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Abstract This paper concerns analytical considerations on a complex
phenomenon which is diffusive-inertial droplet separation from the two-
phase vapour-liquid flow which occurs in many devices in the power industry
(e.g. heat pumps, steam turbines, organic Rankine cycles, etc.). The new
mathematical model is mostly devoted to the analysis of the mechanisms of
diffusion and inertia influencing the distance at which a droplet separates
from the two-phase flow and falls on a channel wall. The analytical model
was validated based on experimental data. The results obtained through
the analytical computations stay in a satisfactory agreement with available
literature data.
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Nomenclature
c – concentration of droplets, kg/m3

D – droplet diameter, m
Dm – droplet average diameter, m
f(Dc) – coefficient (Eq. (20))
g – gravitational acceleration, m2/s
g(y+) – distribution function of the separating droplets mass flux along the y+

direction
K – parameter, 1/s
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k – mass transfer coefficient
L – channel length, m
l – mixing path, m
m – droplet mass, kg
ṁ – mass velocity, kg/(sm2)
p(D) – probability density of droplets diameter distribution
R – radius of curvature of the channel, m
Re – Reynolds number
s – stopping distance or path of a droplet, m
sM – stopping distance with Magnus lift force included, m
t – time, s
ud, vd – horizontal and vertical components of the velocity of droplets in a hori-

zontal channel or component of the velocity which is parallel and perpen-
dicular to the pipes’ wall, respectively, in a case of a slope channel, m/s

ul – liquid velocity, m/s
ut, vt – horizontal and vertical components of a droplet tangential velocity, m/s
uν – vapour velocity, m/s
v – continuous phase velocity, m/s
v0 – shear velocity, m/s
z – distance at which given mass of droplets is separated, m
y – distance from the wall, m
y+ – dimensionless wall normal distance

Greek symbols

ρ – density, kg/m3

µ – dynamic viscosity, Pa s
ν – kinematic viscosity, m2/s
δ – thickness of the boundary layer, m
κ – turbulence constant in the Prandtl mixing model
ε – diffusivity of droplets
τ – shear stresses, Pa
τ+ – dimensionless relaxation time
φ – variable

Subscripts

c – critical
d – droplet
ih – relates to the mixing path
il – inertial laminar
l – liquid
m – when this subscript is accompanied by d it relates to the mean

diameter of droplets
ν – vapour
+ – relates to dimensionless quantities
0 – relates to the velocity of the continuous phase
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1 Introduction

Separation of droplets from the two-phase flow of wet vapour is an impor-
tant issue related to the steam dryers in refrigerating and air-conditioning
systems. This phenomenon is also present in steam turbines as well as in
the organic Rankine cycles (ORCs). During vapour generation in boilers
and heat exchangers, the flow-boiling process takes place which is associ-
ated with the occurrence of a so-called boiling crisis (dryout). The boiling
crisis starts up when a liquid film dries out on the heated channel wall [1,2]
Further heat supply to the channel wall cause the annular flow regime to
occur with the vapour presence on the channel wall and drying droplets
in the two-phase flow core. Effective cooling of hot gases involves injecting
cold water into them which is atomised and the mist flow is being formed.
In all these processes, the droplets are being separated from the flow as
they deposit on the channel wall.

There are several mechanisms causing the motion of droplets in the
continuous phase. This motion can be caused by molecular or turbulent
diffusion of the vapour. The gaseous phase velocity field and its gradients [3]
are of a significant meaning as they may cause rotational movement of
droplets and the associated droplet separating forces. Moving droplets have
their inertia which depends on the mass of droplets. The droplets’ inertia
causes the velocity field and the trajectories of droplets not to coincide
with the velocity field of the gaseous phase. During motion, the droplets
coalesce or break down. This causes continuous changes in the statistical
distribution of droplets in the flow. The process of droplet separation from
the two-phase flow is complex and has not yet been fully explained. The
developed to date models and dependencies describing this process are of
a fragmented character and concern only a small range of the two-phase
flow with droplet separation.

In this paper, the authors proposed their own model of the diffusive-
inertial separation of droplets. In engineering calculations, the influence of
the boundary layer, in which droplets move and rotate, is usually neglected.
In the flow within the boundary layer, Magnus and Saffman force act on
droplets [4, 5], causing a change in both their trajectory and distance at
which droplet separates on the channel wall [6].

