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Artificial Intelligence-Based Modeling for the Estimation of Q-Factor  
and Elastic Young’s Modulus of Sandstones Deteriorated  

by a Wetting-Drying Cyclic Process

In this study, a series of destructive and non-destructive tests were performed on sandstone samples 
subjected to wetting-drying cycles. A total of 25 Wet-Dry cycles were provided to investigate any signi-
ficant change in the engineering properties of sandstones in terms of their porosity, permeability, water 
absorption, density, Q-factor, elastic modulus (E), and unconfined compressive strength (UCS). The 
overall reduction in the values of density, E, Q-factor, and UCS was noted as 3-4%, 42-71%, 34-62%, 
and 26-70% respectively. Whereas, the overall appreciation in the values of porosity, permeability, and 
water absorption was recorded as 24-50%, 31-64%, and 25-50% respectively. The bivariate analysis 
showed that the physical parameters had a strong relationship with one another and their Pearson’s 
correlation value (R) ranged from 0.87-0.99. In prediction modeling, Q-factor and E were regressed 
with the contemplated physical properties. The linear regression models did not provide satisfactory 
results due to their multicollinearity problem. Their VIF (variance inflation factor) value was found 
much greater than the threshold limit of 10. To overcome this problem, the cascade-forward neural 
network technique was used to develop significant prediction models. In the case of a neural network 
modeling, the goodness of fit between estimated and predicted values of the Q-factor (R2 = 0.86) and 
E (R2 = 0.91) was found much better than those calculated for the Q-factor (R2 = 0.30) and E (R2 = 0.36) 
in the regression analysis. 
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1.	I ntroduction

The degradation of rocks is highly associated with water; and in rock engineering applications 
(ie tunneling and mining etc.), the rock mass is found in wet conditions. Significant changes in 
the groundwater level, humidity, and precipitation can cause periodic wetting and drying (W-D) 
in rocks which may accelerate the weathering processes. As a result karst collapse, landslides, 
pillar degradation in mines, and degradation of dam foundations may occur. Cyclic wetting and 
drying may also have a significant effect on the rock’s dynamic properties. Thus, it is important 
to investigate the physico-dynamic characteristics of rocks subjected to the cyclic W-D process.

Water is one of the most important weathering agents that adversely affect the geomechani-
cal characteristics of rocks. It not only weakens the rock mass but also deteriorates the rock 
fabric. The engineering properties of rocks mainly depend on their origin, mineral composition, 
texture, and rock fabric. After interaction with water, rocks get weakened because of the removal 
of cementing material between the grains and alteration in mineral composition. The change in 
mineral composition is the result of chemical reactions with the naturally occurring slightly acidic 
or basic water. Małkowski et al. [48] found that the geomechanical properties of rocks are the 
function of their mineral composition and they get varied at different saturation levels. Similarly, 
Vàsàrhelyi and Vàn [49] observed that the physico-mechanical properties of sedimentary rocks 
such as sandstone depreciate with the increase in the degree of saturation. They also noticed that 
in some cases with 1% water saturation rock strength decreases remarkably. 

Different experimental studies on sandstones have shown that in saturated conditions, 
sandstones suffer a significant loss in strength [1]. In the case of clay-bearing rocks, saturation-
induced stiffness, and strength reduction is up to 80% [4]. Gökceoğlu et al. [6] investigated 
various factors that may affect the slake durability index of clay-bearing rocks and found that 
the type and amount of clay minerals are the main factors affecting the slake durability index. 
However, if the main constituent of the sandstone is quartz with no clay minerals, there was no 
significant effect of saturation on the strength of the sandstones. The presence of clay miner-
als decreases the strength of sandstones mainly due to the dissolution of clay minerals in water 
during wetting cycles [6]. However, the decrease in strength was also found to be dependent on 
the clay content and composition of clay minerals. A large clay content contributes to a weaker 
quartz-clay framework that results in a reduction in strength on wetting. Correspondingly, an 
increase in chlorite content was found to contribute more to the reduction of strength compared 
to montmorillonite and illite [8].

