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In this paper, we investigate a problem on reflection and transmission of plane-waves at an interface between
two dissimilar half-spaces of a transversely isotropic micropolar piezoelectric material. The entire model is
assumed to rotate with a uniform angular velocity. The governing equations of rotating and transversely
isotropic micropolar piezoelectric medium are specialized in a plane. Plane-wave solutions of two-dimensional
coupled governing equations show the possible propagation of three coupled plane-waves. For an incident
plane-wave at an interface between two dissimilar half-spaces, three reflected and three transmitted waves
propagate with distinct speeds. The connections between the amplitude ratios of reflected and transmitted
waves are obtained. The expressions for the energy ratios of reflected and transmitted waves are also obtained.
A numerical example of the present model is considered to illustrate the effects of rotation on the speeds and
energy ratios graphically.
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1. Introduction

The reflection and transmission phenomenon of
elastic waves at an interface between two different
media is of great concern in many fields includ-
ing composites engineering, geology, seismology, seis-
mic exploration and acoustics. The study of propa-
gation, reflection and transmission of plane waves plays
a vital role in providing information of the inter-
nal structure of the material medium. Some classi-
cal problems on reflection and transmission of elastic
waves in layered media were analysed by various au-
thors (Knott, 1899; Jeffreys, 1926; Gutenberg,
1944; Ergin, 1950; Ewing et al., 1957; Achenbach,
1973). The wave phenomenon in piezoelectric media
has its applications in the generation and transmis-

sion of disturbances in electro-acoustic devices like
transducers and resonators. The reflection and trans-
mission of plane-waves in the theory of piezoelec-
tricity have many applications in the area of sig-
nal processing, transduction and frequency control
(Auld, 1981; Kaung, 2013; Parton, Kudryavt-
sev, 1988; Rosenbaum, 1988; Xue et al., 2012).
The propagation, reflection and transmission of plane
waves in the piezoelectric materials were studied by
Kyame (1949), Pailloux (1958), Hruska (1966),
Auld (1973), Cheng and Sun (1975), Alshits et al.
(1984), Every and Neiman (1992), Alshits and Shu-
valov (1995), Pang et al. (2008), Darinskii et al.
(2008), Burkov et al. (2009), Singh (2010), Kuang
and Yuan (2011), Yuan and Zhu (2012), Singh
(2013), Guo and Wei (2014), Guo et al. (2015), Oth-
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man et al. (2017a; 2017b), Jiao et al. (2019), Sahu
et al. (2021), Liu et al. (2021), and Singh et al. (2021).

Functionally graded materials are typically created
by two or more materials, which have unique charac-
teristic properties varying gradually in a certain di-
rection. When used with piezoelectric materials, func-
tionally graded manufacturing methods introduce new
smart materials known as functionally graded piezo-
electric materials (FGPMs). The functionally graded
piezoelectric models increase the efficiency and me-
chanical performance of piezoelectric structures. The
analysis of structures made of these materials has
been brought to a worldwide attention by various re-
searchers such as Barati and Zenkour (2018), Zenk-
our and Alghanmi (2019a; 2019b; 2020), Zenkour
and Aljadani (2019; 2020), Zenkour and Hafed
(2019; 2020a; 2020b), and Pal and Singh (2021).

The micropolar elasticity is a generalization of clas-
sical elasticity with extra independent degrees of free-
dom for local rotation. In the micropolar theory, the
particle motions are expressed in terms of displace-
ment and micro-rotation vector. Eringen (1966; 1968;
1999) introduced the linear theory of micropolar elas-
ticity and explained the micro-rotational motion and
spin inertia that can support coupled stress and body
couples in elastic materials. The theory of micropo-
lar elasticity was applied to piezoelectricity by many
researchers (Cracium, 1995; Ciumasu, Vieru, 1999;
Vieru, Ciumasu, 1999; Zhilin, Kolpakov, 2005;
Iesan, 2006; Aouadi, 2008; Gales, 2012). Reflec-
tion and transmission coefficients are useful parame-
ters for the quantitative characterization of the geo-
acoustic properties of the seabed sediment and its sub-
bottom structure. The theory of micropolar elasticity
is adequate to study the propagation of acoustics in
the seabed materials. The reflection and transmission
phenomenon in piezoelectric materials with micropo-
lar effects hasn’t been investigated much in literature.
For example, Singh and Sindhu (2016; 2018) stud-
ied the rotational and micro-rotational effects on wave
speed of Rayleigh-wave in a micropolar piezoelectric
medium. Sangwan et al. (2018) studied the reflection
and transmission of elastic waves at an interface be-
tween an elastic half-space and a micropolar piezoelec-
tric half-space. Singh et al. (2019) studied the reflec-
tion and transmission of elastic wave at an interface
between two micropolar piezoelectric half-spaces.

The translation and rotation of a moving object can
be sensed by accelerometers and gyroscopes, respec-
tively. These motion sensors are used as an important
tool in smart weapon systems, video cameras, auto-
mobiles, robotics, navigation and machine control. Re-
cently, vibratory gyroscopes made up of piezoelectric
materials have become a center of interest in many re-
searches. The equations of motions for a rotating piezo-
electric body with Coriolis and centrifugal accelera-
tions are responsible for observing the fundamental na-

ture of the piezoelectric gyroscope. Schoenberg and
Censor (1973) studied the effect of rotation on plane
wave propagation in an isotropic medium. The effects
of rotation on frequency or wave speed provide valu-
able inputs for the design of acoustic sensors (White,
1998). In particular, the rotation induced frequency
shifts have been applied to manufacture the gyroscopes
(Tiersten et al., 1980; 1981; Wren, Burdess, 1987).