The paper contains a novel model which is not available in the litera-
ture. Regarding the literature in the field of the current paper’s subject,
there are many works on the aerosol deposition issue. In the paper by
Pourhashem et al. [7], investigations on the deposition of the aerosol com-
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ing from e-cigarette was considered. It was confirmed that deposition of
the contained ingredients occurs due to diffusive vapour transport. Worth
Longest et al. [8] in their work raise the problem of the inertia effect on
submicron particles separation as the inertia is being mostly neglected in
the case of the 0.2 µm particles. The authors have worked on the evaluation
of the conditions at which the inertia effects become meaningful when com-
pared to diffusional effects. Authors of [9] strongly emphasise the influence
of a centrifugal acceleration and velocity on separation.

2 Novel diffusive-inertial liquid-vapour
separation model

Let us assume that the statistical distribution of droplets in two-phase
flow is known. Information on the statistical distribution of droplets in the
mist flow in the channel can be found in [2, 10] Droplets can be divided
into fractions according to their size. Within the framework of the research
presented herein, the droplets were divided into two fractions. The first
fraction covers small droplets some of which can deposit on the channel
wall according to the conventional mechanism of turbulent diffusion of the
gaseous phase. The second fraction includes larger droplets which can settle
on the wall according to the turbulent-inertial mechanism.

The droplets from the first fraction are small enough (order of magnitude
~10−6) that their inertia does not affect their movement in the gas velocity
field. They keep up with the turbulent fluctuations of this velocity field.
Such a mass transfer process is commonly known [11,12].

The further part of the paper deals with the diffusive-inertial mechanism
of separation of the second droplet fraction. For these droplets, it is neces-
sary to consider their inertia during motion. The droplets lag behind the
turbulent motion of groups of molecules and, therefore, they cannot get to
the wall through the laminar sublayer within which molecules exhibit only
the molecular motion. These droplets can reach the channel wall as a result
solely of their inertial motion, stemming from the impulse they received in
the turbulent sublayer of the flow.

It is well known that turbulent vortices get bigger, the farther away they
are from the channel wall. This results directly from Prandtl’s turbulence
model, in which the scale of turbulent vortexes can be determined on the
basis of the so-called mixing path. The scale of inertial motion of a droplet
can be defined using the stopping distance of this droplet after receiving
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the impulse. If a vortex is large enough, far away from the channel wall, the
droplet can keep up with the motion within such a vortex. However, if vor-
tices are too small compared to the droplet’s stopping distance, the droplet
ignores them and either moves to a distance equal to the stopping distance
or continues to move in accordance with the direction of the gravitational
and the centrifugal resultant forces.

The inertial-turbulent model of separation of droplets, presented below,
is described in a quantitative manner. The assumptions of this model can
be summarised as follows:

1. If the path of the turbulent mixing of the gaseous phase is longer
than the droplet’s stopping distance, the droplet is subjected to the
diffusion of the turbulent gaseous phase.

2. If the path of the turbulent mixing of the gaseous phase is shorter than
the droplet’s stopping distance, the droplet is subjected to the inertial
diffusion. Inertial diffusion is analogous to turbulent diffusion and
depends on the stopping distance of droplets, similarly as turbulent
diffusion depends on the Prantl’s mixing path.

3. Droplets featuring large inertia, and which are also affected by the
Magnus force, can get through the laminar sublayer, where high ve-
locity gradients exist.

The development of the proposed droplet separation model required car-
rying out an analysis of the movement of a single droplet.

2.1 Stopping distance of a droplet during its inertial
motion

In the case when only the drag and Magnus forces are taken into consider-
ation, bearing in mind that the flow trajectory is relatively flat, the droplet
motion equations for horizontal and vertical velocity components (ud and
vd, respectively) can be written in the following form:

ρl
π

6D
3dud
dt

= −3πµνD (uν − ud) , (1)

ρl
π

6D
3dvd
dt

= −3πµνDvd + ρν
π

8D
3(uv − ud)

duv
dy

. (2)
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Due to the small size of the droplet, it was assumed in this equation that
the flow around it is laminar and its path is rather flat [3]. On the right
side of Eq. (1), the first term relates to Stokes drag force.

In Eq. (2), on the right side, there is drag force and Magnus force as α
(see Fig. 1) is relatively small. The Eqs. (1) and (2) can be rewritten in the
following form:

dud
dt

= −K (uν − ud) , (3)

dvd
dt

= −Kvd + 3
4
ρν
ρl

(uv − ud)
duv
dy

, (4)

where K = 18µν
ρlD2 .

