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Abstract
The degradation of photovoltaic modules and their subsequent loss of performance has a serious impact
on the total energy generation potential. The lack of real-time information on the output power leads to
additional losses since the panels may not be operating at their optimal point. To understand the behaviour,
numerically simulate the characteristics and identify the optimal operating point of a photovoltaic cell, the
parameters of an equivalent electrical circuit must first be identified. The aim of this work is to develop
a total least-squares based algorithmwhich can identify those parameters from the output voltage and current
measurements, taking into consideration the uncertainties on both measured quantities. This work presents
a comparative study of the Ordinary Least Squares (OLS) and Total Least Squares (TLS) approaches to the
estimation of the parameters of a photovoltaic cell.
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1. Introduction

The continuous increase in energy demand over the last decades is creating a major challenge
in energy production. Although multiple sources of energy are currently available [1], most
of them present environmental and economic issues. For example, nuclear energy is almost
unlimited but presents great risks to the planet and to human beings. Fossil fuels, which are
presently considered the major source of energy production, have limited resources which are
being depleted. Additionally, their consumption increases pollution and gives rise to the emission
of greenhouse gases which is mainly responsible for climate change [2]. However, renewable
energies like solar photovoltaic energy, wind energy or hydropower are virtually unlimited and
environment friendly [3].
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Photovoltaic solar energy comes from direct transformation of solar radiation into electric
energy. This energy conversion is done through photovoltaic (PV) cells and is based on a physical
phenomenon called the photovoltaic effect which creates an electromotive force when the surface
of the cell is exposed to light [1]. A photovoltaic cell should be connected to a maximum
power point converter in order to keep track of the maximal produced power [4,5]. Modelling the
behaviour of a PV cell requires that properties of solar radiation and of the cell semiconductors [6]
are known. In the literature [7, 8], there are several photovoltaic cell models whose purpose
is to obtain the current-voltage (I–V) characteristic for analysis and performance evaluation of
photovoltaic modules. The most commonmodel is based on five parameters: the photocurrent Iph,
the saturation current Is , the ideality factor n, the series resistance Rs and the shunt resistance Rsh.

In general, manufacturers do not provide information on model parameters, although they
constitute the base for the characterisation of a photovoltaic panel. Moreover, the long exposure
of a panel causes it to suffer multiple forms of degradation [9, 10], which also unpredictably
changes the values of the model parameters [11–13]. Therefore, identifying the photovoltaic
model parameters from the current-voltage measurements is crucial to the characterization of PV
panels.

The direct techniques [14,15] use analytical approaches to obtain the parameters from a mea-
sured curve, but it requires extensive calculations. Another possibility to directly measure those
parameters [16] requires the use of expensive measurement instruments. However, numerous
works using different mathematical optimization methods have been proposed [17–26]. In [22]
the Levenberg–Marquardt method is used to identify the PV parameters through the minimization
of a suitable cost function based on ordinary least squares (OLS). In [23] a Flower Pollination
Algorithm (FPA) is proposed for estimating the parameters of photovoltaic modules and the per-
formance of the proposed extraction technique is tested using three different sources of data.
In [21] a method is suggested for extracting the intrinsic parameters of a photovoltaic module
by using the shuffled complex evolution (SCE) technique for a double-diode PV model. In [18]
a combination based on the Grey Wolf Optimizer and the cuckoo search algorithm for parameter
extraction of solar photovoltaic models is also developed. This paper [17] presents the Bacterial
Foraging Optimization (BFO) technique as a new parameter extraction method and compares
its results to other methods. In [20] a new version of the wind-driven optimization algorithm,
called an adaptive wind-driven optimization (AWDO) algorithmwas developed and implemented.
A triple-phase teaching-learning-based optimization (TPTLBO) is proposed in [19] to accurately
and reliably extract the parameters of different PV models. In this work [24], the Coyote Op-
timization Algorithm (COA) has been applied to extracti parameters of various models for the
solar cell and PV modules. An enhanced heuristic Nelder–Mead algorithm has also been used
for photovoltaic parameter identification [25, 26], where the initial simplex and the convergence
conditions were modified.

