16% and 14.5 MPa of maximum
equivalent stress level, is presented in Fig. 10. The CCSA solu-
tion with a volume fraction of 6% and the maximum stress level
of 19.2 MPa is presented in Fig. 11. Approximate times to find
the solution were 1 h 50 minutes for CCSA, 1 h 03 minutes for
the SIMP solution, and 2 h 30 minutes for SIMP validated so-
lution.

Table 4
Results of optimization for the square-shaped line support

beam problem

Algorithm
The objective function:

volume fraction [%]
The constraints: maximum

equivalent stress [MPa]

SIMP 18 52.6

SIMP after
validation

16 14.5

CCSA 16 19.2

(a) (b)

Fig. 9. The SIMP algorithm: the minimum volume of optimal struc-
tural solution (a), the contour map of Huber–Mises–Hencky’s equiva-

lent stress [MPa] (b)

(a) (b)

Fig. 10. The SIMP algorithm: the minimum volume of stress passed
structural solution (a), the contour map of Huber–Mises–Hencky’s

equivalent stress [MPa] (b)
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the solution were 1 h 50 minutes for CCSA, 1 h 03 minutes for
the SIMP solution, and 2 h 30 minutes for SIMP validated so-
lution.

Table 4
Results of optimization for the square-shaped line support

beam problem

Algorithm
The objective function:

volume fraction [%]
The constraints: maximum

equivalent stress [MPa]

SIMP 18 52.6

SIMP after
validation

16 14.5

CCSA 16 19.2

(a) (b)

Fig. 9. The SIMP algorithm: the minimum volume of optimal struc-
tural solution (a), the contour map of Huber–Mises–Hencky’s equiva-

lent stress [MPa] (b)

(a) (b)

Fig. 10. The SIMP algorithm: the minimum volume of stress passed
structural solution (a), the contour map of Huber–Mises–Hencky’s

equivalent stress [MPa] (b)
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(a) (b)

Fig. 11. The CCSA algorithm: the optimal structural solution with
a soft layer (a), the contour map of Huber–Mises–Hencky’s equivalent

stress [Pa] (b)

5. THE “MBB BEAM” BENCHMARK PROBLEM
As a third benchmark, the Messerschmitt–Bölkow–Blohm beam
problem [9, 25] was selected (see Fig. 12a). The dimension of
the design space and applied boundary conditions were shown
in Figs. 12b and 12c. The thickness of the design space was
10 mm. A material model of steel with Young modulus E =
200 GPa and Poisson ratio 0.3 was used. The mesh parame-
ters were shown in Table 5. The optimization process was con-
ducted with the objective function in the form of volume mini-
mization and with the equivalent stress constraints of 100 MPa.

a)

b)

c)

Fig. 12. The half analytical solution of the MBB beam benchmark:
analytical solution (a) [25], the dimension of the design space (b), and

boundary conditions for optimization (c)

Table 5
Mesh parameters for the L–R beam

Mesh parameters

Element size 1 mm

No. elements 80 000

Type of element Higher-order 3-D 20-node solid element
(SOLID185)t

A comparison of the optimization result was presented in
Table 6. The solution of the SIMP algorithm of volume frac-
tion about 16% and the maximum equivalent stress level of
180 MPa level was shown in Fig. 13. The validated solution,
with an increased volume fraction of 26% and 100 MPa of max-
imum equivalent stress level, is presented in Fig. 14. The CCSA
solution with a volume fraction of 14% and the maximum stress
level of 98.9 MPa is presented in Fig. 15. Approximate times to
find the solution was 9 h 13 minutes for CCSA, 3 h 02 minutes
for the SIMP solution, and 11 h 32 minutes for SIMP meeting
the constraints.

Table 6
Results of the optimization of the MBB beam benchmark

Algorithm
The objective function:

volume fraction [%]
The constraints: maximum

equivalent stress [MPa]

SIMP 16 180

SIMP
second

validation
26 100

CCSA 14 98.9

(a) (b)

Fig. 13. The SIMP algorithm: the solution (a), the contour map of
Huber–Mises–Hencky’s equivalent stress [MPa] (b)

(a) (b)

Fig. 14. The SIMP algorithm: the validated solution (a), the contour
map of Huber–Mises–Hencky’s equivalent stress [MPa] (b)

(a) (b)

Fig. 15. The CCSA algorithm: the optimal structural solution with
a soft layer (a), the contour map of Huber–Mises–Hencky’s equivalent

stress [Pa] (b)
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6. MICHELL CANTILEVER BENCHMARK PROBLEM
As the last benchmark, the “Michell cantilever” problem [9,26]
was selected (see Fig. 16a). The dimension of the design space
and applied boundary conditions were shown in Figs. 16b
and 16c. The thickness of the design space was 10 mm. A ma-
terial model of steel with Young modulus E = 200 GPa and
Poisson ratio 0.3 was used. The mesh parameters were shown
in Table 7. The optimization process was conducted with the
objective function in the form of volume minimization and with
the equivalent stress constraints of 50 MPa.

