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Abstract: In the research it has been assumed that an observation corresponds to a measured
height difference of a levelling section while a pseudo-observation corresponds to a sum
of observations for consecutive levelling sections which make up a levelling line. Relations
between observations and pseudo-observations are shown. It has also been assumed that
observations are not correlated.

The study compares Helmert — Pranis-Praniewicz algorithm of parametric, multi-group
(parallel) least squares adjustment of observations with the algorithm of two-stage least
squares adjustment of levelling network. The two-stage adjustment consists of least squares
adjustment of pseudo-observations and then the adjustment of observations, which is carried
out separately for each levelling line.

It was shown that normal equations concerning heights of nodal points, created on the
basis of pseudo-observations, are identical to the reduced normal equations formed on the
basis of observations in multi-group adjustment. So, adjusted heights of nodal points and
their variance-covariance matrix are the same in the case of adjustment of observations and
in the case of adjustment of pseudo-observations.

Following a brief presentation of known algorithm of height computation for interme-
diate benchmarks of levelling lines there is shown the proof that the value of a square root
of the a posteriori variance of unit weight m, known also as mean square error of a typical
observation/pseudo-observation, is the same in the case of adjustment of observations and
in the case of adjustment of pseudo-observations.

The conclusion states that the results of two-stage adjustment and rigorous least squares
adjustment of observations are identical.

Keywords: Levelling network, Helmert — Pranis-Praniewicz algorithm, pseudo-observa-
tions, least squares adjustment

1. Introduction

The structure of a levelling network is simple. The network consists of levelling lines
which converge in nodal points (junction points), and each levelling line consists of le-
velling sections which connect the adjacent benchmarks of the line. It has been assumed
that the result of measurement of the height difference of a given levelling section con-
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stitutes an observation. In this study there is also used the term “pseudo-observation”
which means measured height difference of a levelling line.

By performing the rigorous (least squares) adjustment of observations carried out
at all levelling sections, the adjusted heights of all benchmarks can be computed. If the
parametric method of adjustment is applied, the heights of all determined benchmarks
of the network will be used as parameters.

In the 1™ order precise levelling network in Poland there are over 16 000 bench-
marks including 245 nodal points. In the United European Levelling Network UELN
95/98 (EUREF Report, 2007) there is more than 3 600 nodal points and the number
of all benchmarks reaches about 100 000.

In order to avoid serious numerical problems that may arise in the process of
simultaneous determination of such large number of unknown parameters, a two-stage
adjustment method can be applied. The two-stage adjustment method consists of
e the adjustment of pseudo-observations (summed height differences of levelling sec-

tions within levelling lines), which results in adjusted heights of all nodal points,
e the adjustment of observations at levelling lines based on adjusted heights of nodal

points.

An algorithm for the two-stage adjustment method is known from literature (e.g.
Vanicek and Krakiwsky, 1982; Baran and Gajderowicz, 1993). In both publications the
formulae related to the second stage of adjustment were developed under the assumption
that observations are not correlated.

The important assumption used in the study was that observations of neighbouring
sections are not correlated. The existence of such correlation has, however, been proven
(Remmer, 1975; Lucht, 1972, 1983). In the algorithm of levelling network adjustment
with the use of a priori covariance matrix of observations (Vani¢ek and Krakiwsky,
1982) one possible family of exponential covariance functions (e.g. Lucht, 1972) has
been postulated. Unfortunately, the following sentence of (Vanicek and Krakiwsky,
1982) is still valid: “Research is needed into finding the best kind of covariance func-
tion for a given region”. There are two problems there. The first — how to divide
the network into regions taking into consideration conditions such as slope of lines,
atmospheric parameters, vegetation etc, and the second — how to select proper family
of covariance functions and then how to determine parameters of those functions.
Different assumptions/solutions of the above problems lead to different results of ad-
justment. That is why, looking for unambiguous solution, practical adjustments are
usually carried out under the assumption that observations are not correlated.