The experimental set up for characterization of a photovoltaic panel requires the use of
instruments to measure the panel’s output current and voltage. The resulting data from these
measurements are always affected by uncertainties which manifest themselves in the form of
additive noise. Usually, the cost function used in the optimization is based on the OLS [27]
which only focus on quantifying the sum of the difference between the measured current and the
estimated current. The resulting algorithm is simple to implement even in the case of implicit
non-linear models such as the photovoltaic I–V characteristic. However, this approach results in
higher uncertainty of the estimated PV parameters despite its implementation simplicity.

This paper proposes a new method which is based on minimizing the sum of distances not
only between the measured and estimated current, but also between the measured and estimated
voltage. Therefore, this method relies on minimizing the sum of Euclidean distances between
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the measured and estimated quantities in what is defined as total least squares (TLS). The new
proposed algorithm is easily implementable for application to non-linear implicit models such as
the photovoltaic I–V characteristic. Simulation results of a PV panel are presented to statistically
compare the performance of the proposed TLS method with the traditional OLS method. To
further highlight the advantages of the TLS proposed method, both methods are applied to
experimental data, acquired from a deployed PV panel. The simplicity of the proposed method
makes it suitable for real time implementation.

2. Mathematical methodology

2.1. Photovoltaic panel model

There are several physical models of a photovoltaic cell available in the literature [28, 29].
They differ in the number of parameters describing the behaviour of the photovoltaic cell. The
non-linear behaviour of a cell can be reproduced by the introduction of one or two semiconductor
junctions resulting in the so-called single diode (or five parameters) model [30,31] and in the two
diodes (or seven parameters) model [32, 33]. In this study, the single diode model was chosen to
model a PV panel and is represented by the electrical circuit shown in Fig. 1. The circuit contains
a current source which models the luminous flux as the photocurrent Iph. The losses of the cell
are modelled by a shunt resistance Rsh and a series resistance Rs . The diode is characterized by
inverse saturation current Is and the diode’s ideality factor n, represents the cells polarization and
is responsible for the non-linear characteristics of the model. These five components represent
the five internal parameters of the photovoltaic cell that this work aims to extract.

Fig. 1. Single diode equivalent electric circuit of a photovoltaic cell.

The I–V characteristic equation results directly from Kirchhoff’s laws and can be written in
the form of f (V, I) = 0 such that

Iph − I − Is

[
exp

(
q (V + IRs)

nkBT

)
− 1

]
−

V + IRs

Rsh
= 0, (1)

where I is the output current, V is the output voltage, T is the cell’s absolute temperature, q is the
elementary charge and kB is the Boltzmann constant.

2.2. Optimisation of the objective function

The OLS method is widely used for model identification and parameter estimation. The
method is based on the best fit, in a least square sense, of a mathematical model to a set of
measured data. It consists in the optimization of an objective function Sp which depends on

753

https://doi.org/10.24425/mms.2021.137707


O. Mesbahi et al.: SENSITIVITY ANALYSIS OF A NEW APPROACH TO PHOTOVOLTAIC PARAMETERS EXTRACTION . . .

p = {p1, p2, . . .} (i.e., the set of parameters to be optimized) and is defined as a sum of the square
of the distances between the measured data and the model estimated values as

Sp =
1
N

N∑
k=1

(
Ik − Îk

)2
, (2)

where Ik is the value of the measured current, Îk is the value of the estimated current and N is
the number of the data points.