Deterioration is caused not only by wetting and drying but also by freeze and thaw weathering, 
insolation, thermal shock, and other environmental factors that play a significant role in strength 
reduction. In the recent past, the effects of W-D cycles on the physical characteristics of rocks 
have been studied by several researchers [9]. The weakening in rocks was evaluated by examin-
ing the changes in the physico-mechanical characteristics of the rocks. These properties mainly 
include water absorption, porosity, bulk density, and P-wave velocity. The studies showed that 
an increasing number of W-D cycles considerably alter the above-mentioned rock characteristics.

Deng et al. [13] showed that alternating W-D cycles play a significant role in affecting 
the physical and mechanical properties of sandstone. The investigations regarding mechanical 
properties of the rocks under W-D cycles have been mainly focused on uniaxial compressive 
strength, tensile strength, shear strength, and fracture toughness [14] [12]. The results of the 
studies showed that the mechanical properties and degree of deterioration vary greatly due to 
cyclic wetting-drying treatments.
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The change in these properties due to the strength and weathering conditions of building 
stones was of interest to petrologists for many years of investigation. Studies on weathering of 
sandstone are related to morphological elements, process operation, change in environmental 
conditions that control these processes, and the respective materials on which the process oper-
ates [18]. Many studies have highlighted the significance of the porosity of rocks and the distri-
bution of the pore size as a determinant of the weathering of rocks [19]. Matrix mineralogy and 
the distribution of the pore radius, as well as the degree of cementation, are the main factors that 
determine what effect does partial water saturation has on the strength of rocks [21].

Most of the studies mentioned above were focused on the static mechanical properties of 
rocks. Limited research was carried out to study the effect of W-D cycles on the dynamic charac-
teristics. Usually, in the field of rock engineering, the rocks are fractured dynamically e.g during 
impact, blasting, rock bursting, and seismic events. Therefore, it is quite important to investigate 
the change in physical as well as dynamic properties of the rocks under cyclic wetting and drying 
to assess the stability, safety, and serviceability of rock structures.

The recommended practice for the determination of rock engineering properties in the labo-
ratory or field is a time taking job [22]. That needs highly calibrated instruments, good expertise, 
and precision. Sometimes, rock engineering properties cannot be determined through standard 
practice because of some impeding factors such as time, budget, conditions, limited supply of 
samples, unavailability of required instruments, etc. [23]. In such circumstances, researchers 
have favored using empirical relationships to find rock engineering properties. Several empiri-
cal relationships have been made between different rock strength parameters using multivariate 
statistics, supervised or unsupervised machine learning, neural network, fuzzy logic, etc. [22]. 
In the literature, no meaningful predictive relationships were found between the physico-dynamic 
properties of the sedimentary rocks damaged under wetting-drying cycles.

Prediction modeling through multivariate statistics and the artificial neural network has 
widely been accepted in rock mechanics and related studies. In multiple linear regression mod-
eling, a dependent variable is regressed with two or more predictors to get the best fit-line [28]. 
This linear relationship between parameters may adversely be affected by the multicollinearity 
problem. If variables are highly dependent on one another the multicollinearity arises that may 
lead to overfitting of the model [29]. To control this problem, the variance inflation factor (i.e. 
overall model variance to a single variable variance) is calculated and its value must be less 
than 10 [25]. Apart from multivariate statistics, the artificial neural network can develop more 
reasonable predictive models than multivariate statistics. The neural network model works on 
human intelligence and can effectively solve artificial intelligence problems [29]. It receives 
input values as signals, assigns weights, and generates output much closer to the target values. 
The learning-training process and use of nonlinear activation function produce favorable out-
comes. Researchers have proposed to use a neural network in prediction modeling because it 
is an adaptive process that adjusts the sudden changes in the provided values to get an optimal 
solution [28].

This study aims to anticipate the dynamic-physical behavior of selected sandstones subjected 
to wetting-drying cycles in terms of their density, porosity, permeability, water absorption, quality 
factor, and elastic modulus. Furthermore, it focuses on the development of the predictive relation-
ships between dynamic-physical parameters of damaged sandstones under the wetting-drying 
cyclic effect using multiple regression and backpropagation cascade-forward neural network. 
The outcomes of this research work can be used as references in the stability analysis of rocks 
as a construction material, geotechnical site investigation, and subsurface modeling.
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2.	F ield Visit and Sample Collection

The sandstone samples for this study were collected from the selected geological 
formations of the Salt Range area of Pakistan. The collected samples were intact without any 
noticeable imperfections and discontinuities. The size of each collected sample was in the range 
of 1.5 to 2 cubic feet which was sufficient to extract at least five cores of the required size for 
subsequent testing. The collected samples belonged to different geological formations namely 
Khewra, Kussak, Tobra, Warcha, and Chingi formations.

