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Abstract. Parallel realizations of discrete transforms (DTs) computation algorithms (DTCAs) performed on graphics processing units (GPUs)
play a significant role in many modern data processing methods utilized in numerous areas of human activity. In this paper the authors propose
a novel execution time prediction model, which allows for accurate and rapid estimation of execution times of various kinds of structurally
different DTCAs performed on GPUs of distinct architectures, without the necessity of conducting the actual experiments on physical hardware.
The model can serve as a guide for the system analyst in making the optimal choice of the GPU hardware solution for a given computational
task involving particular DT calculation, or can help in choosing the best appropriate parallel implementation of the selected DT, given the
limitations imposed by available hardware. Restricting the model to exhaustively adhere only to the key common features of DTCAs enables the
authors to significantly simplify its structure, leading consequently to its design as a hybrid, analytically–simulational method, exploiting jointly
the main advantages of both of the mentioned techniques, namely: time-effectiveness and high prediction accuracy, while, at the same time,
causing mutual elimination of the major weaknesses of both of the specified approaches within the proposed solution. The model is validated
experimentally on two structurally different parallel methods of discrete wavelet transform (DWT) computation, i.e. the direct convolution-
based and lattice structure-based schemes, by comparing its prediction results with the actual measurements taken for 6 different graphics
cards, representing a fairly broad spectrum of GPUs compute architectures. Experimental results reveal the overall average execution time and
prediction accuracy of the model to be at a level of 97.2%, with global maximum prediction error of 14.5%, recorded throughout all the conducted
experiments, maintaining at the same time high average evaluation speed of 3.5 ms for single simulation duration. The results facilitate inferring
the model generality and possibility of extrapolation to other DTCAs and different GPU architectures, which along with the proposed model
straightforwardness, time-effectiveness and ease of practical application, makes it, in the authors’ opinion, a very interesting alternative to the
related existing solutions.
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1. INTRODUCTION
Despite continuous increase in computational effectiveness
of electronic devices, the development of time-efficient al-
gorithms seems to be invariably an up-to-date issue. This is
also still the case for a very important class of computational
methods, namely, discrete transforms (DTs) computation
algorithms (DTCAs), widely used in a variety of applications,
such as general signal and image processing [1–3], data and
image compression [4–6], signal analysis and pattern recogni-
tion [7–9], and in many other common digital signal processing
tasks. This, and the ever-growing amount of digitally processed
data, makes the research on improvement of those algorithms
very intense. In recent years the domain of high-performance
computing (HPC) has changed significantly due to the emer-
gence of the entirely new approach to the architecture design of
graphics processing units (GPUs), which allows developers to
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perform general-purpose, parallel computations very efficiently
without excessive effort [10, 11]. Thus, GPUs have attracted
attention of scientific community across a broad spectrum of
computational research areas and successfully have become
a basic, powerful tool for industrial and research computa-
tions, which combines cost-effective hardware solutions with
relatively high computational performance [12]. The main
challenge of the design of GPU algorithms is to adapt classic
sequential solutions, well-suited for CPU-based systems, to
meet the requirements of the parallel GPUs architectures.
It turned out quickly that many computational problems,
e.g. [13–17], can be significantly accelerated with the use of
GPUs. However, the parallel algorithms construction process
remains still a great challenge, since the diversity of GPUs
architectures details makes it very difficult to predict the actual
effectiveness of the given solution, designed for a chosen
family of hardware platforms, and the improvement results are
often far from assumed, when verified on physical hardware.
To ease this challenge for the important case of DTCAs, the au-
thors propose a novel execution time prediction model, which
allows for accurate and rapid estimation of execution times

Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 1, p. e139393, 2022 1

https://orcid.org/0000-0002-2707-7353
mailto:kamil.stokfiszewski@p.lodz.pl


D. Puchala, K. Stokfiszewski, and K. Wieloch

of various kinds of structurally different DTCAs performed
on GPUs of distinct architectures, without the necessity of
conducting the actual experiments on real hardware.

Many reputed models are present in the literature, see e.g.
[18–46], and may be assigned to 5 general categories, namely:
analytic, statistical, machine learning-based, simulation-based
and hybrid. All of the mentioned approaches exhibit differ-
ent effectiveness characteristics. Analytic approaches, see e.g.
[21–26], are usually rapid and allow fast estimation of execu-
tion times of the selected, GPU dedicated, implementations.
They often, however, exhibit unsatisfactory accuracy perfor-
mance and are difficult to apply in practice, since they re-
quire preliminary, intense analytical effort to evaluate numer-
ous model parameters, based on the static analysis of the al-
gorithm code and the immense knowledge of internal hard-
ware mechanisms, required from the designer. The next two
classes of models are statistical, e.g. [26–29], and machine
learning-based ones, see [26, 30–32], which are similar in their
general construction principles. Statistical models often uti-
lize such techniques as principal component analysis (PCA)
and/or linear regression (LR) methods to predict the perfor-
mance of GPU implementations of the certain pool of com-
putational problems. Machine learning-based models employ
neural networks (NNs), support vector machines (SVMs), ran-
dom forests (RFs) and/or decision trees (DTs), in the process
of execution time prediction of GPU applications. In compari-
son to analytic methods, statistical and machine learning-based
approaches relax the need for preliminary complex analysis
of software and hardware architecture interactions and inter-
nal hardware mechanisms, maintaining, at the same time, rapid
characteristics of the ultimate estimation process. Although po-
tentially very promising results can be achieved with the use of
such models, they suffer from a few significant limitations, i.e.
the need for aggregation of large amounts of the training data,
collected for different use-case scenarios and hardware archi-
tectures, what might be in many cases unrealizable practically,
and also the considerable time inefficiency of the training pro-
cess, required for establishing the model parameters. On the
other side of the spectrum simulation-based models are present,
see e.g. [33–37]. Their main advantages are high prediction ac-
curacy and ease of practical application. Here, the designer is
required only to supply the model with a properly prepared so-
lution code, with almost no necessity of its prior analysis. The
model then emulates the execution process and responds with
the estimated execution time. However, this comes at a price
of immense time required for the simulation process to gener-
ate the estimation results. This often prohibits practical appli-
cation of such models when large amounts of tests or extensive
data sizes are involved in sufficient validation of the designed
algorithmic solution. The last class of the GPU performance es-
timation solutions are the hybrid models (see [38–41]), which
combine the two previously described prediction methods – an-
alytic and simulation-based, in an attempt to eliminate the ear-
lier mentioned drawbacks of both of the discussed approaches,
namely, the limited prediction accuracy and the immense sim-
ulation time. Our model adheres to this last category however,
its restriction to the considered class of DTs computation al-

gorithms, enables us to greatly simplify the model structure in
comparison to the existing hybrid methods. Both, the restric-
tion of the model to the class of DCTAs and, as a consequence,
its simplification within the simulation part, cause the proposed
model not only to significantly increase the time performance
and reduce preliminary code analysis effort, but also consid-
erably enhance the prediction accuracy characteristics with re-
spect to the existing, more general approaches. The specified
enhancements are possible, due to the key common structural
features of DTCAs, whose exploitation enable the mentioned
simplifications to be administered. These are: (i) the lack of
conditional statements in most of the known DTCAs, (ii) suffi-
ciently steady memory access patterns, which can be described
by a minimum number of constant scaling factors contained
within a model, and (iii) the presence of multiple, sequential
and globally synchronized, computational stages in many of
the practical DTCAs implementations. Our model depends on
those features, which obviously narrows its applicability on the
one hand, but, on the other, immensely increases its general per-
formance with respect to the existing solutions in the DTCAs
domain. At last, it is also worth noting that the proposed model
can be applied to any kinds of GPU implementations of parallel
algorithms, as long as they adhere to the mentioned assump-
tions.

In order to evaluate the performance of our model, we have
chosen two exemplary, structurally different parallel methods
of discrete wavelet transform (DWT) computation to be tested,
namely – the direct, convolution-based and the lattice structu-
re-based DWT computation algorithms. Our choice was mo-
tivated by the facts that: (i) both of the mentioned methods
are, in the structural sense, good representatives of other well-
known DTCAs commonly used in practice, and (ii) their clas-
sic computational as well as parallel step complexities are of
the same order, which is not often the case for many other,
mutually structurally different, DTs computation methods, e.g.
such as the DFT and the FFT algorithms, i.e. the direct, ma-
trix-based and fast, in-place, butterfly structure-based discrete
Fourier transform computation procedures, see e.g. [1]. The last
feature of the selected exemplary DWT computation algorithms
makes the conducted comparisons much more subtle, which in
turn, puts significantly higher demands on the model accuracy
characteristics than in the case of many other DTCAs, such as
the ones mentioned above. We have validated our model by per-
forming numerous execution time prediction tests of the chosen
DWT computation methods for a range of different DWT data
sizes and filter lengths, and comparing the resulting estimations
with the actual measurements of the considered DTCAs exe-
cution times taken for 6 different graphics cards, representing
a fairly broad spectrum of NVIDIA GPUs hardware microar-
chitectures with compute capability (CC) indices ranging from
2.0 (Fermi microarchitecture) to 7.5 (Turing microarchitecture).
The choice of NVIDIA GPUs for our model validation, apart
from their undoubtedly high popularity and accessibility, was
motivated by the fact that they may be considered to be a good
example of typical, modern, general-purpose,the architectures
of mass-parallel compute devices. The results enable us to in-
fer model generality and possibility of extrapolation to other
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DTCAs performed on GPU devices with distinct, diverse archi-
tectures.

To complete our introductory discussion, we will now pro-
vide a brief outline of the rest of the paper. In Section 2 we will
make a review of the existing, representative execution time
prediction models, which might be helpful in making the ob-
jective comparison of our model general performance with the
efficiencies of the related solutions. In Section 3 we will present
the chosen DWT computation methods and provide an insight
into their algorithmic structure along with their theoretical com-
putational and parallel step complexities, which eases the inter-
pretation of the obtained experimental results. In Section 4 we
will briefly discuss CUDA (NVIDIA Compute Unified Device
Architecture) program execution model on which our solution
is solely based on. Section 5, constituting the main part of the
paper, will be dedicated fully to the detailed presentation of the
proposed model and the most significant aspects of its practical
application. In Section 6 experimental results, along with the
methodology of the conducted tests, will be presented and dis-
cussed in detail. At last, Section 7 contains the most important
conclusions regarding the proposed model general efficiency
and the prospects for the future work.

2. GPU PERFORMANCE PREDICTION MODELS
In this section we will present a survey on the most widely-
known, existing GPU performance prediction models, accord-
ing to their types, described in the introduction, along with
their general operational and accuracy characteristics, helpful
in making the objective comparison of our model general per-
formance with the efficiencies of the related solutions.

2.1. Analytical models
Let us start with the existing analytical models, appreciated for
their generality, relatively good prediction accuracy and high
evaluation time effectiveness. The primary approaches here are
the BSP (Bulk Synchronous Parallel) and PRAM (Parallel Ran-
dom Access Machine) models and their diverse variants, see,
e.g. [18].

The first reputed model, which adheres to the mentioned
category is presented in paper [21]. It is an analytical model
whose foundations rely on the notions of Memory Warp Paral-
lelism and Computation Warp Parallelism. Based on those met-
rics, derived from GPU code static as well as dynamic anal-
ysis, the model predicts the selected GPU solution execution
time with significant accuracy and in a highly rapid fashion. It
is average prediction error is around 13.3% for general com-
putational tasks (with maximum prediction mismatch reaching
45%). However, the related tasks of vector and matrix calcu-
lations (to which DTCA might be assigned), its average pre-
diction error drops down to 7% with the maximum prediction
mismatch of 30%.

Model proposed in paper [22] is a fast analytical model that
estimates the execution time of massively parallel applications
using the instruction-level and thread-level parallelism. It is
based on the analysis of CUDA PTX (parallel thread execution
instruction set) files for the execution process reconstruction

on the instruction and memory consumption levels. Assembly
codes and specific instruction time costs are used for final ex-
ecution time prediction. The key idea for the mentioned model
is to find the maximum number warps that can execute in par-
allel and estimate CPI (cycles per instruction) factor, which
determines the actual level of computations parallelism. The
model average prediction error is around 10% for general com-
putational tasks (with maximum prediction mismatch of about
30%). Once again, for vector and matrix related calculations its
average prediction error drops down to only about 5% with the
corresponding maximum prediction mismatch of around 15%.

In paper [23] is a simple and intuitive BSP-based model is
proposed. It relies on the number of arithmetic and memory
access operations preformed by the GPU, with additional in-
formation on cache, shared and global memory usage, obtained
from the profiling data. It was tested on the matrix related com-
putational tasks, where it is average prediction error was close
to 5% with the maximum mismatch of about 40%.

The next model, worth noticing, is the one presented in pa-
per [24]. It is an extension of existing analytical solutions.
The developed model is able to capture parallelism, latency-
hiding and occupancy together in one framework. The model
is aimed at identification of performance bottlenecks, reduction
of the configuration space for kernel execution parameters and
is able to predict achievable execution times and capture their
trends for various kernel launch configurations. In case of ma-
trix related computations, its average prediction error oscillates
within 15% with the respective maximum prediction mismatch
of about 60%.

Last but not least, there is the model presented in [25]. It is a
performance prediction model for the CUDA GPGPU platform
based on PRAM, BSP and QRQW (Queue-Read Queue-Write)
models. The proposed model is used to analyze pseudo-code of
CUDA kernels to obtain a performance estimate with three ex-
perimental case studies: matrix multiplication, list ranking, and
histogram generation. It is average prediction error is approx-
imately 21% for general computational tasks with maximum
prediction inaccuracy reaching about 100%.

2.2. Statistical and machine learning-based models
The next, important class of models is constituted by the statis-
tical and machine learning-based (ML-based) predictors. They
are constructed around the common principle of the automatic
adjustment of the assumed model parameters, conducted on the
basis of the statistical data, collected during extensive empiri-
cal measurements, performed for a wide variety of computation
task classes with the use of a multiplicity of distinct GPU hard-
ware platforms.

Very interesting and comprehensive research on comparison
of the statistical, machine learning and analytical approaches
to GPU performance modeling, is presented in the work [26].
There, the machine learning techniques, namely support vec-
tor machines (SVMs) and random forests (RFs), are compared
with the statistical methods, based on linear regression (LR),
and finally confronted with BSP-based analytical model. Stud-
ies show relative superiority of the analytical model, which in
case of the matrix-related computations achieves the smallest
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average prediction error of around 12%, with maximum predic-
tion mismatch of 25%. For the statistical LR model, the respec-
tive errors are about 15% and 60%, while for machine learning
SVM and RF approaches, they are, at their best, equal to 21%
and 158%, respectively. On the other hand, the authors point out
that machine learning and statistical models are more generaliz-
able to different applications and GPU architectures, compared
to the baseline BSP analytical model, which requires constant
refinement.