The OLS approach is normally used due to its simple application for both linear and non-
linear problems. However, the measured data (output current and voltage) are always affected
by uncertainties. Therefore, the objective function should account for the uncertainties of the
measured current as well as the uncertainties of the measured voltage which are not included
in (2), representing the OLS technique. It is therefore proposed that parameter estimation is
performed in the total least squares sense which takes into account both current and voltage
deviations due to the measurement uncertainties. The objective function (2) should, accordingly,
be modified to

Sp =
1
N

N∑
k=1

[(
Ik − Îk

)2
+

(
Vk − V̂k

)2]
, (3)

where Vk is the value of the measured voltage and V̂k is the voltage estimated by the model.
The difficulty of using this objective function lies in its complexity due to its non-linearity,

transcendent and implicit form. In this work, an iterative and simple to implement algorithm
for TLS application is presented with a particular focus on photovoltaic characterisation and its
parameter estimation. It is also important to mention that even though the problem posed by the
characteristic f (V, I) in (1) is nonlinear and implicit, this function is continuous, differentiable
and strictly monotone, and its derivative can be calculated with the Implicit function theorem.

The objective of the TLS approach is to find the minimal distance between the measured data
point and the estimated curve in an iterative approach as presented in Fig. 2.

Fig. 2. TLS iterative algorithm illustration of the first 3 iterations.
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To find the point (V̂k, Îk ) corresponding to the minimal distance from the measured point
(Vk, Ik ) to the I–V curve, the algorithm starts by calculating the first estimated point (V̂k,1, Îk,1)
which corresponds to the vertical projection of the measured point onto the I–V curve. The first
coordinate V̂k, j+1 of the next iterative point (V̂k, j+1, Îk, j+1) is the intersection of the tangent line
Tk, j with the I–V curve at (V̂k, j, Îk, j ) and its normal which passes through (Vk, Ik ). The coefficient
of the tangent is calculated by the derivative of the implicit function (4). The second coordinate
Îk, j+1 is the root of f (V̂k, j+1, Îk, j+1).

f ′(V, I) = −
∂ f
∂V

/
∂ f
∂I
. (4)

This iterative process continues until a stopping criterion is achieved. This criterion is based
on two conditions: 1) the difference between two successive distances should be smaller than
an imposed tolerance as shown in equation (5); or 2) the maximum number of iterations has
been reached. For the sake of clarity and ease of implementation the TLS iterative algorithm is
described in the detail in the flowchart in Fig. 3.

���dk, j+1 − dk, j
��� ≤ Tol . (5)

The process described is repeated for each measured data point (Vk Ik ) with k ∈ {1, 2, . . . , N }
until the objective function (3) can be computed for a set of parameters p =

{
p1, p2, p3, p4, p5

}
,

which in this case corresponds to the 5 parameters of the single diode model. The objective
function is then minimized, in the TLS sense, to estimate those 5 parameters using a heuristic
search algorithm.

Fig. 3. Flowchart of optimum distance calculation in the TLS approach.

2.3. Parameters estimation

The photovoltaic parameter estimation is done using a non-gradient heuristic search method
to minimize the objective function computed by the TLS algorithm presented in the previous
section. The Nelder–Mead search algorithm [34] performs a direct search leading to the optimal
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solution by only evaluating successive values of the objective function. The method uses the
concept of a simplex which is a polytope of m + 1 vertices in a space with m dimensions. In this
work m = 5 since the objective is to estimate the 5 parameters of the single-diode model.

The algorithm starts with an initial simplex p1, p2, . . . , pm+1 and then a set of linear transfor-
mations removes the point of the simplex where the function is maximal and replaces it by a new
point which depends on the size and evolution of the simplex.

Figure 4 illustrates the possible steps of the algorithm: reflection; expansion; outside contrac-
tion; inside contraction; and shrinking.

Fig. 4. Illustration of the Nelder–Mead algorithm.

The application of this algorithm to photovoltaic parameter identification is explained in
details in [25]. It should be noted that the algorithm’s results strongly depend on the stopping
criteria and on the initial simplex as discussed in [25].

3. Sensitivity study of the proposed TLS and comparison with OLS

The simulation results presented in this section were obtained for a photovoltaic panel with
the reference parameters shown in Table 1. A set of N = 212 points (Vk, Ik ) were uniformly
sampled from the ideal I–V curve obtained with the parameters shown in Table 1.