Figure 1: Pictorial view of the velocity vector and the gravity acting on a droplet.

By determining the velocity difference (uv−ud) from Eq. (3) and inserting
it into (4), and also assuming that dud

dy
≈ duν

dy
, one obtains

dvd
dt

= −vd

[
K + 3

4K
ρν
ρl

(
duν
dy

)2]
. (5)
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The above equation can be integrated twice with the following initial con-
ditions: t = 0, v = v0, and s = 0. In result, for t → ∞ one obtains the
so-called stopping distance taking into account the Magnus force

sM = v0

K + 1
K

3
4
ρν
ρl

(
duν
dy

)2 . (6)

If the Magnus force is neglected, the relation (6), due to small velocity
gradients, simplifies to

s = vo
K
. (7)

Noting that in the laminar sublayer

duν
dy

= τ

µν
= v2

o

νν
(8)

relationships (6) and (7) can be presented in the following dimensionless
form:

s+ = svo
νν

= 1
18

ρl
ρν

(
D+

)2
, (9)

s+
M = sMvo

νν
= s+

1 + 1
18

ρl
ρν

(D+)2
, (10)

where D+ = Dvo
νν

and vo =
√
τ

ρν
is the shear velocity.

2.2 Limit of the diffusive–inertial layer

The lower limit of the layer, in which the droplets diffusion is related to
their inertia, can be assumed, for the sake of simplicity, as the distance from
the wall (δ+

il = 5) equal to the stopping distance s+. The limit δ+
il = 5 will

also be adopted for droplets of diameter slightly greater than the critical
(Dc) since such droplets are able to get through the laminar sublayer with
the aid of Magnus force acting in this sublayer – as explained in previous
considerations.

Summing up, in the analysed model of droplets separation from the mist
flow, one can make an assumption that the lower limit of the inertial layer
is defined as

δ+
il =

s+ for s+ ≥ 5,
5 for s+ < 5.

(11)
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The upper limit of the inertial layer results from the second assumption
of the model that mixing path is equal to stopping path which can be
expressed quantitatively as follows:

l+il = s+. (12)

At the boundary layer upper limit, the mixing path can be calculated from

l+il = κδ+
ih , (13)

where κ = 0.58−0.4 is the turbulence constant in the Prandtls’ model.
Now, one can obtain the upper limit of the inertial sublayer from Eq. (12)

δ+
ih = s+

κ
= 1

18κ
ρl
ρν

(
D+

)2
. (14)

At a distance from the wall greater than the upper limit of the inertial layer
there are vortexes larger than the stopping distance, thereby the droplets
can keep up with their movement.

2.3 Diffusivity of droplets in the inertial and turbulent
layer

Within the inertial zone, when δ+
il < y+ < δ+

ih, the diffusion of droplets
moving towards the wall can be determined analogously to the diffusion of
a turbulent motion (according to Prandtl’s model. Therefore,

εd = s2duν
dy

. (15)

The velocity gradient can be determined from the shear stress in the tur-
bulent motion using the following relation:

τ = ρνεν
duν
dy

= ρν l
2
(
duν
dy

)2
. (16)

Noting that vo =
√
τ

ρν
, one gets from (16)

duν
dy

= v0
l
. (17)
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Substituting (15) into (17), one can obtain the diffusivity of droplets in the
dimensionless form,

ε+
d = εd

νν
= 1
κ

(s+)2

y+ = 1
324κ

(
ρl
ρν

)2 (D+)4
y+ . (18)

Within the turbulent layer, the diffusion of droplets is governed by the
medium’s turbulence, that is

ε+
ν = εν

νν
= ε+

d = κy+. (19)

2.4 Statistical distribution of droplets in the mist flow

In the subject literature, various experimental correlations that describe the
statistical distributions of droplets in the mist flow can be found, e.g. [2,
10]. Typically, these distributions have the shape of a bell curve with the
maximum value shifted towards lower diameters of droplets. Therefore the
most probable diameter of droplets is about half the average diameter.
The statistical distribution of droplets, designated as p(D), depends on
the droplet average diameter Dm. The average diameter of droplets can
be calculated using experimental formulas [10], depending on the way the
droplets are generated. If the probability density p(D) for the occurrence
number of droplets of a given diameter is known, one can estimate the mass
ratio of the droplets which diameter exceeds a certain given value to the
mass of all droplets. For droplets with diameter greater than critical, this
ratio is evaluated from:

f(Dc) =

∞∫
Dc

D3p(D)dD

∞∫
0

D3p(D)dD

. (20)

Coefficient f(Dc) allows to determine the fraction of droplets that are sub-
jected to the turbulent-inertial separation mechanism.