Let us proceed to other, worth noticing, solutions. And so,
the solution presented in paper [27] is a statistical performance
model, designed for the OpenCL programming standard appli-
cations dedicated for NVIDIA GPUs. It is based on the use
of the principal component analysis (PCA) methods and is re-
ported to predict application execution times with about 9% er-
ror on average, with the respective maximum prediction error
value not exceeding 40%.

The Eiger framework [28], is based on linear regression tech-
niques and provides an automated model construction method
in which designers may profile and characterize GPU work-
loads, automatically construct performance models, and eval-
uate their sensitivity to different hardware configurations. Be-
cause of its extensive area of applicability, its overall predic-
tion error is relatively high, reaching the level of about 35%
for general computational tasks, with the maximum prediction
mismatch of about 110% for DTCA-like kernels.

Solution proposed in paper [29] is the statistical model for
performance and power consumption analysis for ATI GPUs. It
is build with the use of statistical random forest (RF) approach.
Its general prediction error is reported to be at a level of 13.1%.

Finally, let us consider models using inherently machine
learning-type adaptation techniques, such as the neural net-
works and/or non-linear regression with feature extraction
methods. As such, solution proposed in paper [30] describes
a GPU performance and power consumption estimation model
that uses a dedicated multilayer, nonlinear perceptron neural
network, trained on the data sets gathered from measurements
performed for numerous GPU devices and an extensive collec-
tion of GPU applications. The obtained scaling curve of kernel
execution characteristics is used to estimate the performance
and power consumption of the newly presented test applica-
tions ran under different GPU configuration settings. Solution
achieves the overall average prediction error of around 15%.

The next model, presented in paper [31], is also multilayer
neural network-based approach to GPU applications perfor-
mance prediction. It is reported that the average network pre-
diction error lays within 5%, across a large, multidimensional
parameter space, considered in the undertaken experiments.

The last of the well-known machine learning-based models
we want to take notice of is the one proposed in [32]. It fo-
cuses on exploiting the correlations between program proper-
ties, hardware characteristics and GPU execution time, using
non-linear regression methods combined with classification and
feature extraction algorithms. For a wide variety of mixed types
GPU applications, the model achieves the overall average pre-
diction error of approximately 18% with the maximum predic-
tion inaccuracy of about 65%.

2.3. Simulation-based models
Let us now move forward to the next, very important, class of
execution time prediction models, namely, the simulation-based
models. Among other considered solutions, they are definitely
the ones with the smallest prediction error and many of them are
even aimed to achieve cycle-level accuracy. Unfortunately, the
price they pay for reaching the maximum prediction accuracy
levels is quite high, and manifests itself in the immense amount
of time needed for a given GPU application execution process
to be fully simulated and thus, the execution time prediction to
be evaluated, see e.g. [36]. On the other hand, they are the most
easily applicable ones from the user’s perspective, since all they
often require from the user is the delivery of a properly prepared
solution code, with almost no necessity of its prior analysis.

The most reputed model in this category is undoubtedly that
developed under the GPGPU-Sim project [33], see also [34],
widely cited, referred to, and often utilized by other solutions
as their constituent part. It is a cycle-accurate, modular and ex-
tendible GPU device emulator, capable of precise evaluation of
execution times for nearly all types of diverse computational
workloads. For DTCA-like problems, its average prediction er-
ror lowers to about 1%, with a maximum inaccuracy level of
6%, which has to be considered an excellent result. At the same
time, GPGPU-Sim emulation process is on average, approx-
imately 9 orders of magnitude, i.e. 109 times, slower, com-
pared to real hardware, assuming the usage of consumer seg-
ment CPU-based system for the simulation purposes and GPU
of the same class for the application execution, see [36].

Next model in this category is the GPUSimPow simulator
[35] – a detailed, architecture-level power consumption simu-
lation framework for the compute parts of contemporary GPUs
running CUDA or OpenCL workloads, which is as an exten-
sion of GPGPU-Sim, and, as a sort of a side-effect, enables
also precise execution times evaluation. Similarly to the previ-
ous model, for DTCA-like computations, its average prediction
error is about 1%, with maximum prediction inaccuracy on the
level of approximately 5% and a simulation slowdown of a fac-
tor of about 109 in comparison to real device computations.

GPGPU-MiniBench simulation framework [36] focuses on
automatic generation and execution of miniature, yet represen-
tative GPGPU workloads, exhibiting similar execution charac-
teristics as the ones whose performance is about to be evalu-
ated, thereby dramatically accelerating architectural simulation,
without loosing the ability to conduct accurate predictions. Its
overall average prediction error is reported to be at a level of
4.7% across a broad set of GPU benchmarks, and the achieved
average speedup factor is approximately equal to 49× with re-
spect to GPU architectural simulation, which amounts to an ap-
proximate slowdown of a factor of about 2 ·107 in comparison
to real device execution times.

Finally, the last well-known solution is the Multi2Sim simula-
tor [37], an open-source, modular, and fully configurable toolset
that enables ISA-level simulation of x86 CPUs and and AMD
GPUs. The authors focused on AMD graphics cards, for which
the simulator replaces the OpenCL library and automatically
emulates the GPU computations. Its average execution time
prediction error for DTCAs-like workloads oscillates within a
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level of 12% with respective maximum prediction error of about
20% and the average simulation slowdown of a factor of about
8 ·107 in relation to real device computations.

2.4. Hybrid models
The last important class of the GPU execution time prediction
models are the hybrid ones. They usually combine an analytic
approach with a restricted simulation-based execution time pre-
diction techniques, in order to significantly speed up the model
prediction evaluation process with respect to the simulation-
based counterparts, maintaining at the same time, high predic-
tion accuracy, characteristic to the models belonging the last of
the mentioned categories. They are also important from our per-
spective, since model proposed in this work can be considered
to adhere to this particular class.

Focusing on the most reputed and widely cited hybrid mod-
els, we will start by introducing the GpuTejas framework [38],
which is a hybrid, Java-based parallel GPU execution time pre-
diction model that introduces a novel scheduling and partition-
ing scheme for parallelizing GPU simulations. The main goal
of the GpuTejas authors was to create an accurate functional
simulator, much faster, than the popular GPGPU-Sim. They
have achieved an average acceleration of about 430× in relation
to GPGPU-Sim, due to block level calculations parallelization,
which amounts to a slowdown of a factor of about 2.3 · 106 in
comparison to real device computations. The reported overall
average inaccuracy of the GpuTejas model is about 15% with
the maximum prediction error of nearly 30%.

The next well-established hybrid model is the PPT-GPU
framework, presented in [39], being, as the authors themselves
explain, a scalable and accurate simulation framework that en-
ables GPU code developers and architects to predict the per-
formance of applications in a fast and accurate manner on dif-
ferent GPU architectures. It is fully parametrized performance
prediction toolset that relies on (PTX) ISA and GPU config-
urations to predict applications runtime without having to ex-
ecute them on real hardware. Solution accuracy is validated
through the execution times comparison of the set of bench-
marks evaluated by the model against those measured on real
devices, as well as reported by the GPGPU-Sim emulator. The
results show that PPT-GPU overall prediction inaccuracy lies
within 10% compared to the real device measurements and,
at the same time, the simulation is about 160× faster, on av-
erage, than that of GPGPU-Sim, which amounts to a simu-

lation slowdown of a factor of about 6.25 · 106 in relation to
real device computations. Model presented in the paper [40]
is a hybrid framework for fast and accurate GPU performance
estimation. Kernel execution flow is statically analyzed, pro-
ducing the functional execution trace, which is then dynami-
cally simulated to obtain the performance prediction. Authors
report the model overall average prediction inaccuracy to be
at the level of 17.04% and 150× average speedup in relation
to the respective GPGPU-Sim emulation time, which gives the
simulation slowdown of a factor of about 6.7 · 106 compared
to real GPU average performance. The last model, which we
want to take notice of is the GATSim abstract timing simula-
tion model, proposed in [41]. It is based on a hybrid approach
of separation of functional and timing models, combining a
fast functional kernel execution on the existing simulators or
native GPU hardware with light and accurate abstract timing
model. Its average overall prediction error is reported to be at
a level of 4% with maximum prediction mismatch of about
16%. At the same time, the results show that the model pre-
diction evaluation is about 400× faster, on average, compared
to a cycle-accurate GPU simulators for standard GPU bench-
marks, which gives the average simulation slowdown of a fac-
tor of about 2.5 · 106 in relation to the physical GPU devices
computation time.

2.5. Models characteristics summary
In this section we have reviewed the most representative GPU
performance prediction models, according to their types, along
with their general operational and accuracy characteristics.
There of course exist other well-established GPU execution
modeling solutions, enabling GPUs performance prediction, es-
pecially functional and cycle-accurate simulators (like Accel-
Sim [42], Barra [43] or the Ocelot [44] framework) or hetero-
geneous CPU-GPU simulation frameworks (e.g. gem5-gpu [45]
or FusionSim [46]), but either they are directly based on the so-
lutions described in the previous paragraphs or their prediction
results are very similar to those reported above. This makes the
presented review fairly comprehensive in terms of the general
characteristics of the results obtained within each of the main
categories of the existing GPU performance prediction models.
For the sake of later comparisons, let us summarize the best
characteristics obtained by the models in each of the consid-
ered categories, in a brief form, whose respective summary is
given in Table 1.

Table 1
Summary of the best prediction efficiencies characteristics within each of the considered models categories

Model type
Average

prediction
error

Maximum
prediction
mismatch

Average
evaluation
slowdown

Algorithm
type

Reference
materials

Analytical 5% 15% negligible DTCA-like [22]

Statistical 9% 40% negligible general [27]

ML-based 6% 45% negligible general [31]

Simulation-based 1% 5% 108 DTCA-like [35]

Hybrid 4% 16% 106 general [41]
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The average prediction errors along with the respective max-
imum prediction divergences are given in columns 2nd and 3rd
of Table 1 for each of the considered models category. It should
be kept in mind, however, that some of them refer to prediction
characteristics of the presented models for general algorithm
classes (c.f. attribute “general” in column 5), covering a wide
range of structurally and functionally different GPU applica-
tions. This may, in principle, lower their reported prediction ef-
ficiency in comparison to models, in which only a certain class
of the GPU computation algorithms (i.e. DTCA-like computa-
tions) are taken into account, which, in turn, are of main inter-
est of ours. The fact that more detailed information could not
be effectively extracted from the source publications and other
additional materials we have studied, forced us to restrict our
insight into more general estimations in cases of some of the
selected prediction methods presented in the current work, nev-
ertheless, we have decided to include them in our comparisons,
since we hope that they eventually might still have a consider-
able informative value despite the mentioned inconveniences.
At last, it is worth explaining that in column 4th of Table 1
the models average prediction evaluation slowdown is reported,
which relates to the real GPU device execution time needed for
the respective application to finish its computations. Here, the
attribute “negligible” indicates the respective model prediction
output response time being of order of milli or even microsec-
onds and, mostly, independent of the physical execution time of
the measured GPU application.

3. DISCRETE WAVELET TRANSFORM AND
ITS COMPUTATION ALGORITHMS

The discrete wavelet transform (DWT) is a mathematical tool
that decomposes a signal into representation that gradually ex-
poses signal details and trends as a function of time (or space,
in case of 2D DWT). DWT has become popular in many ap-
plications regarding general digital signal and image process-
ing tasks, e.g. [8, 47–49], due to such its advantages as the
use of localized basis functions and the existence of the vari-
ety of effective computation algorithms, see e.g. [50–58]. In
our work we will consider two such algorithms, namely, the
matrix-based (or equivalently direct, convolution-based) and
the lattice structure-based approaches to DWT computation.
These approaches are, in the structural sense, good representa-
tives of other well-known DTCAs commonly used in practice,
what was discussed more specifically in Section 1. Let us now
present the considered DWT computation methods and review
their characteristics, important from this work perspective.

As in the case of other discrete linear transforms, DWT can
be calculated directly by multiplying the transform matrix by
the input signal vector, which can be shortly written as

y = Ax , (1)

where x and y are N – element input and transformed vectors,
respectively and A is N×N – element transform matrix. Matrix
representation of the discrete wavelet transform can be derived
by interpreting the DWT as the analysis stage of a finite im-

pulse response two-channel orthogonal filter bank, see [54,55].
In such view, both of the K – element h and g analysis filters
form a transformation matrix of the form:

A =



hK−1 . . . h1 h0 0 0 . . . 0 0

gK−1 . . . g1 g0 0 0 . . . 0 0

0 0 hK−1 . . . h1 h0 . . . 0 0

0 0 gK−1 . . . g1 g0 . . . 0 0
...

...
...

...
. . .

...
...

hK−3 . . . h1 h0 0 0 . . . hK−1 hK−2

gK−3 . . . g1 g0 0 0 . . . gK−1 gK−2


. (2)

For orthogonal DWTs, the inverse transform matrix is the trans-
pose of its forward counterpart, i.e. A−1 = AT , so it is easy to
verify that the computational structure of the inverse DWT is
the same as the forward one, which enables us to state that the
considerations presented in this paper apply to both cases, i.e.
the forward and the inverse DWT computational tasks.

