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Abstract: Physical machine systems are represented in the form of differential equations.
These differential equations may be of the higher order and difficult to analyses. Therefore,
it is necessary to convert the higher-order to lower order which replicates approximately
similar properties of the higher-order system (HOS). This article presents a novel approach
to reducing the higher-order model. The approach is based on the hunting demeanor of the
hawk and escaping of the prey. The proposed method unifies the Harris hawk algorithm
and the moment matching technique. The method is applied on single input single output
(SISO), multi-input multi-output (MIMO) linear time–invariant (LTI) systems. The pro-
posed method is justified by examining the result. The results are compared using the step
response characteristics and response error indices. The response indices are integral square
error, integral absolute error, integral time absolute error. The step response characteristics
such as rise time, peak, peak time, settling time of the proposed reduced order follows
97%–100% of the original system characteristics.
Key words: Harris hawk optimization, ISE, MIMO, moment matching, model order re-
duction, SISO

1. Introduction

The model order reduction (MOR) is a decades old investigation area. In this, a systematic
mathematical procedure is applied to diminish the higher-to a lower-order system (LOS). The
most important part is the preservation of important characteristics of the HOS in the LOS.
The complexity is reduced in the lower order. The MOR techniques are divided into time and
frequency domain methods. In this paper the authors will try to achieve the unification of the
moment matching and the Harris hawk optimization.
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The popular MOR method in the frequency domain is the moment matching technique
(MMT) [1, 2] and Pade approximation (PA) [3]. The MMT sometimes makes the HOS in LOS
unstable and its stability will be regain using the pole placement [2] method. The methods that
provide the stability of the abridged-order systems are stability equations (SEs) [4], giving the
guarantee of stability. The Routh approximation (RA) [5] gives a stable result if the system is
stable. The analytical theory of continued fraction is used in the order-reduction method [6–8].
These all are single methods for order reduction. The error between the HOS and LOS is large and
to minimize the error, a mixed-method concept was introduced in [9–12] using the two methods.
An SE is used to find the denominator and altered continued fraction used for the determined
numerator [13]. The Eigen spectrum analysis with the Pade approximation technique, where the
unknown coefficients of the denominator are calculated by using the Eigen spectrum investigation
and the numerator part is calculated by the Pade approximation. The continued fraction Cauer
second form is given in [14,15]. The hybrid reduced order of motor is given in [16]. The error is
minimized with a nature–inspired concept based on the genetic, swarm-based, human behavior,
and physics-based phenomenon.

The advancement came in the field using computer-oriented optimizationmethods in theMOR
with a controller and time delay concept [17]. The nature–inspired flower pollination phenomenon
is used for the MOR of the LTI system. The meta-heuristic cuckoo search optimization and the
Eigen permutation method is implemented for order reduction of the HOS [18]. The mixed-
method by Sharad et al. [19] is a method where novel clustering based on the Lehmer measure
is used to obtain reduced denominator polynomial. The numerator coefficient is obtained using
the frequency response matching method. A new technique for the MOR using factor division
and modified pole clustering for obtaining a stable reduced order is proposed in [20]. The
other optimization techniques such as the cuckoo search [18], grey wolf optimization [21],
swarm optimization [22], big bang big crunch, and a genetic algorithm [23] are also used in
the MOR. The bat algorithm application in the MOR is given in [24], the MMT with the
big bang crunch optimization is used to reduce the higher-order [25], the PSO with the Pade
approximation [26], the metaheuristic cuckoo search algorithm [18] with the Eigen permutations
approach, and in the hybrid approach in the delta domain for the MOR [27]. Eigen permutation
with the Jaya algorithm [28] gives the effects of newly implemented algorithms in the MOR
field.

The new algorithms are in the process of development, chances of their implementation
depend on their competitiveness and increase the area of the MOR field. The Harris hawk
optimization (HHO) [29] is such a new algorithm in the engineering field [30–33]. Implementing
new nature–inspired techniques always explores the field and gives an opportunity to testify the
new proposals by researchers. The paper extends the opportunity of implementing the HHO in
the MOR field with the MMT, making it a mixed-method.