The main purpose of the present paper is to il-
lustrate the effect of rotation on the reflection and
transmission phenomenon of plane-waves at a welded
interface between two different transversely isotropic
micropolar piezoelectric solid half-spaces. The present
paper is organized as follows: in Sec. 2 the governing
equations for linear rotating micropolar piezoelectric
materials are formulated and specialized in x-z-plane.
Plane-wave solutions of the specialized equations are
obtained in Sec. 3. In Sec. 4 two different half-spaces
of micropolar piezoelectric material are assumed in
welded contact to study the reflection and transmission
of plane-waves. The connections between the ampli-
tudes of the incident, reflected and transmitted waves
are obtained. The expressions for the energy ratios of
reflected and transmitted waves are also derived. In
Sec. 5, the speeds and energy ratios of reflected and
transmitted waves are computed for a given model
and are illustrated graphically to observe the rotational
effects.

2. Governing equations

We assume that the micropolar piezoelectric solid
rotates uniformly with an angular velocity Ω = Ωn̂
where Ω is rotation parameter and n̂ is a unit vec-
tor representing the direction of the axis of rotation.
The fixed coordinate system in the rotating micropo-
lar piezoelectric medium introduces additional terms
in the equations of motion: centripetal acceleration
is Ω × (Ω × u) due to time varying motion only and
(2Ω × u̇) is the Coriolis acceleration, where u is the
displacement vector. Following Aouadi (2008) and
Schoenberg and Censor (1973), the governing field
equations for the linear theory of rotating micropolar
piezoelectric solids in the absence of body forces and
body couples are:
(a) equations of motion

σji,j = ρ [üi + {Ω × (Ω × u)}i + (2Ω × u̇)i], (1)

mik,i + εijkσij = ρjφ̈k, (2)
(b) electric field equations

Dj,j = qeEk = −ψ,k, (3)
(c) the constitutive equations

σij = cijklekl + bijklκkl + λijkEk, (4)

mij = bklijekl + aijklκkl + βijkEk, (5)

Dk = −λijkeij − βijkκij + γkjEj , (6)
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(d) the geometrical equations

eij = uj,i + εijkφk, κij = φj,i, (7)

where σij is the stress tensor, ρ is the mass density, φ is
the microrotation vector, j is the micro-inertia, mij

is the couple stress tensor, εijk is the alternating sym-
bol, Dk is the dielectric displacement vector, qe is the
volume charge density, Ej is the electric field vec-
tor, ψ is the electrostatic potential, eij and κij are
kinematic strain measures and aijkl, bijkl, cijkl, λijk,
βijk, and γjk are constitutive coefficients. Superposed
dot denotes partial differentiation with respect to the
time t. Subscripts preceded by a comma denote par-
tial differentiation with respect to the corresponding
Cartesian coordinate and the repeated index in the
subscript implies summation. The constitutive coeffi-
cients satisfy the following symmetry relations

cijkl = cklij , aijkl = aklij , γij = γji. (8)

We consider two dissimilar linear, homogeneous trans-
versely isotropic rotating micropolar piezoelectric half-
spaces in welded contact. The origin of the Cartesian
coordinate system (x, y, z) is taken on the plane inter-
face and z-axis pointing vertically downwards into ro-
tating micropolar piezoelectric half-space (z ≥ 0). The
upper half-space (z ≤ 0) and lower half-space (z ≥ 0)
are denoted by M ′ and M , respectively. All quantities
in mediumM ′ are denoted by a superposed prime. We
assume that the medium is transversely isotropic in
such a way that the plane of isotropy is perpendicular
to z -axis. For two-dimensional motion in x-z-plane, we
consider the following components of the displacement
vector u and microrotation vector φ

u = (u1,0, u3), φ = (0, φ2,0). (9)

Making use of Eqs (1)–(9), the following govern-
ing equations of motion in x-z-plane are obtained for
a transversely isotropic and rotating micropolar piezo-
electric medium

A11
∂2u1

∂x2
+ (A13 +A56)

∂2u3

∂x∂z
+A55

∂2u1

∂z2

+K1
∂φ2

∂z
− (λ15 + λ31)

∂2ψ

∂x∂z

= ρ [
∂2u1

∂t2
−Ω2u1 + 2Ω

∂u3

∂t
], (10)

A66
∂2u3

∂x2
+ (A13 +A56)

∂2u1

∂x∂z
+A33

∂2u3

∂z2

+K2
∂φ2

∂x
− λ15

∂2ψ

∂x2
− λ33

∂2ψ

∂z2

= ρ [
∂2u3

∂t2
−Ω2u3 − 2Ω

∂u1

∂t
], (11)

B77
∂2φ2

∂x2
+ B66

∂2φ2

∂z2
− χφ2 −K1

∂u1

∂z

− K2
∂u3

∂x
= ρj

∂2φ2

∂t2
, (12)

λ15
∂2u3

∂x2
+ λ33

∂2u3

∂z2
+ (λ15 + λ31)

∂2u1

∂x∂z

+ γ11
∂2ψ

∂x2
+ γ33

∂2ψ

∂z2
= 0, (13)

where A11 = C1111, A55 = C3131, A13 = C1133 = C3311,
A56 = C3113 = C1331, A66 = C1313, A33 = C3333, K1 =

A56−A55 = C3113−C3131,K2 = A66−A56 = C1313−C1331,
χ = K2 − K1, B77 = a1212, B66 = a3232, λ31 = λ311,
λ33 = λ333, λ15 = λ131 = λ113, λ35 = λ313 = λ331.