To reduce computational complexity, instead of using direct
matrix approach, DWT can also be calculated using more effi-
cient algorithms. Here, definitely an interesting option is the use
of lattice structure-based approach, which is a powerful tool of
implementing finite response two-channel filter banks. It can be
shown, see e.g. [48], that the DWT can be calculated with the
use of the considered filter banks, which consequently means
that it also can be evaluated with the lattice structure, presented
in Fig. 1. The calculations for the first K/2 stages of lattice
structure-based method of DWT computation are described by
base operations Γi, j, defined as

Γi, j =

[
1 si, j

ti, j 1

]
, (3)

and depicted in Fig. 1 with the ‘•’ symbol, where si, j, ti, j,
i = 0, . . . ,K/2−1 and j = 0, . . . ,N/2−1 are parameters whose
values are determined during transform factorization and τn
represents single multiplication. The result is a representation
of the input signal x in low and high frequency bands.
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Fig. 1. Lattice structures of forward and inverse DWTs for transform
size N = 8 and filter length K = 6
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3.1. Theoretical time effectiveness of the considered DWT
computation approaches

Let us now consider theoretical time effectiveness of the two of
the analyzed DWT computation methods in case of their clas-
sic, sequential realizations as well as their parallel implemen-
tations. For sequential realizations we can consider traditional
computational complexities of the examined approaches to be
good theoretical time effectiveness measures. In all of the sub-
sequent analysis we will consider computational complexities
to take into account both the number of addition and multi-
plication operations together, carried out during the course of
the considered DWT computation method. It can be shown that
for DWT matrix-based approach its computational complexity
equals to

C1D
M (N, K) = N(2K−1), (4)

where, as earlier, N denotes the transform size and K is the filter
length. For the lattice structure-based approach, since a single
operation Γi, j consists of 2 multiplications and 2 additions, it
can be concluded that its computational complexity is

C1D
L (N, K) = N(K +1). (5)

For specifying theoretical time effectiveness of parallel real-
izations of the considered DWT computation methods we will
take advantage of the notion of step complexity, widely used in
literature as the execution time characteristics for parallel al-
gorithms, see e.g. [59, 60]. Step complexity is defined as the
minimum necessary number of sequential steps needed for the
parallel algorithm to complete its computation, given an infinite
number of arithmetic processing units it may utilize during its
course. In light of such definition it can be seen that matrix-
based DWT computation step complexity is

S1D
M (K) = 2K−1, (6)

while for lattice structure-based approach it would be equal to

S1D
L (K) = 2K +2. (7)

Looking at the above step complexities we can conclude that
both matrix and lattice structure-based approaches are theo-
retically equivalent in terms of time effectiveness for the case
of their parallel realizations however, in such a case, matrix-
based approach consumes about 2 times more computational
resources than its lattice structure-based counterpart. Addition-
ally, in the case of classic, sequential realizations (e.g. CPU
implementations), matrix-based DWT computation is theoret-
ically about 2 times slower than the lattice structure-based ap-
proach, what can be concluded on the basis of equations (4)
and (5).

Since discrete wavelet transforms also find their essential ap-
plications in 2D signal analysis, such as data and image pro-
cessing tasks, see e.g. [48] or [2,9,61,62], it is beneficial to con-
sider also the complexities of the analyzed DWT algorithms for
the two-dimensional case. Assuming separability of the consid-
ered discrete wavelet transforms variants, calculation of the 2D
DWT may be performed by application of 1D DWTs to each

row of the input signal matrix and then, successively, by apply-
ing 1D DWTs to each column of the resulting intermediate ma-
trix. Such technique is commonly referred to as the row-column
method of 2D DWT computation, see e.g. [2, 9, 61, 62]. It can
be verified that the rows and the columns 1D DWT scans in
2D DWT row-column calculation method can be realized with
the use of a single application of the computation, structurally
identical to the 1D DWT matrix or lattice structure-based cal-
culations, performed on flattened input or intermediate signal
matrices with each of their rows or columns padded with their
K− 2 cyclic element repetition. Such a procedure is schemat-
ically depicted in Fig. 2 for lattice structure-based DWT with
filter length K = 6 and 2×6 – element input matrix. Exactly the
same procedure can be also applied in the case of the matrix-
based 2D DWT computation. Because of the above facts it is
now easy to express 2D DWT computational and step complex-
ities, utilizing two of the analyzed approaches, in terms of their
one-dimensional counterparts. Since both of the approaches use
structurally identical data processing schemes as for 1D case,
with the only difference that they need to be applied to a flat-
tened and properly padded input and intermediate signal matri-
ces, all one has to do in order to express the analyzed 2D DWT
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Fig. 2. Rows stage of 2D DWT row-column calculation using 1D
lattice-structured DWT data flow graph with filter length K = 6 for

2×6 – element input matrix padded with K−2 cyclic element
repetition
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complexities, is to apply the respective formulas (4)–(7) for 1D
DWT cases with flattening and padding operations being ac-
counted for in the transform input data size. So, for 2D DWT
matrix-based approach the computational complexity would be
equal to

C2D
M (N, K) = 2 ·C1D

M (N(N +K−2), K), (8)

where N is the number of rows and columns of the N×N el-
ement transform input signal matrix, K is the filter length and
factor 2 is present above to account for the need for perform-
ing the considered calculation twice, referring to the scans of
rows and columns in the row-column 2D DWT computation
method. It is worth adding that here, as well as in later con-
siderations, we will not include the input matrix transpositions
steps complexities, present between the rows and the columns
2D DWT calculations stages, as the ones which are not signif-
icant from the standpoint the undertaken analysis. Continuing,
for the 2D DWT lattice structure-based approach the computa-
tional complexity can similarly to (8) be written in terms of its
1D counterpart in the following form

C2D
L (N, K) = 2 ·C1D

L (N(N +K−2), K), (9)

where all the terms have the same meaning as before. At last let
us also evaluate step complexities for the considered 2D DWT
computation methods. Similarly as for computational complex-
ities we can immediately use dependencies (6) and (7), appro-
priate for 1D DWTs step complexities case, including addition-
ally the necessity of performing two computation passes, refer-
ring to the scans of rows and columns in the row-column 2D
DWT computation method. So, for 2D DWT matrix-based ap-
proach we obtain

S2D
M (K) = 2 ·S1D

M (K), (10)

and for lattice structure-based method we have

S2D
L (K) = 2 ·S1D

L (K). (11)

Because of identical forms of dependencies (8), (9) and (10),
(11) of 2D DWT computational complexities in relation to their
respective one-dimensional counterparts, all conclusions for-
mulated in the previous paragraph, regarding time effectiveness
and resources consumption of the analyzed 1D computation ap-
proaches, also hold, without any modifications, for the case of
2D DWT computations.

To sum up, for both 1D and 2D considered DWT compu-
tation methods the lattice structure-based approach is twice as
fast as the matrix-based algorithm in terms of the theoretical
computational complexity, while theoretical parallel step com-
plexities of both of the methods are equivalent; however matrix-
based approach demands allocation of twice as many compu-
tational resources as its lattice structure-based counterpart. We
will see later how much those theoretical considerations diverge
form true results obtained after implementations of both of the
methods on physical GPUs, which can be considered yet one
more strong argument for the need for DTCAs execution time
modeling on GPUs.

4. GPU PROGRAM EXECUTION MODEL OVERVIEW
In order to develop efficient parallel solutions for GPU it is nec-
essary to understand basic concepts underlying physical GPU
architecture. At present, the use of graphics processing units
for general purpose numerical computations includes several
options regarding different device manufacturers. In this pa-
per we focus on CUDA (Compute Unified Device Architec-
ture) by NVIDIA Corporation as a well-established represen-
tative of modern GPU architectures. Since the release of the
very first devices supporting this technology, CUDA architec-
ture is incessantly being developed and consecutive versions,
called Compute Capability (CC), bring innovations and contin-
uous increase in overall computational performance while still
maintaining relatively low-cost characteristics. This makes the
architecture one of the most popular solutions for implementing
parallel computations and motivates our choice to focus on that
particular alternative.

CUDA devices are representatives of the so-called Single In-
struction Multiple Thread (SIMT) architecture that strongly re-
sembles the SIMD (Single Instruction Multiple Data) execu-
tion model. Figure 3 gives the perspective on the placement of
modern GPU architectures in light of Flynn’s taxonomy, see
e.g. [63]. Both are based on the principle of processing the same
instructions by multiple computational units, but additionally,
SIMT allows multiple threads to execute independently within
single thread set called the warp. Within all CUDA devices
a warp consists of 32 threads. All threads in a warp execute
the same instruction at the same time instant, but on differ-
ent data which is assigned to each of them and each individ-
ual thread has its own instruction address counter and register
state.

Multiple Instruction Single Data (MISD)

Single Instruction Single Data (SISD)

Multiple Instruction Multiple Data (MIMD)

Single Instruction Multiple Data (SIMD)

DATA

IN
S
T
R
U
C
T
IO
N
S

Graphics Processing Units:
Single Instruction Multiple Thread (SIMT)

Fig. 3. Architecture of modern GPUs in relation to Flynn’s taxonomy

The heart of CUDA architecture is a scalable array of Stream-
ing Multiprocessors (SMs). Massive parallelism of a GPU de-
vice is built around architectural and logical replications of
blocks and operating schemes. Every modern GPU consists of
many SMs, and every SM consists of many CUDA cores. From
the point of view of logical division, there are threads, blocks
and grids. Grids can contain many blocks, and each block can
contain many threads. A single block is always assigned to one
SM, but a single SM can hold more than one block of threads.
For this reason, thousands of threads can be executed at the
same time within a single graphics card. During execution of
the kernel function, i.e. the GPU program, the thread blocks
are divided equally among all available SMs. Once a block of
threads is assigned to an SM, its threads are grouped into warps
and the block stays there until all its threads finish their exe-
cution.
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Fig. 4. Comparison of the logical organization of threads and
GPU hardware construction

From the logical perspective, threads and blocks can be ar-
ranged into, even up to three dimensional, grid structure, but on
the hardware side they are always arranged one-dimensionally.
Each thread has its unique identifier within the block. Threads
are assigned to blocks on a warp-size granularity, so if there is a
need to run, e.g. 140 threads, it will be necessary to use 5 warps
within a block. The last, incomplete warp, will still use SM re-
sources anyway. Besides CUDA cores, every SM includes also
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Fig. 5. Simplified scheme of a Streaming Multiprocessor built in CUDA 7.5 Compute Capability (Turing TU102/104/106)

other components, such as: shared memory, load/store oper-
ation units, register file, warp schedulers and instruction dis-
patch units. Simplified scheme presenting the comparison be-
tween logical organization of threads within a kernel function
and GPUs hardware construction is depicted in Fig. 4, while
Fig. 5 shows a sketch view of a single streaming multiproces-
sor built in CUDA Turing architecture. Proper organization of
blocks and threads using the right sizes of grids and blocks can
have a huge impact on kernel execution time, so selection of
appropriate kernel execution configuration is the key issue in
obtaining top overall performance. The limits at each level of
the thread hierarchy are device dependent. Execution process
sooner or later meets those limits. Of course, experimental re-
search for the most advantageous configuration is possible but
is time-consuming and still leaves a doubt if a selected one
is surely the best. Furthermore, such trial-and-error approach
raises a question why selected execution configuration outper-
forms the others. In order to understand those dependencies, it
is necessary to analyze the performance from the hardware per-
spective as well.

Yet another important aspect for parallel code efficiency op-
timization is so-called latency hiding. Instruction latency is the
time (measured, e.g. in clock cycles) between instruction being
issued and completed. Instructions can be classified into two
categories, i.e. arithmetic-logic instructions and memory access
instructions. Latency of time-consuming instruction can be
hidden by issuing other instruction from another resident warp.
Memory access instructions require significantly more GPU cy-
cles than arithmetic instructions and can be overlapped between
different warps. On the other hand, relatively fast arithmetic-
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logic instructions still use GPU cores main ALU pipeline can-
not be overlapped between different warps. When it is neces-
sary to wait for the load/store memory operation to complete,
SM can switch a warp to another to continue computations, and
afterwards, return to the abandoned warp, see Fig. 6. Such an
approach is beneficial to performance because it keeps the cores
of the device more occupied. Ratio between number of active
warps and maximum number of warps per SM (64 since archi-
tecture 3.0) is called the occupancy.

TIME

ARITHMETIC        MEMORY ACCESSwarp 1:

warp 2:

warp 3:

warp 4:

warp 5:

ARITHMETIC        MEMORY ACCESS

ARITHMETIC        MEMORY ACCESS

ARITHMETIC        MEMORY ACCESS

ARITHMETIC        MEMORY ACCESS

Fig. 6. Example of partial latency hiding by warp switching in an SM

There are of course more aspects of GPU algorithms im-
provement, which we will briefly discuss. These are: memory
access patterns, unavoidable synchronizations, execution paths
separation, etc., which also should be taken into account when
developing effective GPU implementations. Each SM has its
own shared memory and registers. Registers are partitioned
among threads and shared memory is partitioned among blocks,
so threads can cooperate and communicate within single block.
Maximum number of active warps is limited by resources of the
device. The state of each warp is always stored in the SM that it
is executed on, therefore, such switching does not bring any ad-
ditional time overhead. When each thread consumes more reg-
isters, fewer warps can be placed on an SM, and also when each
block consumes more memory, fewer blocks can be stored on
that SM as well. Consequently, general parallelism decreases.
Therefore, the reduction of registers and memory usage directly
increases the overall efficiency. Synchronizations can be done at
the system-level and block-level. System-level synchronization
waits for the work on whole GPU device to complete, while
block-level synchronization waits for all threads within a sin-
gle block to reach the same point. There is no possibility to
synchronize threads from different blocks. Conditional instruc-
tions inside kernel functions play also an important role in GPU
performance optimization. The basis of CUDA architecture is
to execute the same instruction by all threads within a single
warp. This is problematic when different threads have different
execution paths, again, such situation can lead to reduction of
parallelism and decrease overall computational efficiency.

The described, major aspects of general CUDA program ex-
ecution model form the basis, which our model is built on. In
the next section the proposed model will be presented in detail.

5. PROPOSED EXECUTION TIME PREDICTION MODEL
In this section we will present execution time prediction model
for parallel GPU realizations of discrete transforms computa-
tion algorithms. We regard the presented model to be a set of
algorithms allowing for evaluation of the overall execution time
for a particular DTCA, when properly fed with the parameters

describing the chosen GPU device and the considered DTCA
execution configuration.

5.1. General kernel function execution time
Let us first consider a problem of calculation of a general ker-
nel function execution time. Here we assume that the only in-
formation we have, regarding a given user’s kernel function, is
its properly defined computation time (in a sense which will be
explained later in this section), and we are not in possession of
any knowledge of the internal kernel function implementation.
As explained in the previous section, the user invokes a ker-
nel function with two main parameters, namely, the number of
blocks Nb and the number of threads per block Nt , which are
fed into the GPU host interface from the user’s host application
level. Having the number of blocks defined, GPU host interface
schedules the blocks evenly between all Nsm multiprocessors
present on the GPU device. Because of this fact, and since the
activities undertaken by all the GPU SMs are assumed to be
performed simultaneously and symmetrically, i.e. in an identi-
cal fashion for all the SMs present in a chosen GPU device, the
overall kernel execution time can be determined effectively by
considering the respective kernel execution process for a single
multiprocessor only (i.e. it would be exactly equal to the time
of the kernel execution process for a single SM, performed on
the portion of blocks assigned to that particular multiprocessor).
Having this in mind, let us consider in more detail the process
of the kernel function execution for a single SM.