Table 1. Reference parameters of the photovoltaic panel
for the simulation results.

Parameter Value

Iph (A) 3.95

Is (nA) 21.6

n 1.2

Rsh (Ω) 134.7

Rs (Ω) 0.255

To simulate measurement uncertainties, normally distributed white noise n was added to the
sampled voltage and current values according to the system of equations (6) resulting in Inoisy and
Vnoisy with nI and nV the additive noises for the output current and voltage. The noise standard
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deviation was considered equal for both voltage and current in the range between 1% and 10% of
the RMS value of the voltage and current, with steps of 1%. The OLS and TLS approaches were
applied to the simulated data to estimate the photovoltaic panel parameters.




Vnoisy = V + nv ,

Inoisy = I + nI .
(6)

To perform a statistical analysis, both algorithms were applied to 10000 random noise realiza-
tions for each noise level. The results shown in Fig. 5 present the average value of the estimated
parameters, in Fig. 6 their standard deviation values and in Fig. 7 the relative error of the estimated
results compared with the reference parameters in Table 1.

Figure 5 shows the evolution of the average value of each PVmodel parameter as a function of
noise amplitude. The reference value of each parameter is shown by the dashed line. The average
values of all parameters deviate from the reference value as the noise amplitude increases.
However, the results from the TLS approach remain closer to the reference value as compared
with the results from the traditional OLS approach.

Fig. 5. Average values of estimated photovoltaic parameters. The thin line corresponds to the OLS results, while the thick
line corresponds to the TLS results. The dashed line represents the reference value of each parameter.

The better performance of the TLS algorithm is also confirmed by the standard deviation of
the estimated parameters as shown in Fig. 6. The thin line represents the OLS results, while the
TLS results are shown with the thick line. The standard deviation of the estimated parameters
increases with the noise level, but the TLS approach results in standard deviations lower than
with the OLS approach.

Figure 7 compares the evolution of relative error of average value of each estimated parameter
obtained by each algorithm. The thick line represents the relative error using the TLS method,
while the thin line represents the results from the OLS method. These results show that the TLS
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Fig. 6. Standard deviation of estimated photovoltaic parameters. The thin line corresponds to the OLS results, while the
thick line corresponds to the TLS results.

Fig. 7. Relative error values of estimated photovoltaic parameters. The thin line corresponds to the OLS results, while the
thick line corresponds to the TLS results.

algorithm estimates the parameters more accurately than the OLS option. Additionally, in general
the TLS results present estimation errors which are about 4 times lower than those in the OLS
approach.
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4. Experimental setup and results

4.1. Parameters estimation of RTC France cell

The application of the proposed TLS algorithm to calculate the cost function in this paper is
established on two different sets of data where it is also compared with the OLS algorithm. The
first one is a commercial silicon (Si) cell from R.T.C France, its experimental data was taken at
a temperature of 33◦ and 1000 W/m2. The electrical characteristics of this model are presented
in Table 2. This set of measurement is accompanied with less noise than the set of measurement
of I–V tracer which will be represented in the next section.

Table 2. Electrical characteristics of a silicon cell from R.T.C France.

Parameter Variable Value

Number of cells NS 1

Voltage at Pmax Vm (V) 0.4590

Current at Pmax Im (A) 0.6755

Short circuit current Isc (A) 0.7605

Open circuit voltage Voc (V) 0.5727

The parameter extraction of this cell dataset was performed using both TLS and OLS cost
functions in order to compare their performances. The measured I–V and P–V characteristics are
presented in Fig. 8a and 8b by circles, the resulting I–V and P–V curves of the model with the
estimated parameters are also shown in Fig. 8a and 8b with a thick line for the TLS results and
a thin line for the OLS results. These graphs show that the characteristics obtained in the TLS
approach are closer to the measured data than the characteristics obtained in the OLS approach.

a) b)

Fig. 8. a) Experimental I–V characteristic along with the characteristics obtained with the TLS and OLS for a silicon cell
from R.T.C France. b) Experimental P–V characteristic along with the characteristics obtained with the TLS and OLS for

a silicon cell from R.T.C France.