a)

b)

c)

Fig. 16. The Michell cantilever benchmark: analytical
solution (a) [25], the dimension of the design space (b), and boundary

conditions for optimization (c)

Table 7
Mesh parameters for Michell cantilever benchmark

Mesh parameters

Element size 1 mm

No. elements 108 000

Type of element Higher-order 3-D 20-node solid element
(SOLID185)t

A comparison of the optimization result was presented in
Table 8. The solution of the SIMP algorithm of volume frac-
tion about 19% and the maximum equivalent stress level of
75.2 MPa level was shown in Fig. 17. The validated solution,
with an increased volume fraction of 25% and 45.5 MPa of
maximum equivalent stress level, is presented in Fig. 18. The
CCSA solution with a volume fraction of 21% and the maxi-
mum stress level of 48.8 MPa is presented in Fig. 19. Approx-
imate times to find the solution was 7 h 16 minutes for CCSA,
3 h 37 minutes for the SIMP solution, and 7 h 37 minutes for
SIMP validated solution.

Table 8
Results the optimization of Michell cantilever benchmark

Algorithm
The objective function:

volume fraction [%]
The constraints: maximum

equivalent stress [MPa]

SIMP 19 75.2

SIMP
second

validation
25 45.5

CCSA 21 48.8

(a) (b)

Fig. 17. The SIMP algorithm: the solution (a), the contour map of
Huber–Mises–Hencky’s equivalent stress [MPa] (b)

(a) (b)

Fig. 18. The SIMP algorithm: the validated solution (a), the contour
map of Huber–Mises–Hencky’s equivalent stress [MPa] (b)

(a) (b)

Fig. 19. The CCSA algorithm: the optimal structural solution with
a soft layer (a), the contour map of Huber–Mises–Hencky’s equivalent

stress [Pa] (b)

7. DISCUSSION
The computation time of optimization of four numerical bench-
marks is presented in Fig. 20. The authors assumed that it is im-
portant to present a comprehensive assessment of the results ob-
tained. If the method requires validation (it is a clear recommen-
dation of the software producer), we cannot omit this process
and its “costs”. Only in this way can we give a clear full picture
of the application of the method. So, the computation time in-

Bull. Pol. Acad. Sci. Tech. Sci. 69(6) 2021, e139317 7



7

Numerical benchmarks for topology optimization of structures with stress constraints

Bull. Pol. Acad. Sci. Tech. Sci. 69(6) 2021, e139317

Numerical benchmarks for topology optimization of structures with stress constraints

6. MICHELL CANTILEVER BENCHMARK PROBLEM
As the last benchmark, the “Michell cantilever” problem [9,26]
was selected (see Fig. 16a). The dimension of the design space
and applied boundary conditions were shown in Figs. 16b
and 16c. The thickness of the design space was 10 mm. A ma-
terial model of steel with Young modulus E = 200 GPa and
Poisson ratio 0.3 was used. The mesh parameters were shown
in Table 7. The optimization process was conducted with the
objective function in the form of volume minimization and with
the equivalent stress constraints of 50 MPa.

a)

b)

c)

Fig. 16. The Michell cantilever benchmark: analytical
solution (a) [25], the dimension of the design space (b), and boundary

conditions for optimization (c)

Table 7
Mesh parameters for Michell cantilever benchmark

Mesh parameters

Element size 1 mm

No. elements 108 000

Type of element Higher-order 3-D 20-node solid element
(SOLID185)t

A comparison of the optimization result was presented in
Table 8. The solution of the SIMP algorithm of volume frac-
tion about 19% and the maximum equivalent stress level of
75.2 MPa level was shown in Fig. 17. The validated solution,
with an increased volume fraction of 25% and 45.5 MPa of
maximum equivalent stress level, is presented in Fig. 18. The
CCSA solution with a volume fraction of 21% and the maxi-
mum stress level of 48.8 MPa is presented in Fig. 19. Approx-
imate times to find the solution was 7 h 16 minutes for CCSA,
3 h 37 minutes for the SIMP solution, and 7 h 37 minutes for
SIMP validated solution.