3. Plane-waves

We consider the plane-waves in the x-z-plane with
a wave front parallel to the y-axis. We seek the follow-
ing plane-wave solutions of Eqs (10)–(13)

{u1, u3, φ2, ψ} = (A,B,C,D)

⋅ exp{ik (x sin θ + z cos θ) − iωt}, (14)

where k is the wavenumber, ω = kv is the circular fre-
quency and v is the speed of wave propagating in x-z-
plane along a direction making an angle θ with z-axis.

Using Eq. (14) in Eqs (10)–(13), we obtain a ho-
mogeneous system of four equations in A, B, C, and D
which have a non-trivial solution if

H0Λ
3
−H1Λ

2
+H2Λ −H3 = 0, (15)

where Λ = ( v
ω
)

2
and H0, H1, H2, H3 are given in Ap-

pendix 1.
The three real roots v1, v2 and v3 (v1 > v2 > v3)

of Eq. (15) correspond to the speeds of propagation of
Coupled Longitudinal Displacement (CLD), Coupled
Transverse Displacement (CTD), and Coupled Trans-
verse Microrotational (CTM) waves, respectively. In
the absence of piezoelectric and transverse isotropy, the
velocity Eq. (15) agrees with (Parafitt, Eringen,
1969).

4. Reflection and transmission

A plane coupled longitudinal displacement (CLD)
wave propagating with velocity v′1 through the trans-
versely isotropic rotating micropolar piezoelectric solid
half-space (M ′) is considered as incident wave at the
interface z = 0 making an angle θo with negative z-axis.
The incident CLD wave generates three reflected CLD,
CTD and CTM waves of amplitude A′

m (m = 1,2,3)
propagating with speeds v′m (m = 1,2,3) in mediumM ′
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and three transmitted CLD, CTD and CTM waves of
amplitude Am (m = 1,2,3) propagating with speeds
vm (m = 1,2,3) in medium M . The geometry showing
the directions of propagation of incident, reflected and
transmitted waves is shown in Fig. 1. The appropriate
displacement components u′1, u

′

3, microrotation com-
ponent φ′2 and electric potential ψ′ for incident and
reflected waves in medium M ′ are

u′1 =Ao exp{ik′1(x sin θo+z cos θo)−iωt}

+
3

∑
m=1

A′

m exp{ik′m(x sin θ′m−z cos θ′m)−iωt}, (16)

u′3 =ξoAo exp{ik′1(x sin θo+z cos θo)−iωt}

+
3

∑
m=1

ξ′mA
′

m exp{ik′m(x sin θ′m−z cos θ′m)−iωt}, (17)

φ′2 =ηoAo exp{ik′1(x sin θo+z cos θo)−iωt}

+
3

∑
m=1

η′mA
′

m exp{ik′m(x sin θ′m−z cos θ′m)−iωt}, (18)

ψ′ =ζoAo exp{ik′1(x sin θo+z cos θo)−iωt}

+
4

∑
m=1

ζ ′mA
′

m exp{ik′m(x sin θ′m−z cos θ′m)−iωt}, (19)

and the appropriate displacement components u1, u3,
microrotation component φ2, electric potential ψ for
transmitted waves in medium M are

u1=
3

∑
m=1

Am exp{ikm(x sin θm+z cos θm) − iωt}, (20)

u3=
3

∑
m=1

ξmAm exp{ikm(x sin θm+z cos θm) − iωt}, (21)

φ2=
3

∑
m=1

ηmAm exp{ikm(x sin θm+z cos θm) − iωt}, (22)

Fig. 1. Geometry of the problem showing incident, reflected
and transmitted waves.

ψ=
3

∑
j=1

ζmAm exp{ikm(x sin θm+z cos θm) − iωt}, (23)

where v′m (m = 1,2,3) are the real speeds of reflected
CLD, CTD and CTM waves respectively in medium
M ′ and vm (m = 1,2,3) are the real speeds of trans-
mitted CLD, CTD, and CTM waves respectively in
medium M, and the explicit expressions for coupling
coefficients ξo, ηo, ζo, ξ′m, η′m, ζ ′m, ξm, ηm, and ζm
(m = 1,2,3) are listed in Appendix 2.

The relevant boundary conditions at the interface
z = 0 are the continuity of normal and tangential
force stress components, tangential couple stress com-
ponents, electric displacement, electric potential and
normal displacement components, which are written as

σ33 = σ
′

33, σ31 = σ
′

31, D3 =D
′

3,

m32 =m
′

32, ψ = ψ′, u3 = u
′

3,
(24)

where

σ′33 = A′

13

∂u′1
∂x

+A′

33

∂u′3
∂z

− λ′35

∂ψ′

∂x
− λ′33

∂ψ′

∂z
,

σ33 = A13
∂u1

∂x
+A33

∂u3

∂z
− λ35

∂ψ

∂x
− λ33

∂ψ

∂z
,

σ′31 = A′

56

∂u′3
∂x

+A′

55

∂u′1
∂z

+ (A′

56 −A
′

55)φ
′

2

−λ′31

∂ψ′

∂x
− λ′35

∂ψ′

∂z
,

σ31 = A56
∂u3

∂x
+A55

∂u1

∂z
+ (A56 −A55)φ2

−λ31
∂ψ

∂x
− λ35

∂ψ

∂z
,

D′

3 = λ′15

∂u′1
∂x

+ λ′33

∂u′3
∂z

+ γ′33

∂ψ′

∂z
,

D3 = λ15
∂u1

∂x
+ λ33

∂u3

∂z
+ γ33

∂ψ

∂z
,

m′

32 = B′

66

∂φ′2
∂z

,

m32 = B66
∂φ2

∂z
.