The two-stage adjustment algorithm for uncorrelated observations was applied in
the adjustment of many national levelling networks, e.g. the 1* order precise levelling
network in Poland (Gajderowicz, 2005), the levelling network covering Lithuania and
neighbouring countries (ParSeliunas et al., 2000), as well as in the adjustment of the
UELN 95/98 (EUREF Report, 2007). Commonly the second stage of the two-stage
adjustment was not even mentioned in publications; it is obvious, however, that com-
putation of heights of all benchmarks is a goal of a network adjustment.
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Two stages of the solution, creating and using pseudo-observations, and a simple
method of observation adjustment on levelling lines, may raise suspicions that the
two-stage method is not equivalent to the rigorous least squares adjustment of all
the observations in a network. The study aims at showing that the two-stage method
of adjustment of a levelling network is fully equivalent to the rigorous least squares
adjustment of all the observations. Comparison of the algorithm of two-stage adjust-
ment method with Helmert — Pranis-Praniewicz algorithm of least squares, parametric,
multi-group (parallel) adjustment of all observations carried out in a network is an
important part of this study.

There may also be mentioned another algorithm for levelling network adjustment
(Beluch, 1991) which is similar to Helmert — Pranis-Praniewicz algorithm with simpli-
fications due to specific structure of levelling networks. That algorithm was not applied
in the study.

2. Relations between observations and pseudo-observations

An observation dh; is the result of measurement of i-th levelling section height dif-
ference (between two consecutive benchmarks). The variance o of dh; is expressed
as

()"-2 = (réR,- (1)

where o is a unit variance (the variance of a measurement of a levelling section of
1 km length), and R, is the length of i-th levelling section, expressed in km.
The weight p; of observed i-th levelling section can be calculated from the formula

Pi= —5 (2)
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where C is any positive constant. With C = o, one obtains

i 1
pi=—==— (3)
o R K
The observation equation for the /-th observation has the following form
dh; +v, = (Hy . +dHp, ;) — (Hy , +dHpg ;) (4)
where Hg s H?“ are approximate heights of the starting point (B,) and the end-point

(B,) of the i-th section, and dHy, ;. dH,; , are the corrections to the approximate heights
(parameters to be determined). Denoting

n
—
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the observation equation (4) can be written as

vi = —dHp ; + dHp, ; + (6)

Now let us consider pseudo-observations /. The following relationship is valid for
the JK line connecting the nodal points J and K

K
h»/[\' = Zdh,‘ (7)
i=1
where n;k is the number of levelling sections in the line JK.
Usually, in practice of processing levelling data, it is assumed that observations are
not correlated; thus the variance of a pseudo-observation can be expressed as follows

e -
0'/21” = Z(sz = U'(:; ZR,- = (T(:)DJK (8)
i=l1 i=1
where D, is the sum of section lengths in JK line, i.e. the length of the JK line.
The weight P;g of a pseudo-observation

C C o7 I
Pix=——=— = — 0 - 5 9)
(Th“_ (TODJK O'OD_//\' JK

1s related to the weights p, of observations as follows

nyjK nyK 1

1
D= S B — 10
P K Z 245, (10)

=1

The observation equation for a pseudo-observation /i results from the relationship

hig + Vik = (HY + dHy) — (HY + dH,) (1)

Therefore

VJ]\’:_(lHj +(IHK+/JI\' (12)

where Hj), H} are approximate heights, and dH;, dHy are the corrections to the
approximate heights of nodal points J and K, respectively, and

Lk =—H)+Hy - hyg (13)

3. Multi-group adjustment of observations

All observations dh in the network should be adjusted using the least squares method.
Let us apply Helmert — Pranis-Praniewicz’s method, which is multi-group, parallel,
parametric adjustment (e.g. Wolf, 1975; Baran, 1983).
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A levelling network can easily be divided into groups. Let each levelling line of

a network constitutes a separate group. Heights of all points of a given levelling line,
except for the nodal points, will be considered the internal unknowns of the group.
while the heights of the nodal points — the external unknowns.