Table 8
Results the optimization of Michell cantilever benchmark

Algorithm
The objective function:

volume fraction [%]
The constraints: maximum

equivalent stress [MPa]

SIMP 19 75.2

SIMP
second

validation
25 45.5

CCSA 21 48.8

(a) (b)

Fig. 17. The SIMP algorithm: the solution (a), the contour map of
Huber–Mises–Hencky’s equivalent stress [MPa] (b)

(a) (b)
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Fig. 19. The CCSA algorithm: the optimal structural solution with
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stress [Pa] (b)

7. DISCUSSION
The computation time of optimization of four numerical bench-
marks is presented in Fig. 20. The authors assumed that it is im-
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L-shaped bracket MBB beam Michell can�lever Lewiński-Rozvany
beam

CSSA computa�on �me 3:41 9:13 7:16 1:50
SIMP computa�on �me 3:28 3:02 3:37 1:03
Time for SIMP valida�on steps 7:30 8:30 4:00 2:30

3:41

9:13

7:16

1:50

3:28
3:02

3:37

1:03

7:30

8:30

4:00

2:30

Fig. 20. Computation time of four numerical benchmarks [h]

cludes CCSA optimization time, SIMP optimization time, and
the SIMP validation time. It should be noted the nearly “equal”
computation times for SIMP solutions. This probably results
from the algorithm characteristic in which the constraint condi-
tions are met “smoothly” by adjusting element density. While
the CCSA algorithm that gives “black and white” solutions,
in case of exceeding the limits, must modify the structure (in-
crease the volume evenly), which is a computationally expen-
sive procedure. It can be pointed out that the SIMP algorithm
had a lower computation time than CCSA, from a few minutes
in the L-bracket case to 6 hours in the MBB problem.

However, summarized time for the SIMP method with vali-
dation and additional geometry adjustments presents higher val-
ues than CCSA, the algorithm makes validation “on-fly” dur-
ing the optimization process, so the present time is summarized
time for optimization and validation for finding the best solu-
tion in a range of loops. Most problems accrue during CAD re-
building of SIMP optimization result, were satisfying keeping
optimal result model, with reducing the amount of solid model
faces for handling it by CAD software, where taking hours and
needs a few runs to get an optimal result, that passes the valida-
tion step. This highly affects the process of design, especially
for high-cost additive process manufacturing, where the unvali-
dated structure that goes to 3D printing could fail during quality
check, even before any assembly tests.

It should also be mentioned that the CCSA algorithm pro-
duces many quasi-optimal alternative structural solutions that
fulfil constraints. The algorithm is equipped with the procedure
of restarting the search after reaching the subsequent quasi-
optimal solution. This procedure uses a simulated annealing
mechanism that is suitable for finding an optimal solution but
also provides a set of alternative solutions [20]. In Fig. 21, 8 ex-
amples of alternative solutions were presented for the Lewiński-
Rozvany beam benchmark. The presented solutions are equiva-

lent. All of them meet the assumed limits and their mass varies
within 1%. Obtaining such solutions is a unique property of the
CCSA algorithm.

Fig. 21. Computation time of four numerical benchmarks [h]
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lent. All of them meet the assumed limits and their mass varies 
within 1%. Obtaining such solutions is a unique property of the 
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8.	 CONCLUSIONS
In this paper, four numerical benchmarks for the topology opti-
mization of structures with stress constraints were proposed. 
The benchmarks are of type “two in one” and enabled qualita-
tive and quantitative comparison.

The use of numerical benchmarks was illustrated by the 
example of a comparison of two optimizing algorithms using 
the three metal and one polyethyleneimine material models. 
That was a commonly used SIMP algorithm and the new version 
of the CCSA algorithm.

For both methods, results were like analytical solutions for 
Michell’s trusses. For all four benchmarks, the primary solu-
tions of SIMP needed to be improved in the time-consuming 
iterative procedure of geometry adjustments (validation) to fulfil 
stress constraints. The CCSA method makes validation “onfly”, 
and can generate alternative quasi-optimal solutions.

Finding a methodology that could give an accurate proposal 
for designs dedicated to additive manufacturing could be crucial 
for the whole scale of the production industry, where minimiz-
ing energy consumption for the computation process, reduces 
the carbon footprint in all designing and manufacturing pro-
cesses.

For future research, the biomimetic algorithm of topology 
optimization will be enriched with up-scaling methodology, 
which could increase the efficiency of searching for optimal 
structural solutions.

REFERENCES
	 [1]	 S.I. Valdez, S. Botello, M.A. Ochoa, J.L. Marroquín, and V. Cardo-

so, “Topology Optimization Benchmarks in 2D: Results for Min-
imum Compliance and Minimum Volume in Planar Stress Prob-
lems,” Arch. Comput. Methods Eng., vol. 24, no. 4, pp. 803–839,  
Nov. 2017, doi: 10.1007/s11831-016-9190-3.