The paper is divided into five parts starting from the introduction, the second section is
about the problem statement, the third is about the methodology and is divided into two Sub-
sections: 3.1, which is about the Harris hawk optimization, and Sub-section 3.2, which is about
the moment matching technique. The fourth refers to the implementation of the technique, result
analysis as well as discussion, and the fifth is the conclusion followed by the references. The
appendix contains the link to a website describing the HHO and the codes used with the objective
function.
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2. Problem statement

The section is divided into two Sub-sections. Sub-section 2.1 is devoted to the linear time–
invariant (LTI) single input single output (SISO)system. Sub-section 2.2 is about the multi-input
multi-output (MIMO) system.

2.1. For LTI SISO systems
The SISO is a system that has only one input and one output. The SISO transfer function with

unknown order n may be represented by Eq. (1).

Gn(s) =
Nn−1(s)
Dn(s)

=

n−1∑
a=0

Nisi

n∑
a=0

Disi
. (1)

Ni is the numerator and Di is the denominator constant of the original system. In some cases,
N0 = D0 for the steady-state output response to a unit step input will be unified to find the
unknown scalar constant of the ROS m-th (m < n) from the HOS. The obtained reduced-order
has the following transfer function in Eq. (2).

Rm(s) =
Nrm−1(s)
Drm(s)

=

m−1∑
a=0

Nrisi

m∑
a=0

Drisi
. (2)

The reduced-order reflects approximately the same as that of the original system.

2.2. For multi-input and multi-output systems (MIMO)
The n-th order MIMO system with input as x and output as y is expressed in the transfer

function matrix in Eq. (3).

Gon(s) =
1

Don(s)



a11(s) a12(s) a13(s) · · · a1n(s)
a21(s) a22(s) a23(s) · · · a2n(s)
a31(s) a32(s) a33(s) · · · a3n(s)
...

...
...

...
...

...
...

...
...

...

am1(s) am2(s) am3(s) · · · amn(s)



, (3)

or [Gon(s)] =
[
gi j (s)

]
, i = 1, 2, 3, 4, 5, . . . is the x× y transfer matrix. Therefore, gi j (s) of Gon(s)

can be written as in Eq. (4).

gi j (s) =
Xi j (s)
Don(s)

=
X0 + X1s + X2s2 + . . . + Xn−1sn−1

a0 + a1s + a2s2 + . . . + an−1sn−1 + sn
. (4)
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The reduced transfer function of the MIMO system can be written as in Eq. (5).

Rn(s) =
1

Drn(s)



b11(s) b12(s) b13(s) · · · b1n(s)
b21(s) b22(s) b23(s) · · · b2n(s)
b31(s) b32(s) b33(s) · · · b3n(s)
...

...
...

...
...

...
...

...
...

...

bx1(s) bx2(s) bx3(s) · · · bxn(s)



, (5)

or [R(s)] =
[
ri j (s)

]
= i = 1, 2, 3, 4, . . . , v; j = 1, 2, 3, 4, 5, . . . , u the x × y is the transfer matrix.

The general form ri j (s)[R(s)] can be written as:

ri j (s) =
Yi j (s)
Drs (s)

=
Y0s + Y1s + Y2s2 + . . . + Yr−1sr−1

b0 + b1s + b2s2 + . . . + br−1sr−1 + sr
. (6)

3. Methodologies

The section of methodologies is divided into two Sub-sections. Sub-section 3.1 is for the
meta-heuristics Harris hawk optimization. It is based on the hunting behavior of the hawk and
escaping of the prey. Sub-section 3.2 is for the traditional moment matching technique.