Khewra sandstone is extensively exposed in eastern flank area of the Salt Range, Pakistan. 
Khewra Sandstone is famous for dozens of primary geological features such as ripple marks, 
crossbedding, flame structure, mud cracks, etc. It is found as reddish-brown to yellowish-brown, 
fine to medium grain sandstone [30]. The sandstone of Kussak formation is mica rich and glau-
conitic in nature [32]. It is mainly composed of fine to medium grained particles and resting 
above the Khewra formation. Tobra formation is well exposed in the upper succession of the 
eastern flank of the Salt Range. It is dirty white to light grey coloured, medium to coarse grained 
sandstone. Warcha sandstone is pinkish-red to yellowish-red coloured, medium to coarse grained 
with interbedded shale and conglomerate. Grey coloured Chingi sandstone is in quartz, lithic 
fragments, and made of fine to medium-grained particles [33]. The selected geological formations 
and their respective geological age is described in Table 1.

Table 1

Selected sandstone samples of the various geological formations 

Geological Formation Geological Age Location Map

Chnigi Formation Miocene

Warcha Formation Permian

Tobra Formation Permian

Kussak Formation Cambrian

Khewra Formation Cambrian

3.	 Methodology

3.1.	 Preparation of rock samples for testing

Standard NX size (54 mm diameter) cores were prepared by using a core cutting machine 
with a diamond drill bit following the recommended procedures of the International Society for 
Rock Mechanics [34]. The collected rock samples were assumed to have undergone a zero W-D 
cycle. In this study, a single W-D cycle was divided into two stages. The first stage consists of 
sample saturation from its dry state whereas the second stage deals with the drying of sample 
from the saturated state. The dry samples were fully saturated at laboratory temperature by fol-



639

lowing the progressive saturation technique developed by the US Army Corps of Engineers [35]. 
A sample was considered completely saturated when there was no further increase in the mass 
of the sample after it was left submerged in water for 12 hours. It was observed that complete 
saturation of a sample needed at least 48 hours. After saturation, the samples were oven-dried at 
60°C for 24 hours. In this study, a total number of 25 W-D cycles were applied to each specimen. 
The physico-dynamic properties of the specimens were measured each 5 cycles.

3.2.	D ensity, water absorption, and porosity measurement

Kurt-Karakus et al. [36] discussed a variety of methods to determine the density (ρ), porosity 
(Φ), and related properties of rocks. Among these “saturation and caliper method” and “satura-
tion and buoyancy method” was the most frequently utilized techniques. In this research, the 
density and porosity tests were performed by employing the saturation and capillary technique 
[37]. The water absorption of the rock specimens was measured by the mass variation in a single 
wetting-drying cycle using the following formula:
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where W (%) is the specimen water content, mw (g), and md (g) are the wet and dry masses of 
the specimen, respectively.

3.3.	 Permeability (K)

A constant head rock permeability apparatus manufactured by the MATEST, Italy (Oil-Water 
Constant Pressure System for Permeability Test; model no. A144) was employed in this study 
to measure the permeability of rock specimens. The apparatus consisted of a Hoek cell, upper 
and lower spacers, a pressure controller, a pump, and a burette. The rock samples with a typical 
diameter (D) of 5.4 cm (cross-sectional area, A = 22.90 cm2) and length (L) of 8.0 mm were 
prepared for this test. Permeability of rock samples was measured after every five W-D cycles 
using the following procedure. 