	 [2]	 M. Fanni, M. Shabara, and M. Alkalla, “A Comparison be-
tween Different Topology Optimization Methods,” Bull. Fac. 
Eng. Mansoura Univ., vol. 38, no. 4, pp. 13–24, Jul. 2020, doi: 
10.21608/bfemu.2020.103788.

	 [3]	 S. Rojas-Labanda and M. Stolpe, “Benchmarking optimization 
solvers for structural topology optimization,” Struct. Multidis-
cip. Optim., vol. 52, no. 3, pp. 527–547, Sep. 2015, doi: 10.1007/
s00158-015-1250-z.

	 [4]	 D. Yang, H. Liu,W. Zhang, and S. Li, “Stress-constrained topol-
ogy optimization based on maximum stress measures,” Comput. 
Struct., vol. 198, pp. 23–39, Mar. 2018, doi: 10.1016/j.comp�-
struc.2018.01.008.

	 [5]	 D. Pasini, A. Moussa, and A. Rahimizadeh, “Stress-Constrained 
Topology Optimization for Lattice Materials,” in Encyclopedia 
of Continuum Mechanics, Berlin, Heidelberg: Springer Berlin 
Heidelberg, 2018, pp. 1–19.

	 [6]	 E. Lee, K.A. James, and J.R.R.A. Martins, “Stress-constrained 
topology optimization with design-dependent loading,” Struct. 
Multidiscip. Optim., vol. 46, no. 5, pp. 647–661, Nov. 2012, doi: 
10.1007/s00158-012-0780-x.

https://doi.org/10.1016/j.cma.2018.01.035
https://doi.org/10.1016/j.cma.2018.01.035
https://doi.org/10.1016/S0045-7949(01)00012-8
https://doi.org/10.1007/BF01197436
https://doi.org/10.1007/BF01197436
https://doi.org/10.1007/s00158-007-0217-0
https://doi.org/10.1007/s00158-007-0217-0
https://doi.org/10.1007/s00158-007-0205-4
https://doi.org/10.1007/s00158-015-1318-9
https://doi.org/10.1016/ j.compstruc.2016.07.006
https://doi.org/10.1016/ j.compstruc.2016.07.006
https://doi.org/10.1007/s00158-012-0880-7
https://doi.org/10.1007/s00158-012-0880-7
https://doi.org/10.1016/j.camwa.2018.07.012
https://doi.org/10.2478/v10175-012-0030-9
https://doi.org/10.2478/v10175-012-0030-9
https://doi.org/10.1016/0045-7825(91)90046-9
https://doi.org/10.1063/1.5019034
https://doi.org/10.1063/1.5019034
https://doi.org/10.15632/jtam-pl/118899
https://doi.org/10.1007/s00158-013-0972-z
https://doi.org/10.1007/s00158-013-0972-z
https://doi.org/10.1007/s11831-016-9190-3
https://doi.org/10.21608/bfemu.2020.103788
https://doi.org/10.1007/s00158-015-1250-z
https://doi.org/10.1007/s00158-015-1250-z
https://doi.org/10.1016/j.compstruc.2018.01.008
https://doi.org/10.1016/j.compstruc.2018.01.008
https://doi.org/10.1007/s00158-012-0780-x


10

G. Fiuk and M.W. Mrzygłód

Bull. Pol. Acad. Sci. Tech. Sci. 69(6) 2021, e139317

	[23]	 P. Duda and M.W. Mrzygłód, “Shape and operation optimization 
of a thick-walled power boiler component,” in MATEC Web of 
Conferences, Nov. 2018, vol. 240, p. 05006, doi: 10.1051/matec-
conf/201824005006.

	[24]	 T. Lewiński and G.I.N. Rozvany, “Exact analytical solutions for 
some popular benchmark problems in topology optimization III: 
L-shaped domains,” Struct. Multidiscip. Optim., vol. 35, no. 2, 
pp. 165–174, Feb. 2008, doi: 10.1007/s00158-007-0157-8.

	[25]	 N. Olhoff, J. Rasmussen, and M.P. Bendsøe, “On CADIntegrated 
Structural Topology and Design Optimization,” in Evaluation 
of Global Bearing Capacities of Structures, Vienna: Springer 
Vienna, 1993, pp. 255–280.

	[26]	 A.G.M. Michell, “LVIII. The limits of economy of mate-
rial in frame-structures,” London, Edinburgh, Dublin Phi-
los. Mag. J. Sci., vol. 8, no. 47, pp. 589–597, 1904, doi: 
10.1080/14786440409463229.

https://doi.org/10.1051/matecconf/201824005006
https://doi.org/10.1051/matecconf/201824005006
https://doi.org/10.1007/s00158-007-0157-8
https://doi.org/10.1080/14786440409463229