3.1. Harris hawk optimization

The Harris hawk optimization (HHO) is based on the studies of hawk behavior, usually at
the time of hunting. The study has been carried out by Louis Lefebvre [34]. The implementation
using the HHO in the engineering area is proposed by Mirjalili [35]. The behavior resulting from
hunting and chasing patterns for the capture of prey in nature is known as surprise pounce. The
searching of prey is an approach by the predator using the highest point of the area such as standing
on the top of a tree, pole or flying in the sky. The attack of the hawk on prey is called a pounce. As
the prey is spotted, another member is informed by visual displaying or vocalization. The HHO
is divided into three–phase naming exploration, the transition from exploration to exploitation
and the exploitation phase. The exploitation stage is divided into four stages namely soft besiege,
hard besiege, soft besiege with advanced quick dives, and hard besiege with progressive speedy
dives.

3.1.1. The exploration phase
To start this phase, a hawk reaches the peak of a tree/pole/, the top of a hill to trace the prey

and also considers other hawk’s positions. The situation of q ≤ 0.5 for a branch on random giant
trees for the situation of q ≥ 0.5 is considered. The condition is modelled as in Eq. (7).

X (t + 1) =



Xrand(t) − r1 |Xrand(t) − 2r2X (t) | q ≥ 0.5(
Xprey(t) − Xm(t) − r3 (LB + r4 (UB_LB))

)
q ≤ 0.5

. (7)
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X (t+1) is the position vector of the hawk in the succeeding iteration t. Xprey(t) represents the
present position vector of hawks. r1, r2, r3, r4 and q represent the random number confidential
(0, 1) upgraded with iteration. LB represents the lower bounds and UB represents the upper
bounds of numbers. Xrand(t) represents the independent hawk from the present population. Xm

is the average position of the current population of hawks. The primary rule generates solutions
based on a random position. In the second rule of Eq. (7), the difference between the best position
and the average location of the group plus is an arbitrarily scaled factor depending on the number
of variables. The scaling factor r3 increases the random nature of regulation once r4 is adjacent
value to 1 and comparable distribution designs. Random factor scaling coefficients increase
pattern diversification and explore various feature regions. The rules for buildings are capable of
mimicking the actions of a hawk. The hawk’s average location is obtained using Eq. (8):

Xm(t) =
1
M

M∑
i=1

Xi (t). (8)

Xm(t) is obtained by Eq. (8). Xi (t) designates the position of an individual hawk in the
iteration t and N signifies the number of hawks.

3.1.2. Conversion from exploration to exploitation
The change from exploration to exploitation during exploitation performances is founded on

the absconding energy of the prey. The energy of the prey reduces during its escape. The energy
of the prey is modelled as in Eq. (9).

E = 2E0

(
1 −

t
T

)
. (9)

E designates the absconding energy of prey. T is the maximum number of iterations and E0
is the initial state of the energy.

3.1.3. Exploitation phase
The process begins by surprise and the imagined prey of the previous stage is hostile. The

prey tries to get out of the situation. The probability of escaping the hunting is (r < 0.5), and not
to escaping is (r >= 0.5). The hawk executes rough or soft besieges based on the prey’s activity.
Based on the vitality of the prey, the hawk encircles it in various ways. The hawk gets closer to the
desired prey to maximize its odds of killing the rabbit. The gentle assault begins and the rough
assault takes place.

3.1.4. Besiege occurs
a. Soft besiege

The prey has energy and tries to escape using random confusing jumps. The value for escaping
energy must be r ≥ 0.5 and E ≥ 0.5. If the value is below the stated one, the prey is unable to
jump. The hawk encircles the prey gently to make it more tired and perform the surprise dive.
This conduct is modelled by following rules represented in Eq. (10) and Eq. (11).

X (t + 1) = ∆X (t) − E ���J ∗ Xprey(t) − X (t)��� , (10)

∆X (t) = Xprey(t) − X (t). (11)
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b. Hard besiege
The prey is tired and has less energy when the value is equal to r ≥ 0.5 and E ≥ 0.5. The

Hawk barely encloses the intended prey to finally make a surprise pounce. The present locations
are updated as per Eq. (12).

X (t + 1) = Xprey(t) − E |∆X (t) | . (12)

Soft besiege with progressive rapid dives. To catch the prey, the hawk, decides its subsequent
move founded on Eq. (13).

Y = Xprey(t) − E ���J ∗ Xprey(t)_X (t)��� . (13)

The dive is founded on the LF-based designs using the law represented in Eq. (14).