The numerical results are presented in Table 3, where the twomethods are compared in RMSE
terms which is the value of the cost function using equation (3) for TLS and equation (2) for OLS,
and the Relative Error between the maximum output estimated power and the maximum power
given by the manufacturer.
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Table 3. Results for parameter extraction for an R.T.C France silicon cell.

Method Iph (A) Is (nA) n Rsh (Ω) Rs (mΩ) RMSE PMPP (mW) RMPP relative error

TLS 0.76 553.34 1.51 61.31 34.41 9.98e–04 308.51 0.50%

OLS 0.76 552.24 1.52 61.58 34.52 2.08e–03 304.45 1.80%

The value of the RMSE of the TLS is smaller than the one of the OLS by 1.08e–03, and
the relative error of the output maximum power of the TLS is 0.50% and the one of the output
maximum power of the OLS is 1.80%. This means that maximum power estimated by TLS
approach is closer to the experimental value of the power at MPP than the one estimated with the
OLS approach with a difference in the relative error of 1.30%.

4.2. Parameter estimation of I–V tracer measured data

To further validate the results of the TLS method and compare it with the performance of
the OLS method, both algorithms were applied to data measured from a real photovoltaic panel
and the corresponding PV model parameters were estimated. The modular structure of the PV
characterization setup consists of an SA-100 OEM solar panel, with characteristics shown in
Table 4 provided by the manufacturer, and a CHAUVIN ARNOUX FTV200 I–V curve tracer
which measures the I–V and P–V curves of a photovoltaic panel. Additionally, the setup contains
a pyranometer with the range of up to 2000 W/m2 for radiation measurements and a PT-100
sensor for measurement of ambient temperature.

Table 4. Electrical characteristics of the photovoltaic panel used
in the experimental setup.

Parameter Variable Value

Number of cells NS 45

Maximum power Pmax (W) 100

Voltage at Pmax Vm (V) 17.6

Current at Pmax Im (A) 5.71

Short circuit current Isc (A) 6.4

Open circuit voltage Voc (V) 21

The initial guess for the Nelder–Mead algorithm for both TLS and OLS was calculated fol-
lowing the conclusions from [35], where a study of the impact of internal and external parameters
variation was analysed using an error function. Following the guidelines in [35], for better conver-
gence, the photocurrent Iph and shunt resistance Rsh initial guess should be lower than the target
value, while for the diode parameters, which are the inverse saturation current Is and the ideality
factor n, the initial guess should be higher than the target values. The initial guess of the series
resistance Rs does not have a significant effect on the final value of the estimated parameters. The
chosen initial guess point is shown in Table 5.

The experiment was performed under an irradiance of 889.58 W/m2 and at 26◦. The I–V and
P–V characteristics measured by the curve tracer are presented by circles in Fig. 9a and 9b. The
TLS and OLS methods were applied to the measured I–V curve data and the 5 PV parameters
of the single-diode model were estimated for each method. The resulting I–V and P–V curves of
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Table 5. Initial simplex used in the Nelder–Mead algorithm.

Parameter Value

Iph (A) 4.97

Is (nA) 44.65

n 1.02

Rsh (Ω) 179.5

Rs (Ω) 0.521

the model with the estimated parameters are also shown in Fig. 9a and 9b with a thin line for the
OLS results and a thick line for the TLS results.

a) b)

Fig. 9. a) Experimental I–V characteristic along with the characteristics obtained with the TLS and OLS single-diode
model estimated parameters. b) Experimental P–V characteristic along with the characteristics obtained with the TLS and

OLS single-diode model estimated parameters.