Following on the earlier considerations, once an evenly
spread group of blocks is assigned to given SM it remains there
until the very end of their execution process. Due to limited
GPU resources not all of the blocks scheduled for execution on
a particular SM can become simultaneously active. By active
blocks we understand (see [10]) only those blocks for which
compute resources, such as registers and shared memory, are
currently allocated on a given SM. Because of these circum-
stances the SM execution process is forced to divide all blocks
scheduled for execution on that SM, to smaller groups of active
blocks, whose operations can be performed simultaneously, and
execute those groups in a sequential manner. The maximum
number of currently active blocks not only solely depends on
the quantity of the GPU resources used by individual threads
present in those blocks, but also, on the particular GPU device
hardware limitations. In our model we consider two such limita-
tions, namely Lb/sm, i.e. the maximum number of active blocks
per SM and Lw/sm, i.e. the maximum number of active warps
per SM. Those limitations are hardwired into a particular GPU
architecture – see, e.g. columns 6th and 7th of Table 3 in Sec-
tion 6, respectively. Other limitations also exist (e.g. maximum
number of registers per SM or maximum amount of shared
memory per SM), but they are rarely reached for the case of
the DTCAs kernel functions analyzed in this paper, so we can
safely omit them in our later considerations. Switching between
warp contexts of the active warps (i.e. the warps within the cur-
rently active blocks) as well as switching to the next group of
active warps blocks to be executed on an SM, generates no time
overhead, since the compute resources of the considered warps
blocks are kept on-chip during their entire activity time within
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an SM. All of the above activities lead to an execution of a
sequence of consecutive runs of active block groups, which is
progressively performed until all of the blocks scheduled for
execution on a considered SM finish their computations. The
size of those consecutive block groups (which we will later re-
fer to as Nab/sm, standing for the number of active blocks per
SM), taking part in each of the mentioned runs (called the full
runs), remains constant throughout all of the execution process,
except for the last run (the remaining run), in which the num-
ber of active blocks Nab/sm is just the reminder of the blocks
scheduled for execution on the considered SM, which still have
not been completed. To sum all the above considerations, we
can conclude that the calculation of the kernel function overall
execution time Tk can be performed using the following formula

Tk = tp +Nr ∗ t +Nr ∗ t . (12)

Here Nr is the number of full runs of groups of active blocks as-
signed to a single SM, Nr is the number of the remaining runs
(which is either 0 or 1) and additional time tp, which stands for
kernel function execution preparation time, is included to ac-
count for the process of initial GPU configuration for the kernel
launch, which is done by the GPU host interface before the ker-
nel function is actually executed. This time has to be inevitably
included in the model, since for small amount of GPU work-
loads, it overwhelmingly dominates the time of the whole ker-
nel execution process.

Finally, let us consider the times t and t present in the above
formula (12). They represent the execution times of actual com-
putational operations of the kernel function, performed on GPU
cores, for the full and the remaining runs, respectively. In order
to calculate t and t, we have to descent a step deeper into the
analysis of the parallelism taking place in the kernel execution
process for the single SM. For this matter we will introduce the
notion of the core package. In our definition, a core package is
a set of 32 GPU cores, which are able to perform a single com-
putational operation (or launch a single memory operation), for
all of the threads present in a given, individual warp, at a par-
ticular time instant. For the sake of simplicity, let us consider a
single group of active blocks being executed on an SM in a full
run at a chosen moment of time. Let us assume the number of
currently active blocks to be equal to Nab/sm, then the number
of active warps can be determined by the following expression

Naw/sm = Nab/sm ∗Nw/b , (13)

where Nw/b is the number of warps per block, which can be
directly determined from the value of the kernel launch param-
eter Nt , i.e. number of threads per block declared by the user
in a kernel function call (see Section 5. 5.4.3). All active warps
can now be evenly divided between all of the core packages
available on a single SM. Thus, we obtain a set of active warp
packages, each containing Naw/cp warps, where Naw/cp (stand-
ing for the number of active warps per core package), can be
calculated using the following formula

Naw/cp =
⌈
Naw/sm/Ncp/sm

⌉
, (14)

where Ncp/sm is the number of core packages present in a sin-
gle GPU SM and d · e is the ceiling function. The value Ncp/sm
of the number of core packages per SM can be determined di-
rectly from the GPU device specification by dividing the num-
ber of CUDA cores per SM by 32. Now, once again, we notice
that since the operations undertaken by each active warp pack-
age are assumed to be performed simultaneously and symmetri-
cally (i.e. in an identical fashion for all of the active warp pack-
ages) the overall execution time t of computational operations
of the kernel, present in formula (12), can be effectively deter-
mined by considering the respective kernel execution process
for a single warp package only (i.e. it would be exactly equal to
the time of the kernel execution process for a single warp pack-
age within a single SM). This enables us to calculate the time t
only in terms of the internal structure of the kernel function and
Naw/cp, i.e. the number of warps assigned to a single core pack-
age. The mentioned the internal structure of the kernel function
is accounted for by introducing the function Tc(Nw , . . .), which
returns the overall execution time of the actual kernel computa-
tion operations, given the number of warps Naw/cp assigned to a
single core package. For input parameters, whose meanings are
explained below:
• Nsm – number of SM present in the GPU device,
• Nc/sm – number of GPU cores per SM,
• Lb/sm – maximum number of active blocks per SM,
• Lw/sm – maximum number of active warps per SM,
• Nb – kernel parameter – number of blocks,
• Nt – kernel parameter – number of threads per block,
• tp – kernel function execution preparation time,
• Tc(Nw , . . .) – kernel execution time for a single core pack-

age.
Algorithm 1, presents the precise description of the proce-

dure of general kernel function execution time calculation.
The formulation of the function Tc(Nw , . . .) for a general ker-

nel program run on a single core package will be derived in the
next subsection. Finally, it is worth mentioning that determi-

Algorithm 1 General kernel function execution time Tk calculation

1: input: Nsm, Nc/sm, Lb/sm, Lw/sm, Nb, Nt , tp, Tc(Nw, ...) . . Input parameters.
2: output: Tk . . General kernel function execution time.
3: begin
4: . Auxiliary variables calculations.
5: Nsb/sm← dNb /Nsm e . . Number of blocks scheduled for execution on a single SM.
6: Nw/b ← dNt /32 e . . Number of warps per block.
7: Ncp/sm← Nc/sm /32 . . Number of core packages per SM.
8: . Kernel function single full run execution time calculation.
9: Nab/sm← min{Nsb/sm,

⌊
Lw/sm /Nw/b

⌋
, Lb/sm }. . Num. of active blocks per SM.

10: Naw/sm← Nab/sm ∗Nw/b . . Number of active warps per SM.
11: Naw/cp ←

⌈
Naw/sm /Ncp/sm

⌉
. . Number of active warps per core package.

12: t ← Tc(Naw/cp, ...) . . Kernel function single full run execution time.
13: . Kernel function single remaining run execution time calculation.
14: Nab/sm← Nsb/sm mod Nab/sm . . Number of active blocks per SM.
15: Naw/sm← Nab/sm ∗Nw/b . . Number of active warps per SM.
16: Naw/cp ←

⌈
Naw/sm /Ncp/sm

⌉
. . Number of active warps per core package.

17: t ← Tc(Naw/cp, ...) . . Kernel function single remaining run execution time.
18: . Kernel function overall execution time calculation.
19: Nr ←

⌊
Nsb/sm /Nab/sm

⌋
. . Number of full runs.

20: Nr←
⌈
(Nsb/sm mod Nab/sm)/Nab/sm

⌉
. . Number of the remaining runs.

21: Tk ← tp + Nr ∗ t + Nr ∗ t . . Kernel function overall execution time.
22: return Tk . . Set the final result.
23: end
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nation of the value of time t, present in formula (12), can be
accomplished by using exactly the same reasoning as the one
regarding the time t, presented in the previous paragraph.

5.2. Kernel program execution time for single core
package

As mentioned in the previous subsection, we will now present
the simulation algorithm for determining kernel program exe-
cution time for a single core package, i.e. the calculation of the
value of the function Tc(Nw, ...), dependent on the number of
warps assigned to a given SM single core package, which is
one of the parameters of Algorithm 1 of general kernel function
execution time evaluation.

Our simulation assumes only 3 general types of low-level
kernel program instructions, namely:
• calc – arithmetic instructions,
• load – memory read instructions,
• store – memory write instructions.

This analogous to the models present in [22] and [21], and leads
to the division of the whole kernel program to computation
periods and memory access periods, which, if needed, can be
grouped together and simulated with a single calc, load or
store instructions instances of proper time durations.

We assume that a kernel program is an ordered list of pairs
of the following form:

kernel_program= [(I1,d1), (I2,d2), . . . , (INi ,dNi)] ,

where Ni is the number of low-level instructions contained in
the kernel program source code, Ik ∈ {calc, load, store},
k = 1, . . . ,Ni, is the k-th low-level kernel program instruction
and dk ∈ R+ is its time duration, which will usually be given
in GPU cores clock cycles; however, it can also be measured
in any time units, suitable for a particular simulation. Such a
kernel_program constitutes the input of the simulation. The
remaining parameters the simulation has to be fed with are: Nw,
which is the number of warps designated for execution on a
single core package, and tm – a memory access instructions time
scaling factor, which is the model empirical parameter that has
to be estimated for a considered kernel program running on a
selected GPU from of a given major CC version family (GPU
architecture major compute capability). To sum up, for input
parameters, explained briefly below:
• kernel_program – kernel program low-level instructions,
• Nw – number of warps running on a single core package,
• tm – memory access instruction time scaling factor,

Algorithm 2 presents the precise description of the procedure
of calculation of the kernel program execution time Tc running
on a single core package.

Let us comment the presented Algorithm 2 using exemplary
ker- nel program from Listing 1. It is given in two variants,
with load and store alternatives present in line 7 of Listing 1.
Each operation is characterized by its duration in proper time
units, e.g. in GPU cores clock cycles. Mentioned durations are
exemplary and are only used for demonstration purposes.

In Figs. 7 and 8 warps execution profiles for a single GPU
core package of both of the exemplary kernel program variants

Algorithm 2 Kernel program execution time Tc for a single core package

1: declare: struct instr_data { type ∈ { calc, load, store }; duration ∈ R+}.
2: input: Nw, tm,instr_data kernel_program[Ni]. . Input parameters.
3: output: Tc. . Kernel program execution time Tc for a single core package.
4: begin
5: . Simulation initialization.
6: Tc← 0.
7: forwarp_index = 1, . . . ,Nw do instr_counter[warp_index]← 1.
8: . Main simulation loop.
9: do

10: simulation_completed← true.
11: . Round Robin warps loop.
12: for (warp_index← 1; warp_index 6 Nw; warp_index++)
13: Tc← Tc+ waitForAllPreviousLoadsToComplete(warp_index).
14: . Single warp instructions loop.
15: while instr_counter[warp_index]6 Ni:
16: simulation_completed ← false.
17: current_instr_counter ← instr_counter[warp_index].
18: instr_counter[warp_index]++.
19: if kernel_program[current_instr_counter].type = load:
20: Tc← Tc + tm.
21: if current_instr_counter + 1 6 Ni:
22: if kernel_program[current_instr_counter + 1].type 6= load:
23: break. . Switch to the next warp.
24: else
25: if kernel_program[current_instr_index].type = store:
26: Tc← Tc + tm.
27: else . The remaining case, i.e. the calc instruction.
28: Tc← Tc+ kernel_program[current_instr_counter].duration.
29: end while
30: end for
31: while not simulation_completed.
32: Tc← Tc+ waitForAllMemoryTransactionsToComplete().
33: return Tc. . Set the final result.
34: end

Listing 1 Exemplary kernel program

1: Nw = 3.
2: tm = 2.
3: kernel_program = (
4: (load, 15),
5: (calc, 5),
6: (calc, 6),
7: (load, 35), or (store, 35),
8: (calc, 10),
9: (store, 15)).

are shown, assuming the number of warps Nw running on that
core package to be equal to 3 and memory access instructions
time scaling factor tm, depicted as black rectangle at the begin-
ning of each memory access instruction, to be equal to 2. It is
worth noting that real proportions of instructions durations of
kernel programs from Listing 1 are preserved in Figs. 7 and 8.

 

idle 

Fig. 7. Kernel program variant 1 from Listing 1 warps execution
profile for a single core package within an SM
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idle 

Fig. 8. Kernel program variant 2 from Listing 1 warps execution
profile for a single core package within an SM

Algorithm 2 simulates the execution of consecutive warps in a
round Robin fashion. Each warp has its own instruction coun-
ter, which points to the kernel program instruction to be ex-
ecuted at a given simulation step. When the warp is selected
for execution (line 12 of Algorithm 2), it first waits until
all preceding loads, present in that warp, have been com-
pleted. This is done with the use of the function waitForAll
PreviousLoadsToComplete(), which returns the overall ex-
ecution time of all loads preceding the current warp calc
or store instruction (which can be 0 if no preceding loads
were present in the current warp instruction chain). After that,
the selected warp is executed until the last load preceding
calc or store instruction is encountered within a kernel pro-
gram, or the last instruction of the kernel program has been
identified (line 15). When the last load preceding calc or
store instruction in the current warp instruction chain has
been reached or the last instruction of the kernel program has
been identified, the simulation is switched to the next warp
(lines 23 and 15, respectively) and the execution continues
for that newly designated warp. Such procedure continues un-
til all instructions have been simulated for all executed warps
(what is indicated by the simulation_completed flag being
equal to true after the main round Robin’s loop – line 12,
has finished without executing any of the warps instructions).
When all instructions of all warps have been performed, in
the last step, the emulation process is halted until all mem-
ory transactions, triggered earlier by all of the simulated warps,
have finished their execution. This is done with the use of
the waitForAllMemoryTransactionsToComplete() func-
tion, which returns the overall execution time of all loads and
stores, triggered earlier by all of the simulated warps, which
have not been completed yet. The simulation returns then the
total execution time Tc of kernel program running on a single
core package of the GPU single SM, ordained with completion
of Nw warps.