Thanks to such a natural division of the network into groups

e the groups are linked with external unknowns (heights of the nodal points),
e cach observation belongs to one specific group,
e there is no such observation in the network which would link internal unknowns
belonging to two groups.
For each group (levelling line) the following processing actions should be per-
formed:
e forming the observation equations (calculating the elements of the design matrix),
e forming the normal equations,
e reducing such normal equations to 2 equations which bind two external unknowns

of the group.
Those actions can be demonstrated, taking as an example the levelling line (the

J-th group) which connects the nodal points J and K, and which has two intermediate
points 1 and 2 (Fig. 1).

external ones — the matrix X7

hy, hy, Doy
Vi Vap Vok
. P> 0, > O g {1
J 1 2 K
0 0 0 0
H, H, H, Hy
dH, dH. dH, adH,

Fig. 1. The levelling line JK

/

=P whereas the

The internal unknowns of the group will make up the matrix X

ext

3 (/H]
X! = 14
mnt C[HZ ( )
J V L[H»/
chl = ( ! 5)
' dHg

The observation equations for the j-th group will have the following form

YV = Ai/mX'/ + Aé\lXL/’\I + lj (16)

mnt
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where

Vi
V/ = Vi (17)
Vag
[J] H?-H?-/Yj]
V=| 1, |=| H -H - hp (18)
]3/\ H;z —Hé) —/12/(
I 0
Al = -1 1 (19)
0 -1
-1 0
Al.=| 00 (20)
0 1
while the weight matrix P/ will be
P/ =diag| 1/D;; /Dy 1/Da @21)

It is obvious that the external unknowns of the j-th group, found in X/ , belong
to the column vector X.,, of all the external unknowns of the network.
The normal equations for the j-th group will have the following form

[ @iTm.im G)il_nx.cxl ]{ Xi/_nt +l L{m ]: 0 (27)
o) J J 7 -
cht.im (-)cxl.e.\‘l chx LC.\(
where
) T
Ofm.im = (A{nl) PJA{m (23)
e . T . .
O.i/m.cxl = (A{[\I) P'/Aéxl (24)
/ / T
QL‘XLHH = ((.)im.cxl> (25)
Géchx! = (Aix[) P‘/Aéxl (26)

L, =(AL) PV 27)

int int
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L./’ - (A/ )T PV (28)

Xt ext

Having eliminated the internal unknowns Xi/m one obtains the reduced normal
equations for the j-th group in the following form

B Xen + Coy =0 (29)
where
. . _I .
B;.\l = G)L{Xl.L‘N[ - Géx[_ml (Oi,m.ml> ®§/l1ch( (3())
Cl =L -0 . (0..) L 31
ext “ext ext.int int.int int =

After calculating and reducing the normal equations for all n; groups, a collective
normal equations can be computed for a given network, with only external unknowns.
n

J=1 J=1

The matrices B'éx[ and Céﬂ were calculated from (30) and (31), then expanded and
completed with zeros so that they corresponded to the vector of all external unknowns
chv

After computation of the unknowns X, using (32), one can compute, separately
for each group, the unknowns Xijm solving (22), and then the corrections A\ using (16).

In the case of the levelling line shown in Figure 1, the matrices found in normal
equations (22), computed according to (23)—(28) with the use of (19)—(21), have the
following forms

XC.\’[ +

i _| vps+uD, -1/D, (33)
int.int _I/DIZ l/Dll it 1/D'_’I\'
i -1/Dy, 0 (34)
int.ext 0 e l/DZK
o | YDy O (35)
ext,ext 0 1/D2K
i = [;1/Dyy = La/Di2 (36)
int l1»/D2 — bi/DHg
: =1)1/Dy
/
," — ”7
ext [ llk'/DZK (J )
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Subsequent matrices, which are necessary to get the reduced normal equations of
the j-th group have, according to (30) and (31), the following forms

(O’ )" _ ! D;i(D2 + Dag) Dy + Dyg (38)
el Al Dy + Dy + Dy Dy + Dag (D + Dy2)Dag ‘
: ] 1 -1
B!, = (39)
~ D\/] +D]3+Dy\’ | -1 |
; 1 —(Iyy + 112 + bk,
Cg“ _ (L 12 % bog) (40)
" Dj+ D+ Dok |+ + 1 + k)

The formulae (39) and (40) concern the levelling line with 2 intermediate points.
Similar formulae have been derived for lines containing 1, 3 or 4 intermediate points,
yielding the following results

- 1 1 -1
B =— 41
ext Djl\' __1 1 } ( )
. 1 =1
c=— F (42)
Dyg | +lk

where Dk is the sum of the lengths of all levelling sections which make up the
levelling line, i.e. the length of the levelling line JK, and [;k is obtained from (13).