Z = Y + S × LF (D). (14)

The D dimension problem and S represented by a random vector of size 1 × D and LF
represents the levy fight function, and is calculated as in Eq. (15).

LF (x) = 0.01 ×
u × σ

|v |
1
β

, σ =

*....
,

Γ(1 + β) × sin
(
π β

2

)
Γ

(
1 + β

2

)
× β × 2

(
β−1

2

)
+////
-

1
β

. (15)

u, v are the random values inside (0, 1), β is the constant set to 1.5. The last tactic for
apprising the locations of hawks. The soft besiege stage can be achieved and is given in Eq. (16).

X (t + 1) =



Y if F (Y ) < F (X (t))
Z if F (Z ) < F (X (t))

. (16)

Y and Z are obtained using Eq. (15) and Eq. (16).
c. Hard besiege with progressive rapid dives

The prey has not sufficient energy in case when |E | < 0.5 and r < 0.5. In this case, in order
to hunt, hard besiege is built and surprise pounce is initiated to catch the prey. The condition on
the prey side is comparable to that of the soft besiege except this time, the hawk seeks to reduce
the difference between its average position and the positions of the fleeing prey.

X (t + 1) =



Y if F (Y ) < F (X (t))
Z if F (Z ) < F (X (t))

. (17)

Y and Z are gained by Eq. (17) and Eq. (18).

Y = Xprey(t) − E ���J ∗ Xprey(t) − Xm(t)��� , (18)

Z = Y + S × LF (D). (19)
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3.2. Moment matching
The moment matching technique is in [1] and the efficient version of it is given in [2].
Consider the HOS transfer function represented as in Eq. (20).

Go (s) =
N12 + N22s + N23s2 + · · · + N2,m+1sm

1 + D12s + D13s2 + · · · + D1,n+1sn
. (20)

Here, m ≤ n for determining the moments, Go (s) is expended in series of the positive power
of s and is as follows:

Go =

∞∑
i=0

Cisi . (21)

The constant Ci is related to the moments using Eq. (22).

Ci = (−1)
1
i!

Mi . (22)

By using the direct division from Eq. (23) we get:

G(s) = P21 − P31s + P41s2 − P51s3 + · · · . (23)

P21 is the constant term in the numerator polynomial of the OHOS transfer function G(s) and
other coefficients are given using Eq. (24).

Pk,l = Pk−1,1P1,l+1 − Pk−1,l+1 . (24)

The result may be put in the following array from Eq. (25).

1 P12 P13 P14 L
P21 P22 P23 L L
P31 P32 P33 L L
L L L L L

. (25)

Assuming that an unknown model in Eq. (20) is given and by using Eqs. (23), (24) and
Eq. (25) the relation shown in Eq. (20), is obtained.



c0

c1

c2
...

cm
. . .

cm+1

cm+2
...

cm+n



=



0 0 . . . 0 0
... 0 0 0 0

−c0 0 . . . 0 0
... 0 0 0 0

−c1 −c0 . . . 0 0
... 0 0 0 0

...
...

...
...

...
...

...
...

...
...

−cm−1 −cm−2 . . . −c0 0
... 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−cm −cm−1 . . . −c1 −c0
... · · · · · · · · · 0

−cm+1 −cm . . . −c1
... −c0 · · · · · · 0

. . .
... · · · −c0 0 0

−cm+n−1 −cm+n−2 . . .
... · · · −c1 −c0 0





P12

P13

P14
...

P1,n−1

. . .

0
0
0
0



+



P21

P22

P23
...

P2,m+1

. . .

0
0
0
0



. (26)
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C11, C12, C21 and C22 represent the upper left-hand, upper right-hand, lower left-hand and
lower right-hand sub-matrices of the coefficient matrix. The reduced second order from the above
Eq. (26) is constructed using the mathematical matrices in Eq. (27) and Eq. (28).