It can be seen from the exemplary warps execution pro-
files, depicted in Figs. 7 and 8, that, according to our simu-
lation model, calculation periods1 (CPs) as well as the SIMT
Front End parts (SFEs) of memory access periods (MAPs), de-
picted as black rectangles, are executed exclusively on a whole
core package basis, and thus never mutually overlap. On the
other hand, the transactional parts (TPs) of memory access pe-

1here, and in later parts of the paper we follow the terminology present
in [21, 22] and [33]

riods (depicted with hatched rectangles) of a given warp, may
overlap without any limitations with other CPs and MAPs of
different warps. This effectively implements the latency hid-
ing mechanism, which is one of the most important aspects
of mass-parallel GPU computations. However, we can also see
that in case our exemplary programs the number of warps is not
enough to fully utilize GPU cores pipeline and thus idle periods
appear, depicted in Figs. 7 and 8 as gray-shaded rectangles with
top double-sided arrows. For a particular warp, the instructions
dependencies are more restricted, i.e. for a single warp, in our
model we assume that only Read after Write (RaW) instruction
dependencies take place, all of which all are briefly summarized
by the chart shown in Table 2. No further instruction dependen-
cies for a single warp, as well as for all warps executing on
a whole core package basis, other than those described above,
are assumed to hold. Such choice of instruction dependencies
applied in our model comes from the facts that: (i) we assume
that all warps running on a single core package share a common
ALU pipeline, (ii) we consider memory access operations to be
realized by memory transaction subsystem, external to the GPU
cores, (iii) we only apply typical algorithmic dependencies oc-
curring in most of the DTCAs implementations we are inter-
ested in. All of those assumptions are well motivated and have
their counterparts in the existing literature, see e.g. [21, 22, 33].

Table 2
Read after Write dependencies chart for a single warp

Following instruction

calc load store

calc yes yes yes

load yes no yes

store no no no

RaW instruction
dependencies

P
re

ce
d

in
g

in
st

ru
ct

io
n

At last, once again, let us have a brief look to warps exe-
cution profiles, shown in Figs. 7 and 8. In the first variant of
the kernel program from Listing 1, all calculation and mem-
ory access periods are arranged strictly sequentially on a sin-
gle warp basis. On the other hand, a simple replacement of
a second load operation with a store instruction in the sec-
ond variant of the kernel program from Listing 1, causes over-
lapping of the last 3 operations, i.e store, calc and second
store instruction, within all of the 3 considered warps. What
is more, since the first store operation TP duration is longer
than the sum of overall durations of the subsequent calc and
store periods for all of the considered warps, the simulation
has to be halted for the last warp on that particular operation to
complete. This is a clear demonstration of the need for appli-
cation of waitForAllMemoryTransactionsToComplete()
function, which works globally on the whole core package ba-
sis. The presented examples also show how different execu-
tion profile patterns can become for almost identical kernel
programs, which makes the argument on using the simulation
method even stronger. At last, its also somewhat surprising, that
although there is a huge amount of overlapping taking place for
the second variant of the considered kernel program in com-
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parison to its first variant, the overall execution times of both
variants are almost equal (i.e. 112 and 111 cycles).

With this last remark we will end the presentation of the sim-
ulational part of the proposed model, in the next section we will
show how to apply the model practically in case of the particu-
larly simple DTCA example of the naive parallel implementa-
tion of a vector by matrix multiplication algorithm.

5.3. The application methodology of the model –
a case study

In this section we will illustrate how to apply our model practi-
cally in the case of the naive parallel implementation of a vec-
tor by matrix multiplication algorithm, which can be considered
one of the simplest DTCAs examples.

We start with presenting CUDA C kernel function code of the
examined algorithm, which is our departure point. It is given
below, in Listing 2.

Listing 2. CUDA C kernel for vector by matrix multiplication
1 __global__ void mtx_mul_vec(int N, float *mtx, float *vec_in, float *vec_out)
2 {
3 int i = threadIdx.x + blockDim.x * blockIdx.x;
4 for (int j = 0; j < N; j++)
5 vec_out[i] += mtx[i * N + j] * vec_in[j];
6 }

Here, N stands for the input vector vec_in size (and also the
output vector vec_out size), to be multiplied by N×N-element
matrix, whose rows have been flattened and stored in the one-
dimensional mtx array. Each thread of the kernel function is
responsible for multiplication of a single row of the mtx matrix
with the whole input vector vec_in. Kernel function has to be
invoked once with the total number of threads equal to N to
obtain the output vector values, which are all assumed to be
initially set to zeros on the CPU side to avoid additional kernel
operations.

The next step is the kernel function compilation to CUDA
PTX (parallel thread execution instruction set) assembly
source, to enable creation of the kernel program model rep-
resentation based on the static analysis of the generated PTX
code. For the kernel function from Listing 2, the obtained as-
sembly source code is given in Listing 3. The compilation can
be done with the CUDA nvcc compiler with --keep option
enabled to keep all intermediate files that are generated dur-
ing internal compilation steps. The obtained PTX source might
require some additional rearrangement, since nvcc applies var-
ious optimizations, like loop unrolling, etc., so that the resulting
code exposes kernel main execution path while still being logi-
cally equivalent to its optimized form (such postprocessing was
also applied in case of the code presented in Listing 3).

In the next step we perform static analysis of the obtained
PTX source, which results in formulation of the model repre-
sentation of the initial kernel program, whose parameters will
be later adjusted to match the time execution measurements
taken in the subsequent analysis steps. Listing 4 presents the
resulting model representation of the kernel program (here we
demonstrate the final form of the model representation of the
kernel program, obtained after all adjustments of the memory

Listing 3. PTX code for vector by matrix multiplication kernel
1
2 // mtx_mul_vec kernel function PTX // // +------------------------+

3 // | mtx_mul_vec |
4 ld.param.u32 %r12, [param_0]; // ↑ +------------------------+

5 ld.param.u64 %rd11, [param_1]; // | | Initial calculations. |
6 ld.param.u64 %rd12, [param_2]; // | +------------------------+

7 ld.param.u64 %rd10, [param_3]; // | | Integer arithmetical |
8 cvta.to.global.u64 %rd1, %rd12; // | | instructions count: 18. |
9 cvta.to.global.u64 %rd2, %rd11; // | +------------------------+

10 mov.u32 %r1, %ctaid.x; // | | |
11 mov.u32 %r2, %ntid.x; // | | |
12 mov.u32 %r3, %tid.x; // | | |
13 setp.lt.s32 %p1, %r12, 1; // | | |
14 @%p1 bra BR2; // | | |
15 mad.lo.s32 %r15, %r1, %r2, %r3; // | | |
16 cvta.to.global.u64 %rd13, %rd10; // | | |
17 mul.lo.s32 %r4, %r15, %r12; // | | |
18 mul.wide.s32 %rd14, %r15, 4; // | | |
19 add.s64 %rd3, %rd13, %rd14; // | | |
20 and.b32 %r14, %r12, 3; // | | |
21 mov.u32 %r26, 0; // ↓ | |
22 // +------------------------+

23 BR1: // | Main loop. |
24 // +------------------------+

25 ld.global.f32 %f18, [%rd28]; // | Load. |
26 ld.global.f32 %f19, [%rd27]; // | Load. |
27 fma.rn.f32 %f20, %f19, %f18, %f31; // | Multiply and add. |
28 st.global.f32 [%rd3], %f20; // | Store. |
29 add.s64 %rd28, %rd28, 4; // ↑ +------------------------+

30 add.s64 %rd27, %rd27, 4; // | | Loop iterators update. |
31 add.s32 %r26, %r26, 4; // | +------------------------+

32 setp.lt.s32 %p6, %r26, %r12; // | | Integer arithmetical |
33 @%p6 bra BR1; // ↓ | instructions count: 5. |
34 // +------------------------+

35 BR2: // | |
36 // | |
37 ret; // | Retrun. |
38 // +------------------------+

Listing 4 mtx_mul_vec kernel program

1: N – vector size.
2: tm = 31.
3: kernel_program = (
4: (calc, 27),
5: repeat N times
6: (load, 60),
7: (load, 60),
8: (calc, 10),
9: (store, 60),

10: (calc, 14),
11: end repeat
12: ).

access instructions durations have been made, on the basis of
time execution measurements performed later for the analyzed
kernel function).

Formulation of the model representation of the kernel pro-
gram is derived from the PTX kernel source with the use
of the following rules. First, we identify calculation periods
present in the kernel PTX code, i.e. the continuous sequences
of arithmetic, register transfer and branch instructions not inter-
rupted by any of the global load or store instructions (PTX
ld.global and st.global instructions). In the kernel code
from Listing 3, these are sequences present in lines from 4 to
21, lines from 29 to 33, and a single fma instruction present in
line 27 (we treat initial ld.param instructions as regular regis-
ter transfer instructions, since they perform kernel parameters
loads form a fast constant GPU memory). We count then the
number of PTX instructions present in each of the identified
calculation periods and estimate the cycle count of each such
period as the number of its instructions decreased by 1 with a
constant number of 10 cycles added to account for the comple-
tion of the first instruction in the given calculation period (this is
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motivated by assumptions holding for the ALU pipelines opera-
tion of GPU cores and the estimation of the average cycle count
for general arithmetical instructions, see [10,21] and [22]). Ac-
cording to the stated rules the first calculation period in the an-
alyzed kernel code would take up 27 cycles, c.f. line 4 in List-
ing 4, i.e. 18 instructions – 1 + 10 cycles = estimated 27 cycles.
The second calculation period takes 14 cycles, c.f. line 10 in
Listing 4, i.e. 5 instructions – 1 + 10 cycles = estimated 14 cy-
cles. At last, using the stated rules, for a single fma instruction
present in line 27 of Listing 3, we assign 10 cycles, c.f. line 8 in
Listing 4. We then include all calculation periods, interleaved
by all identified global loads and stores (c.f. lines 25, 26 and
28 in Listing 3 and their counterparts from Listing 4, i.e. lines
6, 7 and 9, respectively), obtaining the the model representa-
tion of the kernel program, which structurally corresponds to
the analyzed PTX kernel source code.

Calculation periods are modeled with the stated above, con-
stant rules of determination of their durations. In the case of
memory access operations, i.e. global loads and stores, their
durations are also determined once (for all GPU devices), but
now with the help of actual time execution measurements per-
formed for the analyzed kernel function on a selected GPU de-
vice. For this purpose we invoke our kernel function for a range
of different input data sizes and measure its time performance
with the NVIDIA nvprof profiling tool. Based on the measure-
ments results we refine durations of memory access instructions
in the the model representation of the kernel program (Listing 4,
lines 6, 7 and 9) and the memory access instructions time scal-
ing factor tm (Listing 4, line 2, see also Algorithm 2, Listing 1
and Figs. 7 and 8), to make the model predictions as close as
possible to the measured kernel execution times in the whole
range of the analyzed input data sizes. Once found, the dura-
tions of determined memory instructions can be used, without
any modifications, to model execution times of the considered
kernel function for other GPUs. In this way we obtain the fixed
model representation of the kernel program, valid for predicting
execution times for various GPU devices, with only one vary-
ing parameter tm, which has to be adjusted once for a given
GPU compute capability class, to account for different memory
access time characteristics appropriate for the devices belong-
ing to that class. That is the way our model copes with different
memory access time characteristics for different GPU device
classes. Having done all the described refinement steps, we ob-
tain a complete model of the analyzed kernel function, ready to
be used in the task of execution time prediction of the consid-
ered computation algorithm for various GPU devices.

Let us now present the details of the described process of
memory access instructions and time scaling factor adjustment
for the case of our exemplary kernel function. Using GeForce
RTX 2060 GPU (see Table 3 for the device characteristics), for
each size N of the input/output vectors, ranging from N = 25

(warp size) to N = 214 (maximum problem size we could cope
with the selected GPU device), we have performed 10 experi-
ments and gathered nvprof’s execution time statistics. A part
of the exemplary nvprof’s profiling log file, generated for
the analyzed kernel function for the input/output vector size
N = 210, is presented below in Listing 5. In order to complete

Listing 5. A part of the exemplary profiling log file generated for the
analyzed kernel function for input vector size N = 210

1 ==62684== NVPROF is profiling process 62684, command: mtx_mul_vec.exe 30 96 10

2 ==62684== Profiling application: mtx_mul_vec.exe 30 96 10

3 ==62684== Profiling result:

4 Start Duration Device Name

5 ... ... ... ...

6 315.51ms 7.6000us ... - cudaSetDevice

7 315.52ms 1.7013ms ... - cudaMalloc

8 317.22ms 240.20us ... - cudaMalloc

9 317.46ms 6.9000us ... - cudaMalloc

10 317.47ms 8.8035ms ... - cudaMemcpy

11 317.86ms 8.7098ms ... GeForce RTX 2060 [CUDA memcpy HtoD]

12 326.27ms 312.30us ... - cudaMemcpy

13 326.59ms 44.500us ... - cudaMemcpy

14 326.62ms 1.9840us ... GeForce RTX 2060 [CUDA memcpy HtoD]

15 326.63ms 30.400us ... - cudaLaunchKernel (mtx_mul_vec(...))

16 326.66ms 922.50us ... - cudaDeviceSynchronize

17 326.69ms 2.4000us ... GeForce RTX 2060 [CUDA memcpy HtoD]

18 326.70ms 872.94us ... GeForce RTX 2060 mtx_mul_vec(...)

19 327.58ms 58.400us ... - cudaMemcpy

20 327.62ms 1.7600us ... GeForce RTX 2060 [CUDA memcpy DtoH]

21 327.64ms 153.00us ... - cudaFree

22 327.80ms 14.400us ... - cudaFree

23 327.81ms 95.900us ... - cudaFree

24 ... ... ... ...

our model, we need to determine the values of the following
model parameters:
• tp – preparation time of the kernel function execution (see

Algorithm 1),
• tm – preparation time of the kernel function execution (List-

ing 4),
• d1–d3 – durations of memory accesses (Listing 4, lines 6,

7, 9).
Determination of the tp parameter is fairly straightforward
– we set tp to a median value of the CUDA driver API
cudaLa-unchKernel function execution times (see line 15 of
the exemplary profiling log file in Listing 5), determined on the
basis of a profiling information gathered for all of the conducted
experiments. We proceed in such a way, since the execution
time of the function in question can be considered to be almost
constant for all of the analyzed data sizes.

Next, we collect measurements of the considered mtx_mul-
vec execution times of kernel function (c.f. exemplary mtx-
mul_vec kernel function invocation measurement in line 18
of Listing 5). On the basis of the gathered nvprof’s informa-
tion, for each of the 10 measurements, performed individually
for each of the examined data sizes N = 2k+4, k = 1, . . . ,10,
we extract a single median value and report it as the measured
mtx_mul_vec execution times of kernel function t(d)k for that
particular input data size N = 2k+4.

In the following step, we set the durations of memory access
instructions d1, d2 and d3 to the chosen initial values, feasible
in the average sense, and run our model to obtain the estimated
overall kernel function execution times t(m)

k for all of the con-
sidered input data sizes N = 2k+4, k = 1, . . . ,10.