The displacement components, microrotation com-
ponents, and electric potentials given by Eqs (16)–(23)
satisfy boundary conditions (24) under the following
conditions analogous to Snell’s law

k′1 sin θo = k′1 sin θ′1 = k
′

2 sin θ′2 = k
′

3 sin θ′3 = k1 sin θ1

= k2 sin θ2 = k3 sin θ3, (25)

k′1v
′

1 = k′2v
′

2 = k
′

3v
′

3 = k
′

4v
′

4 = k1v1 = k2v2

= k3v3 = k4v4 = ω, (26)
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and we obtain the following non-homogeneous system
of six equations in amplitude ratios of reflected and
transmitted waves as

6

∑
m=1

αpmZm = δp (p = 1,2, ...,6), (27)

where

Zm =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

A′

m

A0
(m = 1,2,3),

Am−3

A0
(m = 4,5,6),

are amplitude ratios of reflected CLD wave, reflected
CTD wave, reflected CTM wave, transmitted CLD wa-
ve, transmitted CTD wave, and transmitted CTM wave,
respectively, and

α1m=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−[(A′

13−λ
′

35ζ
′

m) sin θo−(A
′

33ξ
′

m−λ
′

33ζ
′

m)a∗]

(A′

13−λ
′

35ζo) sin θo+(A′

33ξo−λ
′

33ζo) cos θo

(m = 1,2,3),

(A13−λ35ζm−3) sin θo+(A33ξm−3−λ33ζm−3)b
∗

(A′

13−λ
′

35ζo) sin θo+(A′

33ξo−λ
′

33ζo) cos θo

(m = 4,5,6),

α2m=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−[(A′

56ξ
′

m−λ
′

31ζ
′

m) sin θo−c
∗
]

(A′

56ξo−λ
′

31ζo) sin θo+(A′

55−λ
′

35ζo) cos θo−i(A′

56−A
′

55)(
ηo
k′
1
)

(m = 1,2,3),

(A56ξm−3−λ31ζm−3) sin θo+d
∗

(A′

56ξo−λ
′

31ζo) sin θo+(A′

55−λ
′

35ζo) cos θo−i(A′

56−A
′

55)(
ηo
k′
1
)

(m = 4,5,6),

α3m=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−

⎡
⎢
⎢
⎢
⎢
⎣

λ′15 sin θo−(λ
′

33ξ
′

m+γ
′

33ζ
′

m)

√

(
v′
1

v′m
)

2

−sin2 θo

⎤
⎥
⎥
⎥
⎥
⎦

λ′15 sin θo+(λ′33ξo+γ
′

33ζo) cos θo

(m = 1,2,3),

λ15 sin θo+(λ33ξm−3+γ33ζm−3)

√

(
v′
1

vm−3
)

2

−sin2 θo

λ′15 sin θo+(λ′33ξo+γ
′

33ζo) cos θo

(m = 4,5,6),

α4m=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
η′m
k′m

)(
v′1
v′m

)

√

(
v′
1

v′m
)

2

−sin2 θo

(
ηo
k′
1
) cos θo

(m = 1,2,3),

B66(
ηm−3
km−3

)(
v′1

vm−3
)

√

(
v′
1

vm−3
)

2

−sin2 θo

B′

66(
ηo
k′
1
) cos θo

(m = 4,5,6),

α5m=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−ζ′m
ζo

(m = 1,2,3),

ζm−3

ζo
(m = 4,5,6),

α6m=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−ξ′m
ξo

(m = 1,2,3),

ξm−3

ξo
(m = 4,5,6),

δp = 1 (p = 1,2, ...,6), where

a∗=

¿
Á
ÁÀ

(
v′1
v′m

)

2

−sin2 θo, b∗=

¿
Á
ÁÀ

(
v′1
vm−3

)

2

−sin2 θo,

c∗=(A′

55 − λ
′

35ζ
′

m)

¿
Á
ÁÀ

(
v′1
v′m

)

2

−sin2 θo

−i (A′

56−A
′

55)(
v′1
v′m

)(
η′m
k′m

),

d∗=(A55 − λ35ζm−3)

¿
Á
ÁÀ

(
v′1
vm−3

)

2

−sin2 θo

−i (A56−A55)(
v′1
vm−3

)(
ηm−3

km−3
).

Following (Achenbach, 1973), the rate of energy
transmission at the interface z = 0 is

P ∗
=

⎧⎪⎪
⎨
⎪⎪⎩

σ′33
∂u′3
∂t

+ σ′31
∂u′1
∂t

+m′

32
∂φ′2
∂t

for medium M ′,

σ33
∂u3

∂t
+ σ31

∂u1

∂t
+m32

∂φ2

∂t
for medium M.

(28)

The ratio of the time rate of average energy trans-
mission for the respective reflected or transmitted
waves to that of the incident wave, denoted by Em
(m = 1,2, ...,6) for reflected CLD, reflected CTD, re-
flected CTM, transmitted CLD, transmitted CTD, and
transmitted CTM waves respectively, are given as

Em =
⟨P ∗

m⟩

⟨P ∗

0 ⟩
(m = 1,2, ...,6), (29)

where ⟨P ∗

0 ⟩ denotes the average energy transmission
per unit surface area per unit time for incident CLD
wave in rotating micropolar piezoelectric medium M ′.