Initially, the sample was inserted into Hoek’s cell between upper and lower spacers. The 
inflow and outflow tubes were connected to the bottom and top of the cell. The inflow pipe was 
connected to the pressure controller and the outflow pipe was connected to a burette. Before 
applying confining pressure, water was permeated through the apparatus to remove air bubbles 
from inflow and outflow lines. A confining pressure of 1 MPa was then applied across the jacket 
to prevent sidewall leakage. The pressure head (P) was increased in a stepwise fashion (i.e.,200, 
400, and 600 kPa) using a pressure controller, and the amount of effluent collected over some 
time i.e. flow (Q) was measured. A minimum of three measurements of flow (Q) was recorded 
against each pressure head (P) and the value of permeability (K) was calculated using the fol-
lowing formula (Eq. 2):

	
.
.
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where K – Permeability (cm/sec), Q – Flow (cc/sec), L – Sample length (cm), P – Pressure 
head (psi), A = Cross-sectional area of the sample (cm2)
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3.4.	E lastic Young’s Modulus (E)

Erudite Resonance Frequency Meter was used to estimate dynamic elastic Young’s modulus 
of the rock specimens. The device consists of a control panel, a vibrator, and a receiver. The 
apparatus can provide a loading frequency from 1 kHz to 100 kHz. Kramer [38] reported that 
the determination of dynamic properties of rock material at higher loading frequency induces 
low strain. The tests were performed following [39]. The samples were tested at a recommended 
frequency of 6 kHz which is an extreme frequency for circular samples at longitudinal mode 
at the lowest output voltage (0.01V). To perform the test, the samples were clamped between 
the vibrator and receiver of the apparatus. It was assured that both tips were in contact with the 
rock sample. A frequency of 6 kHz was set as recommended in the standard. The test was run, 
and output values were recorded. Young’s modulus was then calculated using the following  
formula (Eq. 3).

	
 22519.14 LE M Fr

D
   
 

	 (3)

where L is the length of the sample (m), D is the diameter of the sample (m), M is the mass of 
the sample (kg), and Fr (kHz) is the resonance frequency. 

3.5.	 Quality Factor (Q-factor)

To determine Q-factor Erudite Resonance Frequency Meter was employed. The Q-factor 
is a dimensionless parameter that describes the quality of the tested rock sample. It is an indi-
rect way to discern the degree of compactness or looseness of rock samples [50]. It is the ratio 
of resonance frequency to the bandwidth. The bandwidth is the difference between the cut-off 
frequencies. Mathematically, it can be expressed as follows:

	
Q-factor r

h l

F
F F


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	 (4)

where: Fr is the resonance frequency, Fh is the increase in frequency above resonance, and Fl is 
the decrease in frequency below resonance. 

3.6.	U niaxial Compressive Strength

The uniaxial compressive strength test was performed on the rock specimens at the 0th and 
25th W-D cycles by following [40]. The samples were tested with a 200-ton Shimadzu Universal 
Testing Machine (UTM).

3.7.	 Petrographic Analysis of Rock Samples

Thin sections of tested rock samples were prepared to study the change in the mineralogical 
composition of the tested samples due to W-D cycles. Equivalent quartz content (EQC) of rock 
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samples was determined by utilizing the Rosiwal mineral abrasiveness ratio and computed by 
adopting the following equation (Eq. (4)) given by [41].

	 i iEQC V R  	 (5)

where; EQC – mineral content stated in terms of quartz hardness using Rosiwal’s hardness scale 
(in vol.%), V – quantity of mineral i (%), R – Rosiwal hardness of mineral i, n – total number 
of minerals.

3.8.	 Multivariate Statistics and Artificial Neural Network

In this study, two statistical techniques: multiple linear regression (MLR) modeling and 
backpropagation cascade-forward neural network (CFNN) were used for the predictive modeling 
of dynamic-physical parameters of cyclic wetting-drying treated sandstones. The MLR modeling 
was performed on the experimentally acquired dataset using the SPSS software package (ver-
sion 26) to obtain a best-fitted regression model having minimum values of residuals or errors. 
Whereas, prediction modeling through the neural network was conducted using the MATLAB 
(version 2015) codes. In the case of MLR modeling, the coefficient of determination (R2) or 
multi-R2 signifies how exactly fits a regression model to the training dataset. Its value close to 1 
indicates a best-fitted model and vice versa [42]. The analysis of variance (ANOVA) is another 
check to investigate the validity of the regression model based on the hypothesis analysis. For 
this purpose, F-test is performed under the following hypothesis:

Null hypothesis: Dependent variable is not affected by any predictor
Alternate hypothesis: Dependent variable is affected by at least one predictor

If the probability or p-value is found less than the significance level α (α  =  0.05) the null 
hypothesis will be rejected and vice