â1 = C−1
21 ĉ2 =

[
−c1 −c0
−c2 −c1

]−1

×

[
c2
c3

]
=

[
a12
a13

]
, (27)

â2 = ĉ1 − C11â1 =

[
0 0
−c0 0

]
×

[
a12
a13

]
=

[
a21
a22

]
. (28)

Above Eq. (27) gives denominator, Eq. (28) represents numerator part of the diminished
second-order and is represented in Eq. (29):

R2(s) =
a21 + a22s

1 + a12s + a13s2 . (29)

The applied simulation procedure for reduction using the HHO and MMT is represented in
Fig. 1.

Original
System

step
signal

-
+

ISE based objective
Function

Harris Hawk
Optimization

21 22
2

12 131
a a s
a s a s

Error e(t)

+
+ +

Fig. 1. Optimization of free coefficient of reduced-order model using Harris hawk

The reduced-order has an error of approximation. The error of approximation such as ISE,
IAE and ITAE isminimized using the HHO. The response indices, i.e., integral square error (ISE),
penalizes larger errors more than smaller errors. This gives a more conservative response and the
reduced system returns faster to the set point. Therefore, ISE is chosen as an objective function to
optimize the reduced order. Integral absolute error (IAE), essentially, takes the absolute value of
the error. The negative area is accounted for when the IAE is used and diminishing the problem
encountered with integral error and integral time absolute error (ITAE) is the absolute value of
error multiplied by the time. As a consequence, over time error is penalized, even it may be small,
resulting in a more heavily damped response. ITSE is the integral of time weighted square error.
The HHO is a single objective–based algorithm therefore, the objective function considered is
ISE and represented in Eq. (30).

ISE =
∞∫

0

[G(t) − Gr (t)]2 dt . (30)
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Integral absolute error (IAE) is given in Eq. (31).

IAE =
∞∫

0

|G(t) − Gr (t) | dt. (31)

Integral time absolute error (ITAE) is given in Eq. (32).

ITAE =
∞∫

0

t . |G(t) − Gr (t) | dt . (32)

Integral time square error (ITSE) is given in Eq. (33).

ITSE =
∞∫

0

t × [G(t) − Gr (t)]2 dt. (33)

In response indices, G(t), is the step response of the higher-order and Gr (t) is the response
of the lower order.

and using defined Equations.

 . 
  

Start

Define 
HHO Parameter ; Population 

size; maximum iteration ; 
optimization dimension

Construct a 
population (randomly) Set itr =1

Calculate objective function 
(ISE) choose best solution

Define  J = 1(1– rand(0,1))

|E| ≥ 1

Update Solution Using 
Eq. (7)

Update Solution 
Using Eq. (8)

Report best solution and 
its objective function

End

Update

Update Solution 
Using Eq. (9)

Update Solution 
Using Eq. (11)

Update Solution 
Using Eq. (12)

t = t +1
t < tmax

E0 = 2 rand(0,1)–1 

|E| ≥ 0.5
 r ≥ 0.5

|E| < 0.5
 r ≥ 0.5

|E| ≥ 0.5
 r < 0.5

|E| < 0.5
 r < 0.5

Fig. 2. Flow chart of Harris hawk optimization [31]
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4. Implementation and discussion

The proposedmethod efficacy is checked by implementing it in SISO andMIMO systems. The
two system are considered to be examples. Example 1 refers to the SISO system and Example 2
refers to the MIMO system.

Example 1: The fourth-order system is selected from [36, 37] for the implementation of the
proposed technique, represented in Eq. (34)

G(s) =
s3 + 7s2 + 24s + 24

s4 + 10s3 + 35s2 + 50s + 24
. (34)

The parameters used for obtaining the numerator part from the HHO are listed in Table 1.