The expressions for energy ratios at an interface
z = 0 are given as

Em =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(
h̷′1m+h̷

′

2m+h̷
′

3m

h̷o
)Z2

m (m = 1,2,3),

( h̷1m+h̷2m+h̷3m

h̷o
)Z2

m (m = 4,5,6),
(30)

where

h̷′1m = (A′

13ξ
′

m +A′

56ξ
′

m − λ′35ξ
′

mζ
′

m − λ′31ζ
′

m) sin θo,

h̷′2m = − (A′

55 +A
′

33ξ
′2
m − λ′33ξ

′

mζ
′

m − λ′35ζ
′

m +B′

66η
′2
m)

⋅

¿
Á
ÁÀ

(
v′1
v′m

)

2

− sin2 θo,

h̷′3m = −i (A′

56 −A
′

55)(
v′1
v′m

)(
η′m
k′m

) ,

h̷o = (A′

13ξo +A
′

56ξo − λ
′

35ξoζo − λ
′

31ζo) sin θo

+ (A′

55 +A
′

33ξ
2
o − λ

′

33ξoζo − λ
′

35ζo +B
′

66η
2
o) cos θo

−i (A′

56 −A
′

55)(
ηo
k′1

),

h̷1m = (A13ξm−3 +A56ξm−3 − λ35ξm−3ζm−3

−λ31ζm−3) sin θo,
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h̷2m = (A55 +A33ξ
2
m−3 − λ33ξm−3ζm−3

−λ35ζm−3 +B66η
2
m−3)

¿
Á
ÁÀ

(
v′1
vm−3

)

2

− sin2 θo,

h̷3m = −i (A56 −A55)(
v′1
vm−3

)(
ηm−3

km−3
).

5. Numerical results and discussion

The experimental values of physical constants of
a transversely isotropic rotating micropolar piezoelec-
tric material have not been investigated yet. In the
present model, the numerical simulations of the speeds
and energy ratios are restricted to a quantitative exam-
ple with arbitrary physical constants for both the half-
spaces (Singh, Sindhu, 2018):

• for lower half-space (M):
A11 = 17.8 ⋅ 1010 N/m2, A33 = 18.43 ⋅ 1010 N/m2,

A13 = 7.59 ⋅ 1010 N/m2, A56 = 1.89 ⋅ 1010 N/m2,

A55 = 4.357 ⋅ 1010 N/m2, A66 = 4.42 ⋅ 1010 N/m2,

B77 = 0.278 ⋅ 109 N, B66 = 0.268 ⋅ 109 N,

λ15 = 0.00001 C/m2, λ31 = 3.9 C/m2,

λ33 = 1.33 C/m2, λ35 = 0.23 C/m2,

γ11 = 85.2 C2
/(N ⋅m2

), γ33 = 28.7 C2
/(N ⋅m2

),

ρ = 1.74 ⋅ 103 kg/m3, j = 0.196 m2,

ω = 105 Hz,

• for upper half-space (M ′):
A′

11 = 16.8 ⋅ 1010 N/m2, A′

33 = 17.43 ⋅ 1010 N/m2,

A′

13 = 7.2 ⋅ 1010 N/m2, A′

56 = 1.29 ⋅ 1010 N/m2,

A′

55 = 4.157 ⋅ 1010 N/m2, A′

66 = 4.1 ⋅ 1010 N/m2,

B′

77 = 0.266 ⋅ 109 N, B′

66 = 0.255 ⋅ 109 N,

λ′15 = 0.000004 C/m2, λ′31 = 1.75 C/m2,

λ′33 = 1.23 C/m2, λ′35 = 0.22 C/m2,

γ′11 = 82.3 C2
/(N ⋅m2

), γ′33 = 25.7 C2
/(N ⋅m2

),

ρ′ = 1.2 ⋅ 103 kg/m3, j′ = 0.192 m2.

Using Eqs (15)–(27), and (30), a program in MAT-
LAB software was developed. For the above physical
parameters, the speeds of plane-waves, the amplitude

ratios and the energy ratios of various reflected and
transmitted waves were computed for different values
of rotation rate Ω∗(= Ω/ω).

5.1. Speeds of plane-waves

The speeds of reflected CLD, CTD, CTM and
transmitted CLD, CTD and CTM waves are plotted
in Figs 2–7 against the incident angle θo. The black,
red, and green curves in Figs 2–7 correspond to the
speeds of various reflected and transmitted waves for
Ω∗ = 0,0.1, and 0.2, respectively.

Figure 2 demonstrates the speed variations of re-
flected CLD waves against the angle of incidence. In
the absence of rotation (Ω∗ = 0), the speed of the
reflected CLD wave, as shown by black curve, de-
creases monotonically from a value 1.2052 ⋅ 104 ms−1

at θo = 0o to its minimum value 1.1126 ⋅ 104 ms−1 at
θo = 47○. Thereafter, it increases monotonically to
a value 1.1832 ⋅ 104 ms−1 at θo = 90○. In the presence
of rotation (i.e. for Ω∗ = 0.1 and 0.2), the speed varia-
tions of CLD waves are similar to that for Ω∗ = 0, but
the values of the speed enhance at each incident angle.

Fig. 2. The speed variations of reflected coupled longitudi-
nal displacement (CLD) wave against the angle of incidence
of incident CLD wave for different values of rotation rate.

