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Abstract: The paper presents the results of the studies on the determination of the degree 
of dependence between the adjusted observations, on the basis of the levels of their co 
existence in a network. An approximate model is proposed making it possible to estimate 
that dependence without the necessity to perform the adjustment procedure. This model 
can be applied in the procedures of gross error detection in observations. Additionally, 
a supplementary algorithm to determine the coexistence levels for the observations on the 
grounds of the matrix of coefficients in the observation equations is presented. 
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1. Introduction

The covariance matrix of adjusted observations CL (or the covariance matrix of residu 
als - Cv) is commonly used for the evaluation of dependence between the observation 
values obtained from geodetic network adjustment. Its determination requires, however, 
performing complicated calculations. In certain geodetic problems it would be more 
advantageous making possible to determine any element of the matrix Ci,, even within 
certain approximation, but without performing complicated calculations. It would be 
specially useful in detection of gross errors in the observation systems. The iterative 
Baarda method (Baarda, 1968) is the most often applied approach in practice. This 
method is based on the results of least squares estimation (LS) and indicates, in a 
single iteration, an observation suspected of containing a gross error. Such an obser 
vation is then removed from the observation system. In case that several gross errors 
occur simultaneously in the observation system, the process of gross errors elimination 
requires performing the LS estimation in several iterations. Having the possibility to 
estimate correlation level for observations suspected to contain gross errors in the 
given iteration, one could define whether they are encumbered with a single or more 
gross errors, thus making the process of gross errors elimination more time-saving. 
Such attitude is represented, among others, in works (Cross and Price, 1985; Ding and 
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Coleman, 1996), but the determination of correlation level for observations that do
not meet the diagnostic criterion is performed on the grounds of covariance matrix for
observation corrections Cy. 

The concept of topological coexistence of observations was applied in the study
hereof to define the level of correlation between the adjusted observations. Functional
relationship between the observations correlation level after adjustment and the level
of observation coexistence was determined on the grounds of numerical examinations
on various geodetic networks. [t makes possible to simplify the grouping procedure for
observations of gross errors suspicion. The algorithm for the determination of obser
vation coexistence levels on the grounds of the matrix of coefficients A in observation
equations system is also proposed. The algorithm is illustrated on numerical examples.

2. Observation coexistence levels 

Definition of the observation coexistence level as well as its basic properties are given
in the study (Prószyński and Kwaśniak, 2002), where they are referred to local networks
with uncorrelated observations. Basic concepts and definitions pertaining to this scope
are presented below.

Direct observation coexistence ofL1(P1) and Lj(Pi) exists when the following condition
is met:

(1) 

where
P1, P1 - sets of network points on which observations L1 and L1 are determined;
<!) - empty set.
The observations L1 and L1 are identified by their entry in observation extra-code,

e.g. centre-left-right for angular observation.

Connection path between observations L1 and L1 presents such a sequence of observa
tions, L1, ... , Li, ... , Li, that each two adjacent observations remain in direct coexistence.

Length of connection path between observations L1 and Li is a number of elements in 
the connection path between L1 and Li, decreased by l. 

Observation coexistence level for a pair L1, L1 (hereinafter denoted as r1.j) presents
the length of the shortest connection path between the observations L1 and Li. Thus,
r,.1 = 1 corresponds to direct coexistence of L1 and Li. In order to provide formal
completeness also zero observation coexistence level is introduced, corresponding to
observation coexistence with itself, i.e. r1., = O. From the above definitions it comes
that r,.i = r1-1-

The concepts presented above are illustrated on the example of levelling network
as presented in Figure I.
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9 

8 

Fig. 1. Exemplary, 9-point levelling network

Let us consider the observations h3 and h14. According to the aforesaid definition
these observations are not in direct coexistence since

Exemplary connection paths for this observation pair are as follows:
Path I: h3, h1, h5, h12, h14 of the length 4;
Path 2: h3, h6, hs, h14 of the length 3;
Path 3: h3, h4, hs, h10, h11, h14 of the length 5.

The shortest connection path for the observations h3 and '114 (among all possible paths)
is of length 3. Thus, according to the aforesaid definition the observation coexistence
level r3_14 = 3.

The observation coexistence levels define distances (in the meaning of the shortest
connection path) between observations in the network's structure. They are easy for
determination on the grounds of codes assigned to observations making the network
observation system. The relevant algorithm can be found in (Prószyński and Kwaśniak,
2002).