Table 1. Parameter values for the fourth-order system given as Example 1

Name Value

Dim 2 (N1, N2)

N 30

Rabbit energy/Best fitness of HHO 0.1139

T 100

UB [2, 1]

LB [0.2000, 1]

Elapsed Time 36988.269200 seconds

The proposed reduced-order using the HHO and MMT is represented in Eq. (35)

R(s) =
0.28693s + 1

0.3993s2 + 1.3750s + 1
. (35)

The obtained reduced order from the proposed method that considered the SISO system is
available in Eq. (36). The obtained response indices error ISE is 0.0001136. The error is very small
and the reduced order may follow the same path as that of the original system. The justification
regarding it is represented in Fig. 4 as the proposed line exactly matches a steady value of 1.
Figure 3 is the convergence curve of best fitness vs. the number of iterations. The best fitness
obtained for the system in 100 iterations is 0.11390, as per theoretical values |E | < 0.5 and
r < 0.5. The hawk attacked the rabbit (prey) and the target of hunting is completed as the fitness
of the rabbit is 0.11390 and less than 0.5. The comparable step response of the tactical 2nd order
in red near amplitude value 1 and second-order present in the literature is given in Fig. 4.

The proposed order has a steady state value of 1, better than available in the literature. To
avoid ambiguity only the response of the few reduction techniques is shown in Fig. 4. The integral
square error obtained from the proposed method is 0.0001136, which is less then compared to
the other ISE error available in Table 2, proving the proposed method efficiency.

The proposed reduced-order, using the HHO and MMT step response characteristics, is
compared in Table 3. The obtained result is better than the reduced-order available results.
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Fig. 3. Iteration graph of HHO for proposed ROM

Table 2. Response error indices of proposed and 2nd order available in the literature [35, 37–46]

Author/
Year/Method

ROM
Response indices

ISE IAE ITAE ITSE

Original – – –

Proposed with
algorithm

0.28693s + 1
0.3993s2 + 1.3750s + 1

0.0001136 0.01538 0.02042 6.796e–5

Sambariya; 2016;
RA+CSA [38]

0.8130s + 0.7945
s2 + 1.6560s + 0.7947

0.0002455 0.04279 0.2264 8.457e–4

Desai; 2013;
BBBC+RA [36]

0.8085s + 0.7944
s2 + 1.65s + 0.7944

0.0002835 0.04466 0.2217 0.001026

Parmar; 2007;
SE+GA [39]

0.7442575s + 0.6991576
s2 + 1.45771s + 0.6997

0.001749 0.1139 0.6214 0.006537

Parmar; 2007;
FDA+ESA [40]

0.6667s + 4
s2 + 5s + 4

0.0002637 0.02613 0.06642 0.0002229

Sikander 2015;
CSA [41]

0.7751s + 1.258
s2 + 2.12 + 1.258

0.000132 0.02739 0.1224 0.0003661

Sikander; 2015;
SE+PSO [42]

0.7528s + 0.6952
s2 + 1.458s + 0.6997

0.001519 0.1471 1.348 0.004188

Sikander; 2015;
SE+FDA [43]

0.6997s + 0.6997
s2 + 1.45771s + 0.6997

0.00278 0.1319 0.5537 0.007102
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Table 2 [cont.]

Author/
Year/Method

ROM
Response indices

ISE IAE ITAE ITSE

Sikander; 2016 0.7423s + 0.6957
s2 + 1.458 + 0.6997

0.001536 0.1443 1.239 0.008286

Sambariya; 2016;
RSA+SE [44]

20.57143s + 24
35s2 + 50s + 24

0.01307 0.2319 0.767 0.01919

Sambariya [45];
Routh array; 2016

246.852s + 288
70s2 + 300s + 288

0.3217 0.8988 2.04 0.2862

Narwal; 2016;
MCA [47]

0.7840s + 2.1215
s2 + 3.1213s + 2.1213

0.0002128 0.03058 0.1092 0.0003973

Narwal; 2015;
SE+CSO [47]

0.7597s + 0.6997
s2 + 1.4577s + 0.6997

0.001991 0.1108 0.5743 0.007997

Lucas; 1983; FD 0.833s + 2
s2 + 3s + 2

0.0003284 0.03205 0.0925 0.0003884

Howitt; 1990 0.81796s + 0.78411
s2 + 1.64068s + 0.78411

0.0003053 0.04576 0.2311 0.001129

Table 3. Step response characteristics of the original planned and 2nd order from the literature [35, 37–46]