After gathering all the measurements and the respective
model estimates we calculate model to measured execution
times ratios characteristics:

rk = t(m)
k /t(d)k , k = 1, . . . ,10 , (15)

and additionally, based on the obtained characteristics, we de-
termine the mean absolute percentage error E (i.e. MAPE, see
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e.g. [40]) of the model prediction performance along with max.
prediction mismatch Ê for the computed characteristics:

E =
1
M

M

∑
k=1
|1− rk|, Ê = max

k=1,...,M
|1− rk| , (16)

where M is the number of measurements (in our case M = 10).
In the final step we seek feasible durations d1, d2 and d3,

which allow to obtain flat characteristics (15), and adjust time
scaling factor of memory access instructions tm, so that mean
absolute percentage error E in (16) is minimized.

After completion of all of the described refinements, we ob-
tain the DTCA kernel program model representation, dependent
on only two parameters, namely, execution preparation time tp
of kernel function and time scaling factor tm of memory access
instructions, both of which have to be adjusted for each of the
classes of GPU devices, belonging to a particular CUDA com-
pute capability architecture.

Going back to our example, the identified memory access
instructions durations were all equal to 60 cycles, while the
value of time scaling factor of memory access instructions was
found to be equal to 31 cycles (see Listing 4). For such val-
ues of the adjusted model parameters the obtained mean abso-
lute percentage error E was equal to 2,4% with a maximum
prediction mismatch Ê of 6.9%. For demonstrational purposes,
in Fig. 9(a) the measured and predicted overall kernel execu-
tion times (in milliseconds) are depicted. However because of
the high range of the values the considered times cover (c.f.
tmin and tmax in Fig. 9(b), denoting the minimum and maximum
measured overall kernel execution times, obtained in the course
of the conducted experiments), the presented graph might not

Fig. 9. Results obtained after final adjustment of all mtx_mul_vec
kernel program parameters – Listing 4, (a) modeled and measured
overall execution times [ms], (b) modeled to measured execution times

ratios

be sufficiently informative, due to its limited accuracy resolu-
tion. Thus, in the later part of the paper, we would describe the
obtained results with a lot more instructive accuracy character-
istics (15) graphs, example of which is presented in Fig. 9(b),
which also include information about the range of the examined
execution times (i.e. tmin and tmax values), as well as about the
respective errors E and Ê values.

At last it is worth mentioning that the average time required
by the model to generate a single execution time estimate was
equal to 0.68 s2. The presented model development as well as
experimental methodology will be used throughout the rest of
the paper for the considered DWT computation algorithms.

5.4. Execution time prediction model representations
of parallel DWT computation algorithms

In this section we will formulate the detailed model represen-
tations of parallel DWT computation algorithms, which are of
our main interest in the context of general confirmation of va-
lidity of the proposed approach. For this purpose, CUDA ker-
nel functions of the DWT computation algorithms, described
in Section 3, along with their model counterparts and subop-
timal parallelism maximization heuristic will be presented and
discussed. The considered parallel DWT implementations are
not meant to be in any way even close to optimal, their primary
purpose is solely the demonstration of our model fidelity.

5.4.1. Model representation of the parallel matrix-based
DWT computation algorithm

Let us first present CUDA C implementation of a kernel func-
tion for the matrix-based DWT calculation, discussed in the first
part of Section 3, it is given in Listing 6. There, the input argu-
ment K is the DWT filters length, N is the transform size (the
dimensions of the DWT transform matrix, given by (2)), idata
and odata are N-dimensional input and output vectors, respec-
tively, and finally, coefs is the flattened 2× K-dimensional
DWT filters coefficients matrix. Each thread of the kernel func-
tion mtx calculates a single DWT output coefficient for each
of the individual rows of the transform matrix given in equa-
tion (2).

Listing 6. CUDA C kernel of a matrix-based DWT calculation
1 __global__ void mtx(int K, int N, float *idata, float *odata, float *coefs)
2 {
3 int id, k1, k2, i; //Definitions of local variables
4 float v = 0.0f; //stored in GPU register file.
5 id = blockIdx.x * blockDim.x + threadIdx.x; //First calculation
6 k1 = 2 * (id / 2); //period with associated
7 k2 = (id % 2) * L; //execution time of 33 cycles.
8 for (i = 0; i < K; i++) //Loop through all DWT
9 { //filter coefficients.

10 v = v + idata[k1] * coefs[k2]; //Two load operations with exec.
11 k1 = (k1 + 1) % N; //times of 120 and 160 cycles
12 k2++; //and second calc. period with as-
13 } //sociated exec. time of 17 cycles.
14 odata[id] = v; //Store operation with associated
15 } //execution time of 100 cycles.

For any even filter length K and transform size N, compu-
tation of DWT coefficients with a matrix-based approach, re-
quires only one Listing 6 kernel function launch, invoking to-

2for Python 3.7.4 model implementation on Intel Core i7, 2.2 GHz CPU
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Listing 7 dwt_mtx_kernel program

1: input: K - filter length.
2: dwt_mtx_kernel = (
3: (calc, 33),
4: repeat K times
5: (load, 120),
6: (load, 160),
7: (calc, 17),
8: end repeat
9: (store, 100)

10: ).

tal number of N threads. Using methodology discussed in Sec-
tion 5. 5.3, we arrive at the DWT matrix-based computation
kernel model representation, derived from the function in List-
ing 6 PTX kernel source, which is presented below in Listing 7.

It can be observed that the above kernel program model rep-
resentation is structurally similar to the one of a parallel vec-
tor by matrix multiplication algorithm, given in Listing 4. This
should not be a considered to be surprising, since the presented
matrix-based DWT computation algorithm might be viewed a
slightly modified version of the naive vector by matrix multipli-
cation parallel computation method analyzed in Section 5. 5.3,
and, as such, is far from being optimal in the time effectiveness
sense.

5.4.2. Model representation of the parallel lattice
structure-based DWT computation algorithm

We proceed further to the second of the considered DTCA,
namely the lattice stru- cture-based DWT calculation algorithm,
discussed in the second part of Section 3. CUDA C realization
of its kernel function is presented below in Listing 8.

Listing 8. CUDA C kernel function for lattice structure-based DWT
calculation

1 __global__ void ltt(int k, int L, int N, float *data, float *coefs)
2 {
3 int k0, k1, k2; //Definitions of local variables
4 float t, s, a, b; //stored in GPU register file.
5 k0 = 2 * k; //First calculation period with
6 k1 = 2 * (threadIdx.x + blockDim.x * blockIdx.x) + (k % 2); //associated
7 k2 = (k1 + 1) % N; //execution time of 30 cycles.
8 t = coefs[k0]; //Four load operations with
9 s = coefs[k0 + 1]; //associated execution times of

10 a = data[k1]; //10, 10, 120 and 120 cycles.
11 b = data[k2]; //For all, but the last stage:
12 if (k < L - 1) //second calculation period with
13 { //associated time of 18 cycles,
14 data[k1] = a + t * b; //and two store operations
15 data[k2] = s * a + b; //with the associated
16 } //times of 100 cycles each.
17 else //The last computational stage:
18 { //second calculation period with
19 data[k1] = t * a; //associated time of 18 cycles,
20 data[k2] = s * b; //and two store operations
21 } //with the associated
22 } //times of 100 cycles each.

All threads executed within a single launch of the kernel
function from Listing 8, perform a single stage of the lattice
structure-based DWT algorithm, depicted in Fig. 1 in Section 3.
Complete calculation of the DWT coefficients requires K/2+1
consecutive launches of the presented kernel function, where
K is the transform filter length. Each of the individual threads
implements a single butterfly operation, given by formula (3)
in Section 3. Kernel input parameters have the following mean-
ing: L stands for the total number of computational stages of the

DWT computation algorithm and is equal to K/2+ 1. Param-
eter k, varying from 0 to L− 1, inclusive, is the number of the
current computational stage, which a given thread is executed
in. Parameter N is the transform size, data is the N-element ar-
ray, which initially holds the values of the input vector, and,
since the transformation is done in-place, at the end of the
whole computational process, contains the output transform co-
efficients. Finally, the array coefs is holding all of the 2(K+1)
butterfly operations coefficients.

Once again, using methodology discussed in Section 5. 5.3,
we obtain DWT lattice structure-based computation kernel
model representation, which is shown above in Listing 9. It is
worth commenting on the conditional instruction present in the
considered kernel code from Listing 8 throughout lines 12-21
and the associated time of the second calculation period present
in its model representation from Listing 9 in line 7. Since a
given kernel function launch is related to a single stage of the
DWT computation, within such launch, only one execution path
will be chosen by all running threads. This means that no warp
divergence (as explained in [10]) will occur during all consecu-
tive kernel calls. The fact that both execution paths of the con-
sidered conditional statement perform roughly similar compu-
tations, enables us to associate the common time of about 18
cycles with both of those paths, simplifying considerably the
model representation. Once again we would like to emphasize
that the presented DWT lattice structure-based implementation
is far from being optimal in the sense of time effectiveness, but
because of its computational structure, it serves well as the firm
representative of a typical multi-stage DTCA.

Listing 9 dwt_ltt_kernel program

1: dwt_ltt_kernel = (
2: (calc, 30),
3: (load, 10),
4: (load, 10),
5: (load, 120),
6: (load, 120),
7: (calc, 18),
8: (store, 100),
9: (store, 100)

10: ).

5.4.3. Total execution times of matrix and lattice
structure-based DWT computation methods

Execution time prediction models of both, matrix and lattice
structure-based DWT computation methods, are almost com-
plete by means of definitions of the Algorithms 1 and 2, and
kernel functions model representations from List’s 7 and 9. The
only parameters left, which can still be chosen freely by the user
in order to optimize the effectiveness of the presented imple-
mentations, are kernel launch parameters Nb and Nt (c.f. Algo-
rithm 1), determining the number of blocks and threads within
the block for a single kernel call. In this section we will provide
heuristic strategy of making suboptimal choice of the values
of the considered parameters for both DWT computation ap-
proaches, which will then be used in the experimental study,
and which effectively complete the considered execution time
prediction models.
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Let us first present the algorithm for the determination of sub-
optimal values N∗b and N∗t of the kernels launch parameters for
both of the considered DWT calculation methods, which will
be then discussed in detail.

Here, the input parameters definitions are as follows:
• Nsm – number of SMs present in the GPU device,
• Nt/w – number of threads per warp (i.e. 32),
• Lt/b – maximum number of threads per block (i.e. 1024),
• Nt – total number of threads in a single kernel call.

First, it is worth commenting that for both DWT computation
methods, since we assume that the size N of the transform is al-
ways a power 2, all the input, as well as all of the intermediate,
auxiliary and output values present in Algorithm 3, can be ver-
ified to be strict integers for any choice of the input parameters
values.

Algorithm 3 Kernel launch parameters suboptimal values N∗bt = {N∗b , N∗t }

1: input: Nsm,Nt/w,Lt/b, Nt . . Input parameters.
2: output: N∗bt = {N∗b , N∗t } . Suboptimal values of the kernel launch parameters.
3: begin
4: . Auxiliary variables calculations.
5: Nsm← Nsm +(Nsm mod 2) . . Auxiliary, even number of SMs.
6: Nt/sm← Nt /Nsm . . Auxiliary number of threads per SM.
7: Nmin← Nt/w, Nmax← Lt/b . . Auxiliary min. and max. numbers of threads.
8: . Main calculations - testing for complete, mutually exclusive set of conditions.
9: if Nt < Nmin then N∗b ← 1, N∗t ← Nt .

10: if Nt ≥ Nmin and Nt/sm < Nmin then N∗b ← Nt /Nmin, N∗t ← Nmin .
11: if Nt/sm ≥ Nmin and Nt/sm ≤ Nmax then N∗b ← Nsm, N∗t ← Nt /Nsm .

12: if Nt/sm > Nmax then N∗b ← Nt /Nmax, N∗t ← Nmax .

13: . Final result evaluated, return it to the calling function.
14: return N∗bt = {N∗b , N∗t } . Set the final result.
15: end

The adopted heuristic strategy for making suboptimal choice
N∗bt = {N∗b , N∗t } of the kernels launch parameters, defined by
Algorithm 3, is to maximally exploit physical hardware paral-
lelism by making the division of the undertaken DWT computa-
tional task into blocks and the respective threads in such a way
that the workload imposed on each of the GPU multiproces-
sors is spread as evenly as possible amongst as large as possible
number of GPU SMs. This can be accomplished by the division
heuristic, operating under GPU warp granularity regime (which
is 32 physical threads per warp), which can be stated in terms
of the four following rules:
1) if the total number of threads designated for execution is

less than the GPU warp granularity, create one block con-
taining all of the designated threads,

2) if the number of threads per SM is smaller than GPU warp
granularity, create maximally numerous set of blocks, i.e.
blocks containing minimum possible number of threads
each (which happens to be 32 threads per block) and desig-
nate them for execution, thus making the maximum number
of SMs evenly occupied,

3) if the number of threads per SM is greater than or equal to
GPU warp granularity, but smaller than or equal to maxi-
mum allowable number of threads per block (i.e. 1024 for
all of the considered GPUs), create a set of blocks equipo-
tent with the number of GPU SMs, consisting of the blocks
containing equipotent number of threads each,

4) at last, if the number of threads per SM is greater than the
maximum allowable number of threads per block, create a
set of blocks consisting of the necessary number of blocks
containing maximum allowable number of threads each.

Algorithm 3 may be considered to be precise, formal ex-
pression of the rules stated above, comprising the strategy of
heuristically suboptimal choice N∗bt = {N∗b , N∗t } of the kernel
launch parameters for both of the analyzed DWT computation
methods.

We are now ready to formulate the final expressions for total
execution times of both of the considered DWT computation
methods. Since for any filter length K and transform size N,
computation of DWT coefficients with matrix-based approach
requires only one Listing 6 kernel function launch, invoking to-
tal number of N threads, we can write the expression for matrix-
based approach DWT computation total execution time Tm in
the following way:

Tm(Gp, N, K, tp, tm) = Tk

(
Gp, N∗bt(Gp, N),

tp, Tc
(
Nw, tm, dwt_mtx_kernel(K)

))
, (17)

where functions Tk and Tc denote Algorithms 1 and 2, re-
spectively, with their consecutive input parameters, similarly
N∗bt refers to the stated above Algorithm 3, the set Gp =
{Nsm, Nc/sm, Lb/sm, Lw/sm, Nt/w, Lt/b} denotes GPU device pa-
rameters specification (see Table 3 and Algorithms 1 and
3 parameters descriptions), tp stands for the preparation of
the kernel function execution time (see equation 12 explana-
tion), tm is the memory access instruction time scaling factor
(see Algorithm 2 parameters descriptions, and also Listing 1
and the discussion of Figs. 7 and 8 discussion), and finally
dwt_mtx_kernel is the matrix-based DWT computation ker-
nel model representation defined in Listing 7, which comprises
the Tc simulation input program.