Below a supplementary proposal of algorithm for the determination of the obser
vation coexistence levels is presented, with input data being the matrix of coefficients
A in observation equations system (linear or linearised).

In this algorithm a special property of power series of modified matrix AA T was
used. This modification is to replace of the nonzero matrix elements of value 1 (or
their absolute values). From the research of this property, carried out by the author of
this work, results that

where k > O is an exponent to which a matrix is raised and 1, j are observation's
numbers.
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Let us consider a D-dimensional geodetic network of p points and n independent 
observations. Then, the matrix A of coefficients with unknowns dxv], dx2.,, ... , dx0.,
(i - point number) is of dimension (n x pD). The elements with nonzero values indicate 
interrelation of two spaces, i.e. the observation space and the unknowns space. 

Algorithm 

1. Creating the matrix of observation coexistence levels K(n x n) and assigning 
zero-values to its elements 

{Kl,,1 = O i, j = 1, 2, ... , n (2) 

2. Initiating index of current coexistence level and assigning O value to it 

k=O 
3. Transforming the matrix A to binary form according to the formula 

and then (for D > 1) 

O for {Alu= O 
for {Al,.1 * O 

(.1+l)D 

O for I (A'bl,.1 = O 
j=sD+I 
(s+l)D 

for I (A'1;l,,1 > O 
j=sD+I 

i= 1, 2, ... ,n j = 1,2, ... ,pD 

1 = 1,2, ... ,n s = O, 1, ... ,p- 1 

(3) 

(4) 

4. Calculating the matrix product AbA! and transforming it to binary form, saving 
the results in the matrix A. 

t,J = 1, 2, ... ,n (5) 

In the case of k = 1, indices i, j of A, matrix elements with non-zero values 
indicate observation pairs that remain in direct coexistence, and for i = j we are 
dealing with a special case when the observation remains in direct coexistence with 
itself (r,.1 = O). 
It should be pointed out here that different observational accuracies (weighting) 
have no impact on the binary form of the matrix A. 

5. Making a copy of the matrix A. (matrix A. shall be needed in consecutive itera 
tions) 

(6) 
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6. Increasing by I the value of the index of current coexistence level 

k=k+l (7) 

7. Modification of the matrix K according to the formula 

. . . 1 O for {D1,}i · = O for 1 -:f:. J 1f {Kli,J = O then {Kli.J = ·1 
· k for {D1,l,,J -:f:. O 

i, j = I, 2, ... , n (8) 

8. If the off-diagonal elements of zero values do not occur in the matrix K, then, exit 
from the algorithm - otherwise 

9. Calculating the matrix product D1,A, and its transformation to binary form 

i, j = I, 2, ... , n (9) 

10. Return to point 6. 

After exiting the algorithm, the matrix K contains coexistence levels for all possible 
observation pairs. In respect of the property ri.J = TJ.i, this matrix is symmetrical. 
Functioning of the proposed algorithm is illustrated on two examples below. 

Example 1 

Determine observation coexistence levels for 4-point levelling network as illustrated in 
Figure 2. In the network we deal with equally precise observations, including repeti 
tions. 

Fig. 2. Exemplary, 4-poinl levelling network 

Realization of the algorithm: 
Re. I: initiating the matrix K of zero value elements 
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o o o o o o o 
o o o o o o o 
o o o o o o o 

K= o o o o o o o 
o o o o o o o 
o o o o o o o 
o o o o o o o 

Re. 2: initiating the index of current coexistence level and attributing k = O value to it 
Re. 3: creating a matrix of coefficients in observation equations system as well as its 

conversion to binary form 

-1 o o I o o 
o -1 o o o 
o -1 o o 1 o 

A= o -I I o A'b =Ab= o I o 
o o -I o o I 

o o -I o o 
o o -I o o 

Re. 4: creating the matrix product A/JA; as well as binary equivalent A* 

2 o I I o I 1 
I 2 2 2 o o o o 

2 2 2 o o o o 
AbAb = I 2 2 2 o o A.= I o o 

o 1 I I 2 o I I I 
o o o 2 2 o o o 
o o o 2 2 o o o 

Re. 5: making a copy of the matrix Db = A. 
Re. 6: increasing by 1 the value of the index of current coexistence level: k = I 
Re. 7: modification of the matrix K 
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o I I o I I 
o I o o 

o I o o 
K= I I o I o o 

o l I o I 
o o o o 1 
o o o o 

Re. 8: continuing calculations since off-diagonal elements of zero values still occur in 
the matrix K 