The I–V curve of the single-diode model obtained with the parameters estimated with the
TLS method followed the measurements obtained with the I–V curve tracer for all the output
voltage range, thus validating the TLS method as a procedure to estimate the PV parameters
of a photovoltaic panel. The I–V curve which resulted from the parameters estimated by the
OLS method correctly follow the measurements but only for higher output voltages, exhibiting
a significant difference at the MPP region of the I–V curve. Analogously, the results for the P–V
curve show that the TLSmethod exhibits a better performance than the OLSmethod. Of particular
importance is the maximum output power point which is underestimated when the parameters
used are obtained using the OLS method.

Table 6 represents the maximum iterations the TLS approach needs to converge according
to an imposed tolerance; it is the maximum number of all iterations which all the points in the
measured dataset need to converge. The imposed tolerance is presented in equation (5). This table
proves that this proposed TLS technique can achieve convergence in maximum 3 to 4 iterations,
which confirms its rapidity.

Table 6. TLS algorithm maximum convergence iterations.

Imposed tolerance 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

Maximum Iterations 2 2 2 2 3 3 3 3 4 4
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Table 7 presents the estimated photovoltaic parameters and the maximum power obtained
by both TLS and OLS methods, along with the relative error of the maximum power obtained
in both approaches. The relative error of maximum power was computed from the maximum
measured power by the curve tracer which was PMPP = 80.24 W. Although the exact parameters
of the single-diode model are unknown, the maximum power relative error confirms that the
TLS method, with relative error of 0.98% allows a more accurate characterization of a solar
photovoltaic panel than the OLS approach which presents a relative error of 6.89%.

Table 7. Photovoltaic parameters and maximum power estimated by TLS and OLS methods along with the maximum
power and its relative error (the measured maximum power was PMPP = 80.24 W).

Method Iph (A) Is (nA) n Rsh (Ω) Rs (Ω) PMPP (W) RMPP relative error

TLS 5.13 A 47.49 1.04 184.93 0.47 79.46 0.98%

OLS 4.92 A 49.71 1.01 219.14 0.64 74.72 6.89%

5. Conclusions

The unavailability of information on the internal photovoltaic parameters and the impact
of the degradation phenomena on photovoltaic characteristics make it crucial to estimate those
parameters from measurement data.

This paper presents a new method based on minimizing a suitable cost function in the total
least squares sense for better estimation of photovoltaic parameters. A comparative study with the
classical ordinary least squares approach was also performed. This comparison was performed
through a sensitivity analysis of the effect of additive noise on simulated output voltage and
current. The average values, standard deviations and relative errors of the estimated single diode
model parameters were obtained from 10000 random noise realizations. From the results, it
was concluded that the proposed TLS approach shows better precision and accuracy for the
photovoltaic parameter estimation.

To further validate the TLS approach, an experimental studywas conducted using two different
sets of data. The first is from a silicon cell from R.T.C France where the measurements carry
less noise than the second set of data which are obtained using an I–V tracer where the measured
data is more disturbed. The TLS and OLS methods were applied to the measured data and the
single-diode model parameters were estimated. With these parameters the I–V and P–V curves
were computed and compared with the original curves measured from a silicon cell of R.T.C
France and the I–V tracer. It was found that the TLS method resulted in parameters which yield
I–V and P–V curves which closely follow the measurements, especially in maximum power point
(MPP) region of the curves.

Additionally, in the comparison of the measured maximum power with the maximum power
estimated by the TLS and OLS approaches it was found that the TLS method resulted in a max-
imum power relative error of 0.50% for the first dataset and 0.98% for the second dataset while
the OLS method resulted in a maximum power relative error of 1.80% for the first dataset and
6.89% for the second dataset, thus validating the better performance of the TLS method even for
more noised measurements. Besides the simplicity of implementation and rapid convergence of
the proposed TLS approach, the benefits of the more accurate parameters and maximum power
estimation justify its use in characterization of photovoltaic solar panels.
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