Similarly, let us formulate the final expression for total ex-
ecution time of the lattice structure-based DWT computation
method as follows

Tl(Gp, N, K, tp, tm) =
(

K
2
+1
)

Tk

(
Gp, N∗bt

(
Gp,

N
2

)
,

tp, Tc
(
Nw, tm, dwt_ltt_kernel

))
. (18)

In the above equation all symbols have the same meaning as
that explained earlier, except that now Algorithm 1 is invoked
for total number of threads equal to N/2 and dwt_ltt_kernel
is the lattice structure-based DWT computation kernel model
representation defined in Listing 9, which comprises the Tc sim-
ulation input program. In (18) the function Tk is multiplied by
the additional factor dependent on the transform filter length K,
because in case of the lattice structure approach, the complete
computation of DWT coefficients requires

(K
2 +1

)
invocations

of the kernel function from Listing 8.
To sum up, equations (17) and (18) comprise together a

complete description of the proposed execution time predic-
tion model of the parallel GPU implementations of the matrix
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and lattice structure-based DWT computation methods. Practi-
cal verification of the presented model will be carried out in the
following section.

6. EXPERIMENTAL RESULTS AND MODEL VERIFICATION
In this section we will present experimental results which en-
able validation of the effectiveness of our model in terms of its
prediction accuracy and computation time efficiency.

First, let us list the full set of the model parameters used in the
conducted experiments for the tested GPU devices, they are all
gathered in Table 3 and, for clarification purposes, their mean-
ings are briefly reminded in the following chart:
• CC – GPU architecture CUDA Compute Capability class,
• F – GPU cores clock frequency measured in MHz,
• Nsm – number of SMs present in the GPU device,
• Nc/sm – number of GPU cores per SM,
• Lb/sm – maximum number of active blocks per SM,
• Lw/sm – maximum number of active warps per SM,
• Nt/w – number of threads in a single warp,
• Lt/b – maximum number of threads in a single block,
• Nb – kernel parameter – number of blocks,
• Nt – kernel parameter – number of threads per block,
• tp – kernel function execution preparation time in µs,
• tm – memory access instructions time scaling factor in cy-

cles.
For our experiments, we have used 6 different NVIDIA

graphics cards, whose model names are given in the second col-
umn of Table 3, representing a fairly broad spectrum of GPUs
compute architectures, specified by compute capability indices
(CCs), listed in the first column of the above table. Accord-
ing to their types, the model parameters are divided into two
main groups. The first group consists of the device dependent
parameters, which can be determined directly on the basis of
the particular GPU model technical specification. The mean-
ings of all of those parameters were explained in detail in Sec-
tions 6. 5.1 and 6. 5.4.3, except for the first parameter F , which
is the selected GPU cores clock frequency, reported in MHz.
The second group of parameters, listed in Table 3, are architec-
ture (i.e. CC) dependent ones, which means that their particular
values, valid for a specific DTCA, are approximately equivalent

across all of the GPU devices, belonging to the same CC class
(c.f. the considered parameter values for the last two GPU de-
vices listed in Table 3). These parameters are: tp, which is the
execution preparation time of the kernel function, analyzed in
Sections 6. 5.1 and 6. 5.3, and measured in microseconds, and
tm, i.e. memory access instruction time scaling factor, discussed
in Sections 6. 5.2 and 6. 5.3, and measured in GPU cores clock
cycles. It is worth commenting that the tp parameter has to be
measured with the time units independent of GPUs cores clock
frequency, since it translates to the respective CUDA driver API
function call time (see Section 6. 5.2) handled by the GPU host
interface, external to the GPU cores unit and synchronized with
the separate clock. The parameters gathered in Table 3 consti-
tute the fully comprehensive list of inputs, needed for our model
to perform estimates of execution times for a selected GPU ar-
chitecture and the chosen parallel computation algorithm.

Let us now present the applied methodology, enabling veri-
fication of our model in terms of prediction accuracy and com-
putation time effectiveness. For each of 6 of the tested GPU
devices we have performed a series of 4 experiments invol-
ving DWT calculation for 4 different, practical filter lengths,
K = 8, 10, 12 and 14, with the use of both of the considered
parallel computational methods. Their results are depicted on
charts in Figs. 10–15 as Exp.(M.i) and Exp.(L.i), where
symbol M stands for the matrix-based and L indicates lattice
structure-based parallel DWT computation algorithm, while i=
1, . . . ,Ne, denotes the individual experiment number out of total
Ne = 24 conducted tests for each of the considered computa-
tional methods. For a given individual experiment Exp.(µ.i),
µ ∈ {M, L}, i ∈ {1, . . . ,Ne}, Nm = 15 execution time measure-
ments t(d)k of the respective DWT computation method running
on the selected GPU device, were performed and collected, for
the range of the input vector sizes of N = 2k+5, k = 1, . . . ,Nm
elements. At the same time, employing model parameters gath-
ered in Table 3, valid for the selected GPU device and the con-
sidered DWT computation method, the respective estimates of
execution times t(m)

k , k = 1, . . . ,Nm, were calculated, depend-
ing on the DWT computation method in question, with the use
of formulas (17) or (18). After all the measurements t(d)k and

the respective model estimates t(m)
k have been gathered for the

Table 3
Model parameters for the matrix and lattice structure-based DWT computation methods for the tested GPU devices

Model
parameters

Device dependent
Architecture dependent

DWT matrix DWT lattice

CC Device F [MHz] Nsm Nc/sm Lb/sm Lw/sm Nt/w Lt/b tp [µs] tm [cc] tp [us] tm [cc]

2.1 GT 720M 1550 2 32 8 48 32 1024 18.7 9.5 11.0 33.0

3.0 K1000M 706 2 192 16 64 32 1024 11.2 33.0 11.2 47.0

5.0 GTX 860M 1020 5 128 32 64 32 1024 8.7 17.0 7.9 15.0

6.1 GTX 1070 1760 10 128 32 64 32 1024 6.3 18.5 5.8 19.0

7.5 RTX 2060 1200 30 64 16 32 32 1024 5.2 1.1 5.0 12.5

7.5 RTX 2080 1545 68 64 16 32 32 1024 5.2 1.1 5.6 12.3
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particular experiment Exp.(µ.i), using the formula (15), the
corresponding modeled to measured execution times ratios rk
were calculated (depicted as black squares, each correspond-
ing to a particular input data size, in the experiment graphs
present in Figs. 10–15), and based on their values, with the use
of formulas (16), the mean absolute percentage error Eµ

i of the
model prediction performance along with the maximum predic-
tion mismatch Êµ

i , were determined for the considered individ-
ual experiment. Their values are also presented, for each of the
individual experiments, on the experiment graphs in Figs. 10–
15, along with the values tmin and tmax, indicating the minimum
and the maximum measured execution times encountered in the
course of the corresponding experiment.

To evaluate a general characteristics of the proposed model
execution time prediction performance, we have calculated sev-
eral global estimates of the mean absolute percentage error and
the maximum prediction mismatch, corresponding both, indi-
vidually to each of the considered DWT computation methods,
as well as to the overall model prediction efficiency. They are
defined below in equations (19):

Eµ
=

1
Ne

Ne

∑
i=1

Eµ

i , E =
1
2

(
EM

+EL
)
, (19a)

Êµ = max
i=1,...,Nê

Eµ

i , Ê = max
{

ÊM, ÊL
}
, (19b)

where, as earlier, µ ∈ {M, L} indicates the matrix or lattice-
structure based parallel DWT computation method and Ne = 24
denotes the total number of the conducted experiments. All of
the defined above, 6 global measures of the model prediction
performance, are reported on the left-hand side of the results
Table 4, in its Inaccuracy measures section.

Additionally, to confront the model prediction accuracy
against its computation time costs, we have calculated several
global model computation time effectiveness measures corre-
sponding, similarly as in the previous case, to both, each of the
considered DWT computation methods alone, as well as to the
overall model computation time efficiency characteristics. They
are defined as follows:

T µ
=

1
Ne Nm

Ne

∑
i=1

Nm

∑
k=1

T µ

i,k , T =
1
2

(
T M

+T L
)
, (20a)

T̂ µ = max
i=1,...,Ne
k=1,...,Nm

T̂ µ

i,k , T̂ = max
{

T̂ M, T̂ L
}
, (20b)

where, as before, µ ∈ {M, L} indicates the matrix or lattice-
structure based parallel DWT computation method, Ne = 24 de-

notes the total number of the conducted experiments, Nm = 15
stands for the number of execution time measurements per-
formed for each of the individual experiments Exp.(µ.i),
i ∈ {1, . . . ,Ne} and T µ

i,k is the duration of the model output
estimate calculation process, reported for the {1, . . . ,Nm} 3 k-
th measurement of the i-th experiment, conducted for the µ-th
DWT computation method. All of the defined above, 6 global
measures of the model computation time effectiveness, are re-
ported on the right-hand side of the results in Table 4, in its
Simulation durations section, for the model implementation de-
veloped in Python 3.7.4 programming language, running on the
Intel Core i7, 2.2 GHz CPU-based system.

At last, to investigate the model accuracy in predicting the
characteristics of execution time comparisons between dif-
ferent DTCAs, for each pair of the corresponding individual
measurements t(d)k , k ∈ {1, . . . ,Nm} performed for the matrix-
based and the lattice structure-based DWT computation meth-
ods within each of the respective Exp.(M.i) and Exp.(L.i),
i = 1, . . . ,Ne experiments, the ratio R(d)

i,k between the reported
matrix-based DWT method computation time and its respec-
tive lattice structure-based DWT method counterpart has been
calculated. The analogous ratios R(m)

i,k have been determined
for each pair of the corresponding individual model execution
times estimates t(m)

k , calculated for the considered matrix-based
and the lattice structure-based DWT computation methods in all
of the conducted experiments Exp.(M.i) and Exp.(L.i), i =
1, . . . ,Ne. All of the mutually corresponding ratios R(d)

i,k and R(m)
i,k

characteristics are depicted in graphs Exp.(R.i), i = 1, . . . ,Ne,
presented in Figs. 10–15, where the ratios regarding the GPU
measurements data are indicated by the grayish squares, while
their model estimate counterparts are represented by the black
ones. In each of the mentioned graphs the average ER

i and max-
imum ÊR

i comparison prediction errors are reported, calculated
for each of the respective experiments Exp.(R.i), i= 1, . . . ,Ne,
in the following way:

ER
i =

1
Nm

Nm

∑
k=1

∣∣∣R(d)
i,k −R(m)

i,k

∣∣∣
R(d)

i,k

,

ÊR
i = max

k=1,...,Nm

∣∣∣R(d)
i,k −R(m)

i,k

∣∣∣
R(d)

i,k

.

(21)

Based on all of the collected data, gathered in the way described
above, we have finally calculated the global estimates of the
considered errors, characterizing the model general comparison

Table 4
Model inaccuracy and simulation durations results for the matrix and lattice structure-based DWT computation algorithms

Inaccuracy measures Simulation durations

Inaccuracies DWT
matrix

DWT
lattice Overall Durations DWT

matrix
DWT
lattice Overall

Average 2.6% 3.0% 2.8% Average 3.1 ms 3.8 ms 3.5 ms
Maximum 11.4% 14.5% 14.5% Maximum 12.6 ms 19.3 ms 19.3 ms
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Model vs. data DWT Matrix algorithms execution times comparisons for GeForce GT 720M GPU (CUDA compute capability: 2.1)
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Model vs. data DWT Lattice algorithms execution times comparisons for GeForce GT 720M GPU (CUDA compute capability: 2.1)
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Model vs. data DWT matrix to DWT lattice execution times ratios for GeForce GT 720M GPU (CUDA compute capability: 2.1)

Fig. 10. Experimental results for GeForce GT 720M GPU with DWT input data sizes M = 26, . . . ,220 and filter lengths K ∈ {8,10,12,14}.
Experiments (M.1)–(M.4): DWT matrix algorithm modeled to measured execution times ratios.
Experiments (L.1)–(L.4): DWT lattice algorithm modeled to measured execution times ratios.

Experiments (R.1)–(R.4): DWT matrix to DWT lattice algorithms modeled to measured execution times ratios
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Model vs. data DWT Matrix algorithms execution times comparisons for Quadro K1000M GPU (CUDA compute capability: 3.0)
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Model vs. data DWT Lattice algorithms execution times comparisons for Quadro K1000M GPU (CUDA compute capability: 3.0)
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Model vs. data DWT matrix to DWT lattice execution times ratios for Quadro K1000M GPU (CUDA compute capability: 3.0)

Fig. 11. Experimental results for Quadro K1000M GPU with DWT input data sizes M = 26, . . . ,220 and filter lengths K ∈ {8,10,12,14}.
Experiments (M.5)–(M.8): DWT matrix algorithm modeled to measured execution times ratios.
Experiments (L.5)–(L.8): DWT lattice algorithm modeled to measured execution times ratios.

Experiments (R.5)–(R.8): DWT matrix to DWT lattice algorithms modeled to measured execution times ratios
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Model vs. data DWT Matrix algorithms execution times comparisons for GeForce GTX 860M GPU (CUDA compute capability: 5.0)

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
M = log2N , N - data size; filter length: K = 8

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

DW
TL

 - 
m

od
el

 / 
da

ta
 ra

tio
s

E L
9 = 3.1% ;  E L

9 = 9.4%E L
9 = 3.1% ;  E L

9 = 9.4% Exp. (L.9)Exp. (L.9)

tmin = 0.041 ms
tmax = 0.683 ms
tmin = 0.041 ms
tmax = 0.683 ms tmodel / tdata

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
M = log2N , N - data size; filter length: K = 10

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

DW
TL

 - 
m

od
el

 / 
da

ta
 ra

tio
s

E L
10 = 2.7% ;  E L

10 = 9.2%E L
10 = 2.7% ;  E L

10 = 9.2% Exp. (L.10)Exp. (L.10)

tmin = 0.050 ms
tmax = 0.818 ms
tmin = 0.050 ms
tmax = 0.818 ms tmodel / tdata

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
M = log2N , N - data size; filter length: K = 12

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

DW
TL

 - 
m

od
el

 / 
da

ta
 ra

tio
s

E L
11 = 3.1% ;  E L

11 = 9.2%E L
11 = 3.1% ;  E L

11 = 9.2% Exp. (L.11)Exp. (L.11)

tmin = 0.058 ms
tmax = 0.954 ms
tmin = 0.058 ms
tmax = 0.954 ms tmodel / tdata

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
M = log2N , N - data size; filter length: K = 14

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

DW
TL

 - 
m

od
el

 / 
da

ta
 ra

tio
s

E L
12 = 2.7% ;  E L

12 = 9.3%E L
12 = 2.7% ;  E L

12 = 9.3% Exp. (L.12)Exp. (L.12)

tmin = 0.066 ms
tmax = 1.091 ms
tmin = 0.066 ms
tmax = 1.091 ms tmodel / tdata

Model vs. data DWT Lattice algorithms execution times comparisons for GeForce GTX 860M GPU (CUDA compute capability: 5.0)
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Model vs. data DWT matrix to DWT lattice execution times ratios for GeForce GTX 860M GPU (CUDA compute capability: 5.0)

Fig. 12. Experimental results for GeForce GTX 860M GPU with DWT input data sizes M = 26, . . . ,220 and filter lengths K ∈ {8,10,12,14}.
Experiments (M.9)–(M.12): DWT matrix algorithm modeled to measured execution times ratios.
Experiments (L.9)–(L.12): DWT lattice algorithm modeled to measured execution times ratios.

Experiments (R.9)–(R.12): DWT matrix to DWT lattice algorithms modeled to measured execution times ratios
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Model vs. data DWT Matrix algorithms execution times comparisons for GeForce GTX 1070 GPU (CUDA compute capability: 6.1)

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
M = log2N , N - data size; filter length: K = 8

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

DW
TL

 - 
m

od
el

 / 
da

ta
 ra

tio
s

E L
13 = 1.8% ;  E L

13 = 7.9%E L
13 = 1.8% ;  E L

13 = 7.9% Exp. (L.13)Exp. (L.13)

tmin = 0.030 ms
tmax = 0.246 ms
tmin = 0.030 ms
tmax = 0.246 ms tmodel / tdata

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
M = log2N , N - data size; filter length: K = 10

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

DW
TL

 - 
m

od
el

 / 
da

ta
 ra

tio
s

E L
14 = 1.9% ;  E L

14 = 7.9%E L
14 = 1.9% ;  E L

14 = 7.9% Exp. (L.14)Exp. (L.14)

tmin = 0.036 ms
tmax = 0.295 ms
tmin = 0.036 ms
tmax = 0.295 ms tmodel / tdata

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
M = log2N , N - data size; filter length: K = 12

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

DW
TL

 - 
m

od
el

 / 
da

ta
 ra

tio
s

E L
15 = 1.8% ;  E L

15 = 7.8%E L
15 = 1.8% ;  E L

15 = 7.8% Exp. (L.15)Exp. (L.15)

tmin = 0.042 ms
tmax = 0.344 ms
tmin = 0.042 ms
tmax = 0.344 ms tmodel / tdata

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
M = log2N , N - data size; filter length: K = 14

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

DW
TL

 - 
m

od
el

 / 
da

ta
 ra

tio
s

E L
16 = 1.8% ;  E L

16 = 7.8%E L
16 = 1.8% ;  E L

16 = 7.8% Exp. (L.16)Exp. (L.16)

tmin = 0.048 ms
tmax = 0.393 ms
tmin = 0.048 ms
tmax = 0.393 ms tmodel / tdata

Model vs. data DWT Lattice algorithms execution times comparisons for GeForce GTX 1070 GPU (CUDA compute capability: 6.1)
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Model vs. data DWT matrix to DWT lattice execution times ratios for GeForce GTX 1070 GPU (CUDA compute capability: 6.1)

Fig. 13. Experimental results for GeForce GTX 1070 GPU with DWT input data sizes M = 26, . . . ,220 and filter lengths K ∈ {8,10,12,14}.
Experiments (M.13)–(M.16): DWT matrix algorithm modeled to measured execution times ratios.
Experiments (L.13)–(L.16): DWT lattice algorithm modeled to measured execution times ratios.

Experiments (R.13)–(R.16): DWT matrix to DWT lattice algorithms modeled to measured execution times ratios
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Model vs. data DWT Matrix algorithms execution times comparisons for GeForce RTX 2060 GPU (CUDA compute capability: 7.5)
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Model vs. data DWT Lattice algorithms execution times comparisons for GeForce RTX 2060 GPU (CUDA compute capability: 7.5)
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Model vs. data DWT matrix to DWT lattice execution times ratios for GeForce RTX 2060 GPU (CUDA compute capability: 7.5)

Fig. 14. Experimental results for GeForce RTX 2060 GPU with DWT input data sizes M = 26, . . . ,220 and filter lengths K ∈ {8,10,12,14}.
Experiments (M.17)–(M.20): DWT matrix algorithm modeled to measured execution times ratios.
Experiments (L.17)–(L.20): DWT lattice algorithm modeled to measured execution times ratios.

Experiments (R.17)–(R.20): DWT matrix to DWT lattice algorithms modeled to measured execution times ratios
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Model vs. data DWT Matrix algorithms execution times comparisons for GeForce RTX 2080 GPU (CUDA compute capability: 7.5)
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Model vs. data DWT Lattice algorithms execution times comparisons for GeForce RTX 2080 GPU (CUDA compute capability: 7.5)
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Model vs. data DWT matrix to DWT lattice execution times ratios for GeForce RTX 2080 GPU (CUDA compute capability: 7.5)

Fig. 15. Experimental results for GeForce RTX 2080 GPU with DWT input data sizes M = 26, . . . ,220 and filter lengths K ∈ {8,10,12,14}.
Experiments (M.21)–(M.24): DWT matrix algorithm modeled to measured execution times ratios.
Experiments (L.21)–(L.24): DWT lattice algorithm modeled to measured execution times ratios.

Experiments (R.21)–(R.24): DWT matrix to DWT lattice algorithms modeled to measured execution times ratios
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prediction accuracy, using the stated below formulas:

ER
=

1
Ne

Ne

∑
i=1

ER
i , ÊR = max

i=1,...,Ne
ÊR

i , (22)

which in the end happened to take the following values:

ER
= 3.9% and ÊR = 20.3% . (23)

In the following section we will discuss the obtained results.

6.1. Results discussion
Graphs Exp.(M.i) and Exp.(L.i), i = 1, . . . ,24, depicted in
Figs. 10–15, indicate that the execution times prediction errors,
evaluated by our model, rarely exceed 5% relative difference
with regard to their measured counterparts, throughout all of
the experiments conducted on all 6 tested GPU devices for both
of the considered DCTAs across all the examined input vectors
sizes and DWT filter lengths. This is confirmed by the results
shown in Table 4, where the overall average model relative inac-
curacy has been evaluated to be on the level of 2.8%, with max-
imum prediction mismatch of 14.5%. Along with the average
time, needed by the model to perform a single prediction eval-
uation, being equal to 3.5 ms, the presented results have to be
considered highly satisfactory. In order to put them into broader
perspective, let us gather all the major aspects of the efficiency
characteristics of GPU execution time prediction models, dis-
cussed earlier in Section 2 and collected in Table 1, along with
the respective features of the proposed solution, aggregated in
Table 4. In Table 5 a suitable summary is presented.

Table 5
The proposed model characteristics comparison

Model type
Average

prediction
error

Maximum
prediction
mismatch

Average
evaluation
slowdown

Algorithm
type

Analytical 5% 15% negligible DTCA-like

Statistical 9% 40% negligible general

ML-based 6% 45% negligible general

Simulation-based 1% 5% 108 DTCA-like

Hybrid 4% 16% 106 general

Proposed 2.8% 14.5% 3.2 ·102 DTCA-like

It is worth explaining that the average evaluation slowdown fac-
tor, characteristic to our model, was calculated on the basis of
the results obtained by the matrix by vector multiplication al-
gorithm, discussed in detail in Section 6. 5.3.

From the characteristics summary shown in Table 5 one can
conclude that in terms of the average prediction error and the
respective maximum prediction mismatch, our model positions
itself close to the simulation-based models, while maintaining
prediction evaluation time similar to that, characteristic to the
analytical predictors. It also significantly outperforms all con-
sidered hybrid models, to which category our model adheres
to, but once again we have to emphasize the restrictive charac-

ter of the model of ours in terms of the algorithm types it is
able to process, in comparison to the general character of the
considered hybrid models, capable of performing the respec-
tive evaluation for a broad class of parallel computation tasks.
On the other hand we have to note that the proposed model can
be applied to any kinds of GPU implementations of parallel al-
gorithms, as long as they adhere to the assumptions holding for
DTCAs, explained in detail in Section 1. The next feature of the
proposed model, worth emphasizing, is the ease of practical ap-
plication, example of which was demonstrated in Section 6. 5.3,
which positions it close to simulation-based models and makes
it far more facile in use compared to analytical predictors. What
is more, for a given DTCA, the model is dependent only two
parameters (apart from GPUs architectures specific constants),
whose values may be reused for GPU devices of the same archi-
tecture (i.e. the same compute capability), what can be observed
in Table 3, on the example of the parameters tp and tm values
for DWT matrix and lattice structure-based methods, in the case
of RTX 2060 and RTX 2080 GPU devices. Additionally, from
graphs Exp.(R.i), i = 1, . . . ,24, depicted in Figs. 10–15, and
relationships present in equation (23), it can be concluded that
the model can also be successfully used as a fairly precise com-
parison tool between different DTCAs parallel implementations
across a broad range of GPU architectures. This last feature ap-
pears to be particularly valuable in the case of DTCAs, since
the mentioned results show that despite theoretical advantage
of the lattice-based DWT computation method over its matrix-
based counterpart, in all respects discussed in Section 3, such
superiority is rarely the case for GPU realizations of the con-
sidered algorithms.

An issue worth further discussion is the general effectiveness
relationship between the proposed model and the most accurate
models class, which are the simulation-based predictors, since
such relationship appears to be crucial in the evaluation of the
overall fidelity of the proposed solution. Here we have to admit
the undoubtable superiority of the simulation-based models in
terms of the accuracy characteristics over the proposed predic-
tion method. However, we should also note, what was briefly
discussed earlier in Section 1 and can be concluded on the ba-
sis average evaluation slowdown factors present in column 4 of
Table 5, the vast prediction evaluation speed difference between
the analyzed approaches, which in many cases might effectively
prohibit practical usage of the simulation-based methods in the
process of verification of the time effectiveness validation of
certain computational tasks. For example, as reported in [36],
the simulation time of typical GPU algorithmic benchmarks
extend from 3.8 days, up to even 17 days of the continuous
simulation run on the typical consumer segment CPU-based
system, for algorithms whose real GPU execution times vary
from 0.524 ms up to 0.918 ms, respectively. Similarly, in his
work [64] the author reports simulation time of the typical par-
allel GPU implementation of the 1024×1024 – element matrix
by matrix multiplication algorithm realized with the use of the
GPGPU-Sim emulator to be about 18 hours of the continuous
simulation run on consumer segment CPU-based system. Tak-
ing into consideration the fact that employment methodology
characteristic to our model and simulation-based approaches
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are similar in terms of their application difficulty and in light of
the aforementioned results, the inaccuracy difference between
our solution and simulation-based methods may be considered
a relatively fair price in case of algorithms whose effectiveness
validation requires the use of extensive data sizes or conducting
numerous tests.

At last, it is also worth adding that for relatively moderate
data sizes and filter lengths, the tested parallel GPU DWT im-
plementations, which are not in any way even close to optimal,
significantly outperform their CPU counterparts in terms of
computation times. For example, for computation server system
with quite powerful 8-threaded Intel® Xeon Silver 4112 pro-
cessor with 256GB DDR RAM equipped with GeForce RTX
2080 GPUs, our additional comparisons indicate 20% up to
40% speedup of the overall, single GPU computation time (in-
cluding all memory transfers) for DWT matrix GPU implemen-
tations over their CPU counterparts for data sizes N ranging
from 220 up to 223, respectively. For DWT lattice implementa-
tions, the considered speedups are of similar orders.

To sum up our discussion, since the computational structures
of the studied parallel DWT algorithms can be considered typ-
ical for many other kinds of known DTCAs, such as multiple
variants of e.g. DFT, FFT, DCT, FCT, DHT or FHT and oth-
ers (see [1] or [4]), we can conclude that the obtained accuracy
and time effectiveness results, along with those presented ear-
lier in Section 6. 5.3 for the case of parallel implementation
of a vector by matrix multiplication algorithm, should also ex-
tend, at least, to the mentioned DTCA classes with similar ac-
curacy and time effectiveness characteristics. Such conclusion
is also supported by means of the methodology used in many
reputed execution time prediction models present in the litera-
ture (e.g. [21,22] or [23]), where only typical variants of chosen
computational algorithms verified on the reduced pool of GPU
devices families are analyzed in the process of validation the
mentioned models fidelities. However, we still are aware of the
fact that full confirmation of the proposed model general effec-
tiveness might require further research involving other DTCAs
classes, what is the scope of the, already undertaken, authors
future work.

7. CONCLUSIONS
In this paper the authors presented a novel, hybrid execution
time prediction model for parallel GPU realizations of dis-
crete transforms computation algorithms. The model was pre-
cisely defined in the form of the set of 3 simple and time-
efficient algorithms, allowing for its effective realization. The
practical example of its application to a selected matrix by
vector multiplication parallel computation method was given
in the form of a detailed case study. The model was exten-
sively validated through the experimental research conducted
on 6 different GPU devices, covering a broad range of com-
pute capability architectures for 2 exemplary structurally dif-
ferent, but theoretically close in terms of their parallel compu-
tational complexities, DWT computation methods. The results
have revealed that its overall prediction accuracy of 97.2% po-
sitions the model near the simulation-based approaches, while

its time-effectiveness is close to that characteristic to analytical
solutions (3.5 ms on average for single prediction evaluation
conducted for the considered DWT computation methods). It
has also been proved to be much simpler in practical applica-
tion than is the case for the last of the mentioned models cate-
gories, since the user is only required to supply the model with
a properly converted kernel code, with almost no necessity of
its prior analysis, and the model itself is dependent on only 2
free parameters, characteristic to a given GPU architecture and
a selected computation algorithm, which are easy to determine
during measurements. Additionally, it has been stated that the
proposed model can be used for prediction of execution times of
broader class of parallel computational tasks, as long as they ad-
here to, not particularly restrictive, structural assumptions hold-
ing for discrete transforms computation algorithms. At last, the
authors want to point out that the potential extension of the
model capabilities, regarding more detailed inclusion of mem-
ory access timing effects, shouldn’t be excessively problematic.
However, it would undoubtedly require a more profound inves-
tigation. To sum up, the proposed model appears to be highly
precise, time-effective and feasible in practical application, and
as such, in the authors’ opinion, is a very interesting alternative
to the related existing solutions.
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