Re. 9: calculating the matrix product DbA* and its conversion to binary form Db 

6 4 4 4 5 3 3 
4 5 5 5 4 2 2 
4 5 5 5 4 2 2 

DbA* = 4 5 5 5 4 2 2 Db= 
5 4 4 4 6 3 3 
3 2 2 2 3 4 4 
3 2 2 2 3 4 4 

Re. I O: return to point 6 
Re. 6: increasing by I the value of the index of current coexistence level k = 2 
Re. 7: modification of the matrix K 

o I 2 
o I 2 2 

o I 2 2 
K= I o I 2 2 

2 o 1 
2 2 2 o I 
2 2 2 o 

Re. 8: since all off-diagonal elements of the matrix K possess non-zero values we 
complete determination of coexistence levels. 

The determined coexistence levels for all observation pairs are included into the 
matrix K. Maximum observation coexistence level in this network is 2. 

Example 2 

Determine observation coexistence levels for angular-linear horizontal structure as 
presented in Figure 3. 
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Fig. 3. Horizontal angular-linear structure as well as approximate coordinates of its points 

Approximate coordinates: 

No. X[m] Y[m] 
I SS.O IO.O 
2 120.0 SS.O 

3 125.0 115.0 
4 70.0 160.0 
s IO.O 120.0 
6 2.0 SS.O 

Realization of the algorithm: 
Re. 1--;.2: initiating matrix K(l l x 11) of zero value elements as well as the index of 

current coexistence level k = O 
Re. 3: creating matrix of coefficients A( 11 x 12) (Table I) as well as its conversion to 

binary form A' b, and then to Ab

Table I. Matrix of coefficients in observation equations system 

C I p X1 )'1 Xz )'2 X3 )'3 X.i Y-1 X5 Ys X6 )'6 

I 2 o -0.82 -0.57 0.82 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 3 o 0.00 0.00 -O.OS -1.00 O.OS 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
3 4 o 0.00 0.00 0.00 0.00 0.77 -0.63 -0.77 0.63 0.00 0.00 0.00 0.00 
s 6 o 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.99 -0.12 -0.99 
I 4 o -0.10 -1.00 0.00 0.00 0.00 0.00 O.IO 1.00 0.00 0.00 0.00 0.00 
I 3 o -O.SS -0.83 0.00 0.00 O.SS 0.83 0.00 0.00 0.00 0.00 0.00 0.00 
2 4 o 0.00 0.00 0.43 -0.90 0.00 0.00 -0.43 0.90 0.00 0.00 0.00 0.00 
I 4 6 0.17 0.74 0.00 0.00 0.00 0.00 0.42 -0.04 0.00 0.00 -0.59 -0.70 
6 I 5 -0.59 -0.70 0.00 0.00 0.00 0.00 0.00 0.00 -0.96 0.12 1.56 0.58 
5 6 4 0.00 0.00 0.00 0.00 0.00 0.00 -0.49 0.73 1.45 -0.85 -0.96 0.12 
4 s I 0.42 -0.04 0.00 0.00 0.00 0.00 0.07 -0.69 -0.49 0.73 0.00 0.00 
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I I o o o o o o o o I o o o o 
o o I o o o o o o o I o o o 
o o o o 1 1 1 I o o o o o o I 1 o o 
o o o o o o o o I I I I o o o o 1 I 

o o o o 1 I o o o o o o 1 o o 
A'; = 1 1 o o I 1 o o o o o o Ab= I o I o o o 

o o I I o o 1 o o o o o 1 o o o 
o o o o I I o o o o 1 o 

1 I o o o o o o I o o o 
o o o o o o I I o o o I 

o o o o o o o o o 

Re. 4: creating the matrix product A/JA! as well as its binary equivalent A, 

I o o I I I o I I o o I I I o I 
I 2 I o o I I o o o o I I I o o I o o o o 
o I 2 o I I I I o I o I I o I I o I 
o o o o o o I 2 I o o o I o o o I 

AbA! = 
I o I o 2 I I 2 I I 2 I o I o I I I 
I I I o I o I I o I A.= I o I I o I I o I 