In [10] the probability distribution is given in the following form:

p(D) = 4
(
D

Dm

)2
e−2 D

Dm . (21)
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2.5 Mass flux of droplets depositing on the channel wall

The mass velocity of droplets with a diameter of D± dD which deposit on
the wall in the diffusive-inertial manner, is expressed through

dṁ = εd
∂2c(D)
∂D∂y

dD, (22)

which results from the mass transfer equation, ṁ(D) = εd
dc

dy
, where εd

denotes the diffusivity of the droplets with a diameter D, c is the concen-
tration of such droplets and y is the distance from the wall.

The ratio of the mass of the droplets with a diameter of D ± dD to the
mass of all droplets can be written as follows:

dṁ(D)
ṁ

= D3p(D)dD
∞∫

0

D3p(D)dD

= φ(D)dD = dc(D)
c(D) , (23)

where c = ml
ml

ρl
+ mv

ρv

.

It follows from (23) that

∂2c(D)
∂D∂y

= φ(D)dc(D)
dy

. (24)

Combining (22) and (24), one gets

dṁ(D) = εdφ(D)dc(D)
dy

dD . (25)

The relation (25) can be written in the dimensionless form as

dṁ+
(
D+

)
= ε+

d φ
+(D+)dc(D

+)
dy+ dD+ (26)

with ε+
d = εd

νν
, φ+ = νν

vo
φ, c+ = c

ρν
, y+ = yvo

νν
, ṁ+ = ṁ

v0ρν
, D+ = D

v0
νν

,
where ṁ is a mass velocity.

Equation (26) can be integrated within the limits of the inertial sub-
layer and then within the limits of the turbulent sublayer (bounded by the
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thickness of the boundary layer or by the channel radius) with the following
boundary conditions:

c+ =

0 for y+ = δ+
ih ,

c∞ for y+ = δ+,

where c∞ represents concentration of droplets far from the wall. Assuming
that dṁ and dṁwg(y+) are equal to each other, one then obtains the mass
flux of droplets depositing on the channel wall, namely

ṁw

voρν
=
∞∫

D+
c

φ
(
D+) dD+

δ+∫
δ+
ih

g(y+)dy+

εν(y+) +
δ+
ih∫

δ+
il

g(y+)dy+

εd(y+, D+)

, (27)

where g(y+) is the distribution function for the mass flux of the droplets
along the y+ coordinate (y+ – dimensionless wall normal distance). The in-
tegrals appearing in Eq. (27) can be calculated analytically for simple cases,
such as a plate or a pipe, which is shown in the next section. To simplify
these calculations, it can be assumed that the denominator of (27) is eval-
uated for the average diameter of droplets (Dm). The simplified equation
is following

ṁw

voρν
= f(D+

m)
δ+∫
δ+
ih

g
(
y+) dy+

εν(y+) +
δ+
ih∫

δ+
il

g
(
y+) dy+

εd(y+, D+
m)

, (28)

As shown by the calculations for simple cases, the diffusion resistance of
the inertial layer is much lower than the resistance of the turbulent diffu-
sion. Therefore in approximate calculations, the resistance of the inertial
layer can be neglected. In such a case, the simplified relation (28) can be
simplified even further

ṁw

voρν
= f(D+

m)
δ+∫
δ+
ih

g
(
y+) dy+

εν(y+)

. (29)

Integrals in Eqs. (20) and (27) should be calculated within the limits from
D+
c to the largest droplets present in the flow. The maximum droplet diam-

eter can be estimated based on the critical Weber number [10]. However,
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trial calculations prove that if the upper integration limit is left infinite
then the calculation error is small.

3 Solutions for a plate and a pipe

In the case of a plate, the shear stresses (τ) and the separating droplet
mass velocity ṁw are constant along the y coordinate. Therefore, the shear
velocity (v0) and the density distribution of the flux, denoted by g(y+),
are constant too. Taking into account this fact, and employing dependen-
cies (18) and (19) in Eq. (27), one gets the following dependency for the
plate:

ṁw

voρν
= c+
∞

∞∫
Dc+

φ(D+)dD+

1
κ

ln δ
+

δ+
ih

+ 162κ
(D+)4

(
ρf
ρl

)2 (
δ+2
ih − δ

+2
il

) . (30)

Assuming, in turn, that the calculations are done for an average-sized
droplet, this dependency can be simplified to the following form:

ṁw

voρν
= c+
∞f

1
1
κ

ln δ
+

δ+
ih

+ 162κ
(D+)4

(
ρf
ρl

)2 (
δ+2
ih − δ

+2
il

) , (31)

where f is the distribution of droplets.
For a pipe, the shear stresses change linearly along the y coordinate.