Deriving the formulae for B, . C., for levelling lines containing more than 3
intermediate points is a tedious task. However, numerical experiments indicate that
the formulae (41) and (42) are correct for each line, regardless of the number of
intermediate points.

Summing up the considerations which have resulted in formulae (41) and (42), the
reduced normal equations for each group can be presented as

+1/Djx —=1/Dyx
=1/Djx  +1/Dyg

(/Hi/
| (/H}(

~l;k/Dyk _ 0
+x/Dyk

4. Two-stage adjustment

4.1. Adjustment of pseudo-observations

In the levelling network divided into levelling lines, the procedure of obtaining reduced
normal equations for a given levelling line can be much more simple than it was shown
in the previous section. Note that for each levelling line (i.e. each group considered
previously) there is one pseudo-observation described with (7)—(9).
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The observation equation (12) for the pseudo-observation can be written as

(/H/ ) A
| + Uk (44)

Vak =] -1 dHy

Having taken into account the weight of pseudo-observation P,x = 1/D,k, two
normal equations, binding the nodal points J, and K of a given levelling line, will have
the form

+1/Djx  =1/Dyg dH, . =lyx/Dyk

=0 (45)
=1/Dyx +1/Dyx || dHk | +k/Dik

Comparison of (45) with (43) leads to an important conclusion: two normal
equations, obtained directly from the observation equation for a given pseudo-
observation, are identical to the reduced normal equations, obtained in the process of
elaboration of the given levelling line with the multi-group method.

The a priori covariance matrix for all pseudo-observations in a levelling network,
is a diagonal matrix as those pseudo-observations are not correlated. Therefore, the
normal equations can sequentially be processed for the whole network. For each con-
secutive pseudo-observation, partial normal equations are formed according to (45);
elements of those equations are then added to the appropriate elements in collective
normal equations (for the whole network).

After applying all the observation equations for pseudo-observations, collective
normal equations will be obtained, binding all heights of the levelling network’s nodal
points. Such collective normal equations are identical to the normal equations (32),
obtained with the use of the multi-group method. Therefore, the adjusted heights of
nodal points and their variance-covariance matrix (see also the Section 4.3 concerning
mg) are the same, regardless of whether adjustment of observations or adjustment of
pseudo-observations is performed.

4.2. Heights of intermediate benchmarks

The adjustment of pseudo-observations provides the adjusted heights of the nodal points
as well as corrections to pseudo-observations. The adjusted heights of intermediate
benchmarks on the levelling lines can now be calculated.

For each levelling line, there is one condition equation of the form

dhy + vy +dhy +va+ ... +dhy, + vy, =hix +Vig (46)

where v; is the correction for the /-th observation (dh;), and Vg is the correction for
the pseudo-observation (/). B

The right-hand side of (46) is known. According to the definition of pseudo-
observation (7) h;x is equal to the sum of all (n,;x) observations on a levelling line.
Therefore,



68 ldzi Gajderowicz

vitvat . Hv,, = Vig (47)
In the case of one condition equation, the solution is simple: corrections
VI, Va2, ..., Vv, are inversely proportional to the weights p; = }% and the sum of cor-
rections must be equal to V,, (Baran and Gajderowicz, 1993). "Ifherefore
v = Vj/\'i (48)
Dk '

Conclusion: corrections v to the observations carried out on the levelling line JK
have been calculated correctly, as this was done with a correctly calculated correc-
tion Vg to pseudo-observation hyx and with the only condition equation binding the
corrections.

Mean square errors of the adjusted heights of intermediate points of the line JK
are calculated according to the formula (Vanicek and Krakiwsky, 1982)

/77;‘-z =(1- q):ij + 2(](1 - (,])Qj[\' + q:QKK + q(l - q)Dijé (49)

where g = D,;/D;k, and Q,, Qsk, Qkk are the elements of the variance-covariance
matrix, which corresponds to points J, and K.

4.3. Mean square error ny of typical measurement
Pseudo-observation adjustment also involves the computation of the mean square error

mg of a typical measurement (P = 1) of a section/line (square root of the a posteriori
variance of unit weight) with the following formula:

(50)

where P is a weight of a pseudo-observation, V is a correction to the pseudo-observation,
n; is a number of levelling lines, and n, is a number of redundant pseudo-observations.