The speed variations of reflected CTD waves
against the angle of incidence are illustrated in Fig. 3.
In the absence of rotation (Ω∗ = 0), the speed of the
reflected CTD wave as shown by black curve increases
monotonically from a value 5.9124 ⋅103 ms−1 at θo = 0○

to its maximum value 7.3092 ⋅103 ms−1 at θo = 45○.
Beyond θo =45○, the speed decreases monotonically to
a value 5.8711 ⋅ 103 ms−1 at θo = 90○. In the absence of
rotation (i.e. for Ω∗ = 0.1 and 0.2), the speed variations
of CTD waves are observed similar to that for Ω∗ = 0,
but the values of the speed drop at each incident angle.
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Fig. 3. The speed variations of reflected coupled transverse
displacement (CTD) wave against the angle of incidence of
incident CLD wave for different values of rotation rate.

The speed variations of reflected CTM waves
against the angle of incidence are shown graphically in
Fig. 4. In the absence of rotation, the speed of the re-
flected CTM wave, as shown by black curve, increases
monotonically from a value 1.0604 ⋅103 ms−1 at θo = 0○

to its maximum value 1.0832 ⋅ 103 ms−1 at θo = 90○.
In the presence of rotation (i.e. for Ω∗ = 0.1 and 0.2),
the speed variations of CTM waves are found similar
to those for Ω∗ = 0 with very little changes at each
incident angle.

Fig. 4. The speed variations of reflected coupled transverse
microrotational (CTM) wave against the angle of incidence
of incident CLD wave for different values of rotation rate.

The speed variations of transmitted CLD, CTD
and CTM waves are illustrated graphically against the
angle of incidence in Figs 5–7, which are found similar
to those for reflected CLD, CTD, and CTM waves, re-
spectively. The dependence of transmitted wave speeds
on the rotation rate is also observed similar to those
for reflected wave speeds.

Fig. 5. The speed variations of transmitted coupled longi-
tudinal displacement (CLD) wave against the angle of inci-
dence of incident CLD wave for different values of rotation

rate.

Fig. 6. The speed variations of transmitted coupled trans-
verse displacement (CTD) wave against the angle of inci-
dence of incident CLD wave for different values of rotation

rate.

Fig. 7. The speed variations of transmitted coupled trans-
verse microrotational (CTM) wave against the angle of inci-
dence of incident CLD wave for different values of rotation

rate.
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5.2. Energy ratios of reflected and transmitted waves

The energy ratios ∣Ei∣ (i = 1,2, ...,6) of reflected and
transmitted CLD, CTD, and CTM waves are illustra-
ted graphically in Figs 8–13 for the range 0○ < θo < 90○

of the angle of incidence of CLD wave for different va-
lues of rotation rate, i.e. Ω∗ = 0.1 (black curve), Ω∗ =

0.2 (red curve), and Ω∗ = 0.3 (green curve).
Figure 8 illustrates the energy ratio variations of

reflected CLD waves against the angle of incidence for
different values of rotation rate. For each value of ro-
tation rate, these energy ratio variations oscillate till
θo = 70○ and then they increase exponentially to a max-
imum value one at grazing incidence. The energy ratio
variations of reflected CTD and CTM waves are shown
graphically in Figs 9 and 10 against the angle of in-

Fig. 8. Variations of the energy ratios of reflected coupled
longitudinal displacement (CLD) wave against the angle
of incidence of incident CLD wave for different values of

rotation rate.

Fig. 9. Variations of the energy ratios of reflected coupled
transverse displacement (CTD) wave against the angle of
incidence of incident CLD wave for different values of ro-

tation rate.

Fig. 10. Variations of the energy ratios of reflected coupled
transverse microrotational (CTM) wave against the angle
of incidence of incident CLD wave for different values of

rotation rate.

cidence for different values of rotation rate. For each
value of rotation rate, the energy ratios for these waves
are zero at normal and grazing angles and oscillate in
range between normal incidence and grazing incidence.

Figure 11 illustrates the energy ratio variations of
transmitted CLD waves against the angle of incidence
for different values of rotation rate. For each value of
rotation rate, the energy ratios are approximately one
at normal incidence and then decrease logarithmically
to a value zero at grazing incidence. The energy ratio
variations of transmitted CTD and CTM waves are
also shown graphically in Figs 12 and 13 against the
angle of incidence for different values of rotation rate.
For each value of rotation rate, the energy ratios for

Fig. 11. Variations of the energy ratios of transmitted cou-
pled longitudinal displacement (CLD) wave against the an-
gle of incidence of incident CLD wave for different values

of rotation rate.
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Fig. 12. Variations of the energy ratios of transmitted cou-
pled transverse displacement (CTD) wave against the angle
of incidence of incident CLD wave for different values of ro-

tation rate.

Fig. 13. Variations of the energy ratios of transmitted cou-
pled transverse microrotational (CTM) wave against the
angle of incidence of incident CLD wave for different val-

ues of rotation rate.

these waves are zero at normal and grazing incidences
and oscillate at other angles.

From Figs 8 to 13, it can be noticed that the ef-
fect of rotation on the reflected and transmitted CLD,
CTD and CTM waves is considerable at each angle of
incidence except normal and grazing incidences.

6. Conclusion

A rotating model of two different transversely
isotropic micropolar piezoelectric solid half-spaces in
welded contact is considered for reflection and trans-
mission of plane-waves. There exist three coupled
plane-waves in a rotating and transversely micropo-

lar piezoelectric medium. The nature of these three
plane-waves depends on the axis of rotation and the
propagation direction. The effects of rotation do not
increase the number of waves in a micropolar piezoelec-
tric medium, but it affects their speeds significantly.
For an incident plane-wave, the connections between
the amplitude ratios and the expressions for energy
ratios are obtained. Based on a particular numerical
example of the theoretical model, the effects of rota-
tion are analyzed on the speeds and energy ratios of
reflected and transmitted waves for an incident plane-
wave. From the discussion of graphical illustrations,
the following important theoretical observations are
made:
1) The speed variations of reflected and transmitted

waves vary in different manner against the angle
of incidence. The presence of rotation changes the
values of speed at each angle of incidence and does
not affect the speed variations significantly against
the angle of incidence.