These stresses can be expressed as follows:

τ = τw
r

R
= τw

(
1− y+

R+

)
, (32)

where τw is the wall shear stress. When the shear stresses change, the
dynamic velocity and the stopping distance also change. Thus

v0 =
√
τ

ρl
= vw

√
1− y+

R+ (33)

and inserting (33) to (7), one obtains the stopping distance in the following
form:

s+ = s+
w

√
1− y+

R+ . (34)
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By using the dependency (34) in formula (18), one gets the diffusivity of
droplets in the inertial layer

ε+
d = εd

νν
= 1
κ

(
s+)2
y+ =

1− y+

R+

κ

(
s+
w

)2
y+ . (35)

Compared to the plate, for the pipe, the velocity gradient that occurs in
the turbulent diffusivity of the medium (εν) changes. Let us determine this
gradient. In the turbulent zone, the shear stresses are described by the
dependency (16). By inserting this dependency to the formula that defines
stresses (32), one obtains the following relation:

duν
dy

=

√
1− y+

R+

κ

1
y+

v0
l
. (36)

By inserting (36) to (19), one gets the following dependency:

ε+
ν = κy+

√
1− y+

R+ . (37)

For the pipe, compared to the plate, the limit of the inertial layer changes –
due to changes in the stopping distance

(
s+) which is expressed by depen-

dency (34). By comparing the mixing path with the stopping distance (43),
one obtains a quadratic equation with the δih variable. The solution of this
equation is the following:

δ+
ih =

(
s+
w

)2
κ2

− 1
2R+ + 1

2

√√√√√ 1
(R+)2 + 4κ2(

s+
w

)2

 . (38)

For large values of R+, dependency (38) is the same as dependency (14) –
in other words, it is the same as for the plate. By using dependencies (35)
and (38) and assuming, by analogy with the stresses, that the density dis-
tribution of droplets that separate themselves is expressed in the form

ṁ = ṁw

(
1− y+

R+

)
= ṁwg

(
y+
)
, (39)
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one can calculate, using (30), the fluid mass flux of the droplets that sepa-
rate themselves in the pipe using the following dependency:

ṁw

v0ρν
= c+
∞

∞∫
D+
c

φ(D+)dD+

2
κ
arcth

√
1− δ

+
ih

R+−2

√
1− δ

+
ih

R+ + 162κ
(D+)4

(
ρν
ρl

)2(
δ+2
ih −δ

+2
il

) . (40)

Assuming that the mass transfer is dependent upon the average droplet
size, dependency (40) can be simplified to the given form

ṁw

v0ρν
= c+
∞f

1

2
κ
arcth

√
1− δ

+
ih

R+−2

√
1− δ

+
ih

R+ + 162κ
(D+)4

(
ρν
ρl

)2(
δ+2
ih −δ

+2
il

) . (41)

The above mass transfer dependencies can be written in a more conven-
tional manner, as follows:

ṁw

v0ρν
= c+
∞k

+, (42)

where k+ is a dimensionless mass transfer coefficient. The value of this
coefficient can be easily determined using the given dependencies.

In general, if diffusion is supported by body forces, the mass flux of the
separated droplets for the one-dimensional case can be expressed by the
following equation:

ṁw = −εd
dc

dr
+ vmc , (43)

where vmis the velocity of droplets which results from the body forces.
The velocity of the sedimentation of droplets due to gravitational force

and centrifugal force results from the balance between the drag force and
the body forces. In the case of the Stokes force, one obtains

vm = ρdgD
2
d

18µν
+ ρdv

2
tD

2
d

18µνR
=
ρd

(
v2
t

R
+ g

)
D2
d

18µν
. (44)

The sedimentation of droplets on a dry wall is twice as intense as their
settlement on a wet wall or on a liquid layer. This is due to bouncing the
droplets off the liquid surface or entrainment.
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3.1 Sample calculation results

The results of the proposed model were tested for the case of vapour-liquid
flow in a straight vertical pipe. Using (41), the mass velocity of separated
ammonia and water droplets was calculated and compared with experi-
ments.