Another determination of the mean square error mg can be based on corrections v
to the observations

my =

(51

where p i1s a weight of an observation, v is a correction to the observation, ny is a
number of levelling sections (number of observations), and 1, 1s a number of redundant
observations.

Let us compare the value of m, determined with the use of (50) with the one
determined using (51). For each levelling line JK
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nyx

PikVikVik = Z Piviv; (52)

=1
what can easily be proven using (48). Therefore, in the whole network. the sum of the
products PVV is equal to the sum of the products pvv

n 1y

Z P;ViV; = Z Pivivi (53)

=1 (=1

The number of redundant pseudo-observations n, 18

Npy=n—-—w+s (54)

where n; 1s a number of levelling lines (number of pseudo-observations), w is a number
of all nodes, and s is a number of nodes of known heights.

In the case of adjustment of observations, the number of redundant observations
n, 18

N =N —Tr+s (55)

where n; is a number of all observations, r is a number of all points, and s is a number
of points (nodes) of known heights.
The number of all observations is

ny n

P (o + D4 (e + Dbt G + D= ) g+ D= ) gt (56)

i=1 i=1

where n,., 1,
lines.
The number of all points of the network can be computed as follows

..... n.,, are the numbers of intermediate points of consecutive levelling

n
F=ny i+t Ay YW= Z My + W (57)
i=1

Now, applying (56) and (57), the number of redundant observations is

n n

n, = Z Ryj + 1y | — Z Nei+wl+s=n—-w+s (58)

=] =1

and thus n, = n,. Considering also (53), the following statement can be formulated:
The mean error my of a typical observation/pseudo-observation has the same value,
regardless of whether its calculation is based on corrections v to the observations or
on corrections 'V to the pseudo-observations.
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5. Conclusion

The two-stage adjustment of a levelling network. consisting of

e rigorous least squares adjustment of pseudo-observations,

e calculation of heights of intermediate points, based on the condition (46),

yields the same results which would have been obtained in the process of rigorous least
squares adjustment of observations. The two-stage adjustment of a levelling network
1s a rigorous adjustment of all the observations which make up a network.
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Streszezenie

W pracy przyjeto, ze obserwacja jest pomierzone przewyzszenie odcinka niwelacyjnego, za$ pseudoobser-
wacja jest suma obserwacji wykonanych dla kolejnych odcinkéw tworzgcych linie niwelacyjna. Przyjeto
takze, ze obserwacje nie sg wzajemnie skorelowane.

Poréwnano algorytm Helmerta — Pranis-Praniewicza parametrycznego. wielogrupowego (réwnole-
glego) wyrdwnania obserwacji z algorytmem dwuetapowego wyréwnania sieci niwelacyjnej. Dwuetapowe
wyrdéwnanie skiada si¢ z wyréwnania pseudoobserwacji metoda najmniejszych kwadratow 1 wyréwnania
obserwacji, ktore wykonywane jest oddzielnie dla kazdej linii niwelacyjnej.

Wykazano, ze réwnania normalne dotyczace wysokosSci punktéw weztowych, utworzone w oparciu
o pseudoobserwacje. sa identyczne ze zredukowanymi réwnaniami normalnymi utworzonymi w oparciu
0 obserwacje w procesie wyréwnania wielogrupowego. A zatem, wyréwnane wysoko$ci punktow wezio-
wych i ich macierz wariancyjno-kowariancyjna sa takie same w przypadku wyréwnywania obserwacji
i w przypadku wyréwnywania pseudoobserwacji.

W dalszej kolejnosci przedstawiono algorytm obliczania wysokosci reperéw posrednich linii niwela-
cyjnych. Wykazano, ze warto$¢ bledu Sredniego miy typowej obserwacji/pseudoobserwaciji jest taka sama
w przypadku wyréwnywania obserwacji i w przypadku wyréwnywania pseudoobserwacji.

W Kkonkluzji stwierdzono, ze wyniki wyréwnania dwuetapowego i $cistego wyréwnania obserwacji
sa identyczne.