Author/Year/Method Step Response Characteristics
ST RT Peak PT

Original 3.9308 2.2603 0.9990 6.8847

Proposed with algorithm 3.9540 2.2656 1.0000 10.3230

Sambariya; 2016; RA+CSA [38] 3.6319 2.2767 1.0022 6.0624

Desai; 2013; BBBC+RA [36] 3.6199 2.2785 1.0027 5.9728

Parmar; 2007; SE+GA [39] 3.2197 2.1885 1.0122 4.9915

Parmar; 2007; FDA+ESA [40] 4.0176 2.2646 0.9993 7.3222

Sikander 2015; CSA [41] 3.6722 2.2409 1.0002 6.9078

Sikander; 2015; SE+PSO [42] 3.1669 2.1574 1.0072 4.9273

Sikander; 2015; SE+FDA [43] 3.4104 2.3011 1.0107 5.2442

Sikander; 2016 3.2143 2.1850 1.0073 4.9905

Sambariya; 2016; RSA+SE [44] 3.4554 2.3769 0.9727 5.2223

Sambariya [45]; Routh array; 2016 2.0937 0.5040 1.0382 1.2688

Narwal; 2016; MCA [46] 4.0867 2.3373 1.0001 11.2454

Narwal; 2015; SE+CSO [47] 3.1562 2.1514 1.0139 4.8652

Lucas; 1983; FD 4.0642 2.3197 0.9992 7.3222

Howitt; 1990 3.5769 2.2548 1.0030 5.8944
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Fig. 4. Comparison of step response characteristics of the original, proposed with HHO/MMT
and 2nd order from the literature [35–46]

The proposed method proves its effectiveness. The settling time (ST) of the proposed system
is 3.9540, the rise time (RT) is 2.2656, the peak is 1.0000, the peak time is 10.3230 which
approximately follows the same path as that of the original and is also justified from the step
response plot represented in Fig. 2. The ST is 97.68%, RT is 99.47% and peak is 99.9%, matches
the original system path and better than the reduced-order available in the literature.
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Example 2: A 4th-order MIMO system from [48] given in Eq. (38).

G(s) =
[
G11(s)
G21(s)

]
=



s + 20
(s + 1) ∗ (s + 10)

s + 10
(s + 2) ∗ (s + 5)



=



b11(s)
D(s)

b21(s)
D(s)


b11(s) = s3 + 27s2 + 150s + 200

b21(s) = s3 + 21s2 + 120s + 100

D(s) = s4 + 18s3 + 97s2 + 180s + 100

. (36)

G11(s) =
b11(s)
D(s)

=
s3 + 27s2 + 150s + 200

s4 + 18s3 + 97s2 + 180s + 100
. (37)

Table 4. Parameter values of HHO for b11 and b12

Name Value b11(s)/D(s) Value b12(s)/D(s)

Dim 2 (N1, N2) 2 (N1, N2)

N 30 30

Rabbit Energy/
Best Fitness of HHO

4.0795e–25 2.3137e–26

T′ 100 100

UB [4, 2] [2, 1]

LB [0.100, 0.01] [0.100, 0.01]

Elapsed time 1346.044146 seconds 1727.482641 seconds

Figure 5 represents the step response of the targeted reduced-orders b11/D and b21/D with
original and equivalent reduced-order available in the literature. Table 5 shows the ISE of the
proposed reduced-order b11/D is 7.736e–30. The proposed reduced-order follows exactly the
original system and it is proven in step response characteristics in Table 5 and Table 6 that a rise
time (RT) of 2.2118, a settling time (ST) of 3.9662, a peak of 1.9986 and a peak time (PT) of
7.3222, are exactly the same as the proposed response characteristics, 100% consistent with the
original and superimposed on the original system.