2) The speeds of the transmitted waves are observed
slower as compared to the speeds of reflected
waves.

3) The sum of energy ratios of all reflected and trans-
mitted waves is observed less than or equal one at
each angle of incidence. This fact is helpful in vali-
dating the numerical results if simulations are not
based an experimental data.

4) For incidence of CLD wave, the energy shares of
reflected and transmitted CLD waves are found
maximum. However, the energy shares of reflected
and transmitted CTM waves are found much
smaller as compared to other reflected and trans-
mitted waves.

5) The energy ratios of all reflected and transmitted
waves are also influenced by the rotation rate at
each angle of incidence except normal and grazing
incidences.

Wave propagation in micropolar piezoelectricity
is quite a new and emerging area of research. Since
the formulation of the linear theory of micropolar
piezoelectricity, few papers on wave propagation in
micropolar piezoelectric materials have appeared with
theoretical predictions. Due to the non-availability of
experimental values of micropolar piezoelectric con-
stants, the numerical observations of the present pa-
per are also of theoretical nature. However, the present
numerical results on the energy ratios of reflected and
transmitted waves are verified using energy conserva-
tion law. The present theoretical predictions with the
effects of rotation on the speeds and energy ratios of
reflected and transmitted waves may provide more re-
levant inputs for experimental researchers working on
non-destructive evaluation (NDE) techniques for struc-
tural health monitoring and in development of new
sensing devices of finite geometrical sizes.
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Appendix 1

The expressions for Hs (s = 0,1,2,3) are given as

D1 = A11 sin2 θ +A55 cos2 θ,

D2 = A66 sin2 θ +A33 cos2 θ,

D3 = λ15 sin2 θ + λ33 cos2 θ,

D4 = B77 sin2 θ +B66 cos2 θ,

D5 = γ11 sin2 θ + γ33 cos2 θ,

L1 = (A13 +A56) sin θ cos θ,

L2 = (λ15 + λ31) sin θ cos θ,

Ω∗
=
Ω

ω
,

M1 = [1 + (Ω∗
)
2]ρω2,

M2 = 2iρω2Ω∗,

M3 = χ − ρjω
2,

K11 = iK1 cos θ,

K22 = iK2 sin θ,

H0 =D5M3 (M2
1 +M

2
2 ) ,

H1 =D5M1M3 (D1 +D2) +D5M1 (K2
11 +K

2
22)

+M1M3 (D2
3 +L

2
2) −D4D5 (M2

1 +M
2
2 ) ,

H2 = (D2D5 +D
2
3)K

2
11 + (D1D5 +L

2
2)K

2
22

− 2 (D3L2 +D5L1)K11K22 −D4M1 (D2
3 +L

2
2)

−D4D5M1 (D1 +D2) − 2D3L1L2M3

+ (D1D
2
3 +D2L

2
2)M3 + (D1D2 −L

2
1)D5M3,

H3 =D4D5L
2
1 + 2D3D4L1L2 −D1D4D

2
3 −D2D4L

2
2

−D1D2D4D5.

Appendix 2

The expressions for ξo, ηo, ζo, ξ′m, η′m, ζ ′m, ξm, ηm,
and ζm (m = 1,2,3) using Snell’s law are given as