I I o I o 2 o I I I o I o I I o I I 
I o I I 2 I I I o I I I I I 
I o o 2 I I o 3 2 I o o I I I o 
o o I I o I 3 2 o o I I I o I 
I o I I 2 I I 2 2 3 I o I I I I 

Further procedure is identical as in the Example 1. Finally, the determined matrix of 
observation coexistence levels is of the following form 

o I 2 2 1 1 1 2 l 
l o I 3 2 2 2 2 2 
2 I o 2 2 
2 3 2 o 2 2 2 

2 2 o I I 
K= 2 o 2 2 

2 2 o I 2 
2 o I 
2 2 2 o 1 

2 2 2 o l 
2 o 
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3. Observation coexistence levels and relations between observations after 
adjustment 

The degree of dependence between the adjusted observations is determined by the
covariance matrix for these observations. For standardised observation system this
matrix is calculated as follows

(10)

where A is the matrix of coefficients in standardised observation equations, L is the
vector of adjusted observations, and (ATA)" is a reflexive g-inverse of ATA. 

The considerations hereof regarding the degree of dependence between the adjus
ted observations and observation coexistence levels (hereinafter referred to as: "L-K
dependencies") relate to coherent geodetic networks, taking no account of special
cases such as: networks without redundant observations, networks with unlimitedly
high redundancy level as well as networks combining both the structures. In such
cases the dependencies either have or asymptotically tend to zero level (Prószyński
and Kwaśniak, 2002).

Determination of exact post-adjustment "L-K dependencies" in a theoretical way
is impossible since the observation coexistence levels are topological characteristics
of the geodetic network structure being not related to the adjustment process, whilst
the correlation of observations after adjustment constitutes the result of this process.
Therefore, examinations regarding "L-K dependencies" were performed in empirical
way for many variants of geodetic networks, both horizontal and levelling, of various
geometry and number of points. In respect of the size of this study, the results of these
examinations are illustrated with the example of 8-points levelling network (Fig. 4) of
maximum observation coexistence level equal to 4.

2

Fig. 4. Exemplary 8-poims levelling network; (-) - identifies observation number

According to ( 1 O) the matrix CL for the levelling network under analysis is as
follows
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0.618 0.382 -0.236 -0.1-16 0.090 0.056 -0.03.J -0.021 0.013 0.008 -0.005 -0.003 0.003 
0.382 0.618 0.236 0.1-16 -0.090 -0.056 0.03.J O.Oli -0013 -0.008 0.005 0.003 -0.003 
-0.236 0.236 0.-172 0.292 -0.180 -O.I I I 0.069 0.042 -0.027 -0.016 O.Ol I 0.005 -0.005 
-0.146 0.146 0.292 0.562 0.271 0.167 -0. 103 -0.064 0.040 0.024 -0.016 -0.008 0.008 
0.090 -0.090 -0.180 0.271 0.45 I 0.279 -0.172 -0.106 0.066 O.Q40 -0.027 -0.013 0.013 
0.056 -0.056 -O.I I I O. I 67 0.279 0.554 0.276 0.170 -0.106 -0.064 0.042 0.021 -0.021 

Ct= -0.034 0.034 0.069 -0. 103 -0.172 0.276 0.448 0.276 -0.172 -0.103 0.069 0.034 -0.034 
-0.021 0.021 0.042 -0.064 -0.106 0.170 0.276 0.554 0.279 0.167 -0.111 -0.056 0.056 
0.013 -0.013 -0.027 0.040 0.066 -0.106 -0.172 0.279 0.451 0.27 I -0.180 -0.090 0.090 
0.008 -0.008 -0.016 0.024 0.040 -0.064 -0.103 0.167 0.271 0.562 0.292 0.1-16 -0.1-16 
-0.005 0.005 O.Ol I -0.016 -0.027 0.042 0.069 -O.I I I -O.ISO 0.292 0.-172 0.236 -0.236 
-0.003 0.003 0.005 -0.008 -0.013 0.021 0.03.J -0.056 -0.090 0.146 0.236 0.618 0.382 
0.003 -0.003 -0.005 0.008 0.013 -0.021 -0.03.J 0.056 0.090 -0.1-16 -0.236 0.382 0.618 

Observation coexistence levels m this network are presented m Table 2. 

Table 2. Observation coexistence levels for the network in Figure 4 

i/j I 2 3 4 5 6 7 8 9 IO 11 12 13 

I o I I I 2 2 2 2 3 3 3 3 4 

2 I o I 2 I I 2 2 2 2 3 3 3 

3 I I o I I I 2 2 2 2 3 3 3 
4 I 2 I o I 2 I I 2 2 2 2 3 

5 2 I I I o I I I 2 2 2 2 3 
6 2 I I 2 I o I 2 I I 2 2 2 
7 2 2 2 I I I o I I I 2 2 2 
8 2 2 2 I I 2 I o I 2 I I 2 
9 3 2 2 2 2 I I I o I I I 2 
IO 3 2 2 2 2 I I 2 I o I 2 I 
11 3 3 3 2 2 2 2 I I I o I I 
12 3 3 3 2 2 2 2 I I 2 I o I 
13 4 3 3 3 3 2 2 2 2 I I I o 

Figure 5 illustrates variability of absolute values for non-diagonal elements of Cf., 
(identified with I{ ct}I, where i ct j) for all observations in the network and various 

I.} 

coexistence levels. 
It comes from Figure 5 that for different observations, the l{cdl values corre- 

1.1 

sponding to a given coexistence level are situated in intervals of different width as 
well as are of different average values. Thus, the determination of sufficiently precise 
model for "L-K dependencies" presentation is a very difficult task. 

ln order to define approximate model of the dependence aforesaid let us to analyse 
additionally the variability of I{ ct} .1 elements related to a single observation (row or 

1,) 

column of the matrix Cf.,) versus the coexistence level. Figure 6 presents variability 
of I{ ct} .1 elements for observations No I, 3 and 7 situated in various points of the 

1.) 

levelling network under analysis. 
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l{Ct}I
0.4 • • •
0.3 · · · ♦ ••
0.2

• • • • .........• • • • • • •
• i

• • •
0.1 · • • · • ł ... • · • i ł • • •

• • • • • •
O.O +-------'----'-----C------'-----'---C--'-------'---'--~

1 2 3 4 5 6 7 8 9 10 11 12 13
Observation number

Fig. Sa. Variability of IIC1· li for the first coexistence level• l.j 

l{Ct}I
0.4

0.3

0.2

• • • • •• • •
0.1 ......•.. ····•···· ...•• • • • • • • •I i i I • ł i i I •• •O.O

1 2 3 4 5 6 7 8 9 10 11 12 13
Observation number

Fig. Sb. Variability of l!CLf ;_Jl for the second coexistence level

0.2

0.1

2 3 4 5 6 7 8 9 10 11 12 13
Observation number

Fig. Sc. Variability of l!CcJ,J for the third coexistence level
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0.7 
0.6 
0.5 
04 
0.3 
0.2 

1 2 3 4 5 
Coexistence level 

0.7 0.7 
0.6 0.6 
0.5 0.5 
04 04 
0.3 0.3 
0.2 0.2 
0.1 0.1 

1 2 3 4 5 ooo 
Coexistence level 

l{Ct.}I c) 

1 2 3 4 5 
Coexistence level 

Fig. 6. Variability of elements [!CLIJ a) for observation No I; b) for observation No 3; 
c) for observation No 7 

As it comes from Figure 6, the degree of dependence of two observations after 
adjustment is determined by the distance between them expressed by coexistence level 
for these observations. Similar conclusion was reached in examination of disturbances 
propagation in geodetic networks depending on point coexistence level (Adamczewski, 
1971, 2002). 

Taking into account the above conclusion, the proposed approximate model for 
the determination of the degree of dependence for a pair of observations (i, j) after 
adjustment, versus their coexistence level is of the following form 

I{ cdl = ge-r;_J I,) 
i,j= 1,2, ... ,n (11) 

where: g = u/n 
u - number of necessary observations; 
r1,J = {KL.J - coexistence level for observations i, j. 

The index g is a global measure that represents the average squared standard deviation 
of standardised observation after adjustment. Its relation to global internal reliability 
measure of geodetic networks f known from (Caspary, 1988), is as follows 

g=l-f ( 12) 

Figure 7 presents results of the approximation for average elements l(ce,) .. 1 values 
I,) 

(corresponding to consecutive coexistence levels in which observations No 1, 3, 7 
remain in relation to the other observations), after application of the proposed model. 

Weak point of the proposed "L-K dependency" model is an invariability of the 
index g for all observations in the networks whilst internal invariability measures 
in geodetic networks (and thus also the squares of standard deviation of adjusted 
observations CTt = giJ) as calculated for particular observations are more or less 

'} 

differentiated. As it comes from the completed examinations, for levelling networks it 
is possible to derive in a simple way the approximate formula determining giJ separately 
for each observation. 
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l{C1}I a) 
0.7 0.7 0.7 
0.6 0.6 0.6 
0.5 0.5 0.5 
04 04 04 
0.3 0.3 0.3 
0.2 0.2 · 0.2 
0.1 0.1 · 0.1 
O.O O.O 00 o 2 3 4 o 2 3 4 o 2 3 4 

Coexistence level Coexistence level Coexistence level 

Fig. 7. Variability of average llCd,J elements as well their equivalents obtained from approximation 
according to the proposed model for: a) obs. No I; b) obs. No 3; c) obs. No 7 

Assuming that the standard deviation of L11 after adjustment is influenced (besides 
itself) only by observations remaining jointly with it in the first level of coexistence 
one obtains 

? I [p,] + [p1] - 2[p,j] 
a-: . = g,j :::o -- -------- 

L;J a-z [p,][p1] - [P,1F 
'I 

(13) 

where [p1], [p 1] - the sum of weights of observations that come to the point i or j,
respectively; 
[p11] - the sum of weights of observations that join points i and j.

For observations of equal accuracy the formula ( 13) is reduced to 

(14) 

where n1, n1 - number of observations that come to the point i or j, respectively; 
n,1 - number of observations that join points i and j. 

For the network under analysis as shown in Figure 4, the differences between global 
value g and approximate local values g11 (according to (14)) are shown in Figure 8 
against actual values of a-L~ . 

'I 

The determination of g,1 as approximation of a-?L: for observations in horizontal 
'I

net- works is much more difficult because that the coefficients in observation equations 
make function of azimuths and distances between the network points. 

The proposed "L-K dependencies" model was subjected to verification on examples 
of many different geodetic networks. The verification confirmed that the effect of 
observation i on j (and vice versa) is practically negligible irrespectively of the network 
size and maximal observation coexistence level if these observations remain in the 
coexistence of level r,.1 2: 3. This confirmation is consistent with model (11). 
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0.8 
0.7 • . . . 
0.6 o ~

• • ł i • Iii 
o0.5 

. .•.. 
................. ~ .O

... ~ :"' i • ·o 
...... 

04 
0.3 · · · I • 9;j 1..:
0.2 - .. ·.. .... ... ... . . 1 • g 

l 2 . 
0.1 ················•·• ·· _0 0t .. 

1

.. :
lj . 

O.O ~--2--3-4_5 __ 6_7 __ 8_9_1_0_11_1_2_1_3 __ 

~ . 

Observation number 

Fig. 8. Discrepancies between values g, g,j and CTI for the network in Figure 4,, 
4. Remarks and conclusions 

The observation coexistence level as a topological measure of the distance between
two observations in a geodetic network can serve to map intensity level of connections
(correlations) between observations after adjustment, resulting from the specified di
stribution of these observations in the network structure. The higher is the observation
coexistence level the weaker is their connection after adjustment. Its determination is
intuitively simple and it is possible to make use of the proposed algorithm in the case
of more complex geodetic networks.

In respect of complicated nature of theoretical dependency between coexistence
level of observation pair and their covariance value after adjustment the model to
approximate such dependency is proposed.

It comes from the analysis network of various types and various sizes that two
observations do not practically interact in the case their coexistence level is r;.J 2: 3.
This observation can be applied in the diagnostics of gross errors for simultaneous
recognition of many errors and thus to make the process of their removal from the
observation system more time-saving.
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Oszacowanie skorelowania obserwacji po wyrównaniu
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Streszczenie

W pracy przedstawiono wyniki badań nad określeniem zależności pomiędzy stopniem powiązania obser
wacji po wyrównaniu a rzędami koegzystencji tych obserwacji. Zaproponowano przybliżony model tej
zależności, pozwalający oszacować stopień powiązania obserwacji bez konieczności realizacji procedury
wyrównawczej. Model ten może mieć zastosowanie w procedurach wykrywania błędów grubych w obser
wacjach. Podano również uzupełniający algorytm ustalania rzędów koegzystencji obserwacji na podstawie
macierzy współczynników równań obserwacyjnych.