G21(s) =
b21(s)
D(s)

=
s3 + 21s2 + 120s + 100

s4 + 18s3 + 97s2 + 180s + 100
. (38)

The MIMO second part reduced-order, using the proposed method, exactly matches the
original system. The RT is 1.2016, the ST is 2.0966, the peak is 0.9999 and the peak time is
4.7710, they match 100% of the characteristics of the original system, and integral square error
is negligible, i.e. 1.656e–30.
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Fig. 5. Step response of b11/D and b12/D of the proposed 2nd order
and 2nd order from the literature [48]

Table 5. Step response of b11/D and 2nd of the order proposed and 2nd order from the literature [48] and
traced in [49, 50]

Reduced Order
Step response characteristics Response

Indices
RT ST Peak PT ISE

Original System 2.2118 3.9662 1.9986 7.3222 –

Proposed
HHO+MMT

0.1s + 2
0.1s2 + 1.1s + 1

2.2118 3.9662 1.9986 7.3222 7.736e–30

Narwal A.
et al. [48]

1.22768s + 10.4784
s2 + 6.115s + 5.2392

2.1188 3.7767 2.000 10.6816 1.5389e–05

Vishwakarma
Method [48]

s + 2.2222
s2 + 1.6667s + 1.1110

2.0402 4.4992 2.0420 4.1998 1.30e–04

Shamash Y. [49]
1.76767s + 3.03031

s2 + 2.47475s + 1.51515
2.2611 3.9247 1.9999 9.9059 0.0006964
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Table 6. Step response of b21/D and 2nd order proposed and 2nd order from literature

Reduced Order Step response characteristics Response Indices

RT ST Peak PT ISE

Original System 1.2016 2.0996 0.999 4.7710

Proposed
HHO+MMT

0.1s + 1
0.1s2 + 0.700s + 1

1.2016 2.0966 0.9999 4.7710 1.656e–30

Narwal A.
et al. [48]

2.9715s + 5.2392
s2 + 6.115s + 5.2392

1.5673 3.1643 1.0000 9.0390 5.536e–02

Vishwakarma
Method [48]

s + 1.1112
s2 + 1.6667s + 1.1110

1.4031 4.7185 1.0494 3.0394 1.61410e–02

Shamash Y. [49]
1.56566s + 1.51515

s2 + 2.47475s + 1.51515
1.3214 2.2049 1.0017 4.0211 0.0008006

5. Conclusion

The proposed method unifies the concept of the Harris hawk optimization and time moment
matching technique. The effectiveness of the proposed technique is justified by implementing it in
the conversion of higher to lower order SISO andMIMO systems. The result obtained is analyzed
and is superior to the compared approaches in Table 2, Table 3, Table 5 and Table 6. The numerator
part of the system is optimized by minimizing the ISE using the HHO and the denominator part
is determined using the MMT. The ISE obtained from the considered SISO system is 0.0001136.
The step response characteristics of the proposed reduced-order ST is 97.68%, the RT is 99.47%
and the peak is 99.9% which matches the original system path. The MIMO reduced-order step
response characteristics are 100% the same as that of the original system and the obtained ISE
error is e–30, which can be considered negligible.

6. Appendix

A link to a description of the Harris hawk optimization is available at https://aliasgharheidari.
com/HHO.html.

The original higher-order transfer function of the system is as follows:
N = [N1 . . . No]; %%% Put the original numerator value of transfer function or call from the

model
D = [D1 . . . Do]; %%% Put the original denominator value of transfer function or call from

the model
S = tf(N,S);
Stepinfo(S)
Reduced-order transfer function
Nr = [Nr1 Nr]; %%%%%%%

https://aliasgharheidari.com/HHO.html
https://aliasgharheidari.com/HHO.html
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Drr = [Dr1 Dr1]; %%%%%%%%% reduced order denominator using the MM technique
Sr = tf(Nr, Drr)
Stepinfo(Sr)
To find out the integral square error considering E is an approximation error between S and

Sr. Using Eq. (32).
Function for optomization of Nr: %%%% Call algorihtm with function
Fobj = @ISE
Lb = [d, f];
Ub = [a, b];
Dim = 2;
function o = ISE
global N1 N2
N1 = X(1);
N2 = X(2);
sim(′Optim_MOR_HHO′,100);
ti = 0:.05:100;
o = E_out*E_out′ %%% ISE
end
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