ξo =
∆01

∆0
,

ηo
k′1

=
∆02

∆0
, ζo =

∆03

∆0
,

ξ′m =
∆′

1m

∆′

m

,
η′m
k′m

=
∆′

2m

∆′

m

, ζ ′m =
∆′

3m

∆′

m

,

ξm =
∆1m

∆m
,

ηm
km

=
∆2m

∆m
, ζm =

∆3m

∆m
,

where

∆0 =

RRRRRRRRRRRRRRRR

C0 −K ′

11 −S′1
Q′

1 K ′

21 F ′

1

K∗
′

21 R′

1 0

RRRRRRRRRRRRRRRR

, ∆01 =

RRRRRRRRRRRRRRRR

P ′

1 −K ′

11 −S′1
G0 K ′

21 F ′

1

−K∗
′

11 R′

1 0

RRRRRRRRRRRRRRRR

,

∆02 =

RRRRRRRRRRRRRRRR

Co P ′

1 −S′1
Q′

1 Go F ′

1

K∗
′

21 −K∗
′

11 0

RRRRRRRRRRRRRRRR

, ∆03 =

RRRRRRRRRRRRRRRR

C0 −K ′

11 P ′

1

Q′

1 K ′

21 Go

K∗
′

21 R′

1 −K∗
′

11

RRRRRRRRRRRRRRRR

,

∆′

m =

RRRRRRRRRRRRRRRR

C ′

m K ′

1m S′m
Q′

m K ′

2m F ′

m

K∗
′

2m R′

m 0

RRRRRRRRRRRRRRRR

, ∆′

1m =

RRRRRRRRRRRRRRRR

P ′

m K ′

1m S′m
G′

m K ′

2m F ′

m

K∗
′

1m R′

m 0

RRRRRRRRRRRRRRRR

,

∆′

2m =

RRRRRRRRRRRRRRRR

C ′

m P ′

m S′m
Q′

m G′

m F ′

m

K∗
′

2m K∗
′

1m 0

RRRRRRRRRRRRRRRR

, ∆′

3m =

RRRRRRRRRRRRRRRR

C ′

m K ′

1m P ′

m

Q′

m K ′

2m G′

m

K∗
′

2m R′

m K∗
′

1m

RRRRRRRRRRRRRRRR

,

∆m =

RRRRRRRRRRRRRRRR

Cm K1m Sm

Qm K2m Fm

K∗

2m Rm 0

RRRRRRRRRRRRRRRR

, ∆1m =

RRRRRRRRRRRRRRRR

Pm K1m Sm

Gm K2m Fm

K∗

1m Rm 0

RRRRRRRRRRRRRRRR

,

∆2m =

RRRRRRRRRRRRRRRR

Cm Pm Sm

Qm Gm Fm

K∗

2m K∗

1m 0

RRRRRRRRRRRRRRRR

, ∆3m =

RRRRRRRRRRRRRRRR

Cm K1m Pm

Qm K2m Gm

K∗

2m Rm K∗

1m

RRRRRRRRRRRRRRRR

,

P ′

m = [1 + (Ω∗
)
2
]ρ′v′2m −A′

11 sin2 θo (
v′m
v′1

)

2

−A′

55

⎡
⎢
⎢
⎢
⎢
⎣

1 − sin2 θo (
v′m
v′1

)

2⎤
⎥
⎥
⎥
⎥
⎦

,

Q′

m = [1 + (Ω∗
)
2
]ρ′v′2m −A′

66 sin2 θo (
v′m
v′1

)

2

−A′

33

⎡
⎢
⎢
⎢
⎢
⎣

1 − sin2 θo (
v′m
v′1

)

2⎤
⎥
⎥
⎥
⎥
⎦

,

R′

m =
B′

77

j′
sin2 θo (

v′m
v′1

)

2

+
B′

66

j′

⎡
⎢
⎢
⎢
⎢
⎣

1 − sin2 θo (
v′m
v′1

)

2⎤
⎥
⎥
⎥
⎥
⎦

+
χ′

j′k′2m
− ρ′v′2m,

F ′

m = λ′15 sin2 θo (
v′m
v′1

)

2

+ λ′33

⎡
⎢
⎢
⎢
⎢
⎣

1 − sin2 θo (
v′m
v′1

)

2⎤
⎥
⎥
⎥
⎥
⎦

,

C ′

m = − [(A′

13 +A
′

56) sin θo (
v′m
v′1

)

⋅

¿
Á
ÁÀ1 − sin2 θo (

v′m
v′1

)

2

+ 2iΩ∗ρ′v′2m

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,
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Co = (A′

13 +A
′

56) sin θo cos θo − 2iΩ∗ρ′v′21 ,

G′

m = [− (A′

13 +A
′

56) sin θo (
v′m
v′1

)

⋅

¿
Á
ÁÀ1 − sin2 θo (

v′m
v′1

)

2

+ 2iΩ∗ρ′v′2m

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

Go = (A′

13 +A
′

56) sin θo cos θo + 2iΩ∗ρ′v′21 ,

S′m = (λ′15 + λ
′

31) sin θo (
v′m
v′1

)

¿
Á
ÁÀ1 − sin2 θo (

v′m
v′1

)

2

,

K ′

1m = iK ′

1

¿
Á
ÁÀ1 − sin2 θo (

v′m
v′1

)

2

,

K ′

2m = iK ′

2 sin θo (
v′m
v′1

),

K∗
′

1m =
K ′

1m

j′k′2m
K∗

′

2m =
K ′

2m

j′k′2m
,

Pm = [1 + (Ω∗
)
2
]ρv2

m −A11 sin2 θo (
vm
v′1

)

2

−A55

⎡
⎢
⎢
⎢
⎢
⎣

1 − sin2 θo (
vm
v′1

)

2⎤
⎥
⎥
⎥
⎥
⎦

,

Qm = [1 + (Ω∗
)
2
]ρv2

m −A66 sin2 θo (
vm
v′1

)

2

−A33

⎡
⎢
⎢
⎢
⎢
⎣

1 − sin2 θo (
vm
v′1

)

2⎤
⎥
⎥
⎥
⎥
⎦

,

Rm =
B77

j
sin2 θo (

vm
v′1

)

2

+
B66

j

⎡
⎢
⎢
⎢
⎢
⎣

1 − sin2 θo (
vm
v′1

)

2⎤
⎥
⎥
⎥
⎥
⎦

+
χ

jk2
m

− ρv2
m,

Fm = λ15 sin2 θo (
vm
v′1

)

2

+ λ33

⎡
⎢
⎢
⎢
⎢
⎣

1 − sin2 θo (
vm
v′1

)

2⎤
⎥
⎥
⎥
⎥
⎦

,

Cm = (A13 +A56) sin θ0 (
vm
v′1

)

¿
Á
ÁÀ1 − sin2 θo (

vm
v′1

)

2

− 2iΩ∗ρv2
m,

Gm = (A13 +A56) sin θo (
vm
v′1

)

¿
Á
ÁÀ1 − sin2 θo (

vm
v′1

)

2

+ 2iΩ∗ρv2
m,

Sm = − (λ15 + λ31) sin θo (
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v′1

)

¿
Á
ÁÀ1 − sin2 θo (

vm
v′1

)

2

,

K1m = −iK1

¿
Á
ÁÀ1 − sin2 θo (
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v′1
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2

,

K2m = iK2 sin θo (
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),
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K1m
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,
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,
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=
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