Several experiments concerning droplet or solid particle separation in
vertical flows have been published. Downward flow of water droplets in an
air stream was investigated in [13]. Similar considerations were reported
in [14] for ragweed pollen and [11] for olive oil droplets. Deposition in
vertical turbulent flow was also studied in [15], for iron and aluminium
powder, as well as in [16, 17] for uranine and methylene blue dyes. All
these results have been summarized in [18] as a dependence between the
mass transfer coefficient (k+) from (42) and dimensionless relaxation time
defined as

τ+ = D2ρνρdν
2
0

18µ2
ν

. (45)

Following this approach, the solution of (41) is also presented in terms of
these two parameters.

It was assumed in the calculations that the droplets had formed by con-
densation in a flow of ammonia or water vapour in a straight pipe of 0.1 m
internal diameter (ID). The droplet concentration was set to c = 10 kg/m3

although the results presented below are independent of it. Average vapour
velocity uν was assumed equal to 10 m/s or 20 m/s. It was also assumed
that both phases are in thermal equilibrium under saturation conditions.
Two temperature values were considered for each fluid: −30◦C and 0◦C for
ammonia or 100◦C and 200◦C for water. The range of droplet diameters for
which Eq. (41) is valid is determined by the model assumptions concern-
ing the inertial sublayer limits. Namely, the minimal diameter follows from
assumption δ+

il = 5 (11), while the largest one from the condition δ+
il < δ+

ih.
The calculation results are shown in Fig. 2. The model solution is in

good agreement with the experimental data for both fluids considered. In
all cases, the solution starts from τ+ = 5 and finishes at k+ ≈ 0.6. Limiting
physical droplet diameters are mentioned in the caption of Fig. 2. Regarding
flow velocity, higher mass transfer coefficients are predicted for lower veloc-
ities. This however translates to higher separated mass flux for higher flow
velocity (due to the fact that the dynamic velocity rises with flow velocity,
equalling for example here in the 0◦C ammonia flow to v0 = 0.399 m/s for
uv = 10 m/s versus v0 = 0.732 m/s when uv = 20 m/s. If the flow tem-
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perature is taken into consideration, both the mass transfer coefficient and
the mass flux are higher in lower temperature flows. It is worth noting that
for the considered example flows, the model solution falls in the transition
region where the general dependency between the parameters k+ and τ+

changes from square proportionality (k+ ∼ τ+2) to virtual independency of
k+ from τ+ (k+ = const for τ+ > 22.87) [18]. These relations are depicted
in Fig. 2 by dotted lines.

Figure 2: Solutions of separation equation (42) for ammonia (left) and water (right)
vapour-droplet flows at saturation conditions in vertical pipe of 0.1 m ID
compared to experimental results (scattered points). Four calculated curves
are presented for each fluid. For ammonia, the flow temperature (Tν), veloc-
ity of vapour (uν) and min./max. droplet diameters (D) were, respectively:
1) −30◦C, 10 m/s, 6.4/125 µm; 2) −30◦C, 20 m/s, 3.5/92 µm; 3) 0◦C, 10 m/s,
4.6/146 µm; 4) 0◦C, 20 m/s, 2.5/108 µm. For water flow these parameters were:
1) 100◦C, 10 m/s, 9.4/122 µm; 2) 100◦C, 20 m/s, 5.1/90 µm; 3) 200◦C, 10 m/s,
4.7/168 µm; 4) 200◦C, 20 m/s, 2.6/124 µm.

4 Summary
The simplified droplet (solid particle) separation theory presented in the
paper returns satisfactory results. Analytical correlations obtained through
the current research allow for determination of the influence of particular
parameters on the complex process of a droplet (solid particle) separation.
It is worth to emphasise that mentioned separation process depends on
a statistical droplet distribution which is unsteady and it varies with the
channel length due to larger drops separation before smaller ones. This
effect is usually not being considered in the analytical studies. The paper
mainly presents the inertia-diffusion mechanism of a droplet separation
from the two-phase (vapour-liquid) flow. It was noted that droplets falling
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in the area of the boundary layer rotate which directly results from the
presence of the high velocity gradients. This causes a significant impact on
the distance range at which droplets separate and deposit on the channel
wall. The author’s original droplet separation mechanism was developed
based on inertia and turbulent diffusion. The developed droplet separation
mechanisms allow for designing separator channels of varying geometries.

Received 14 May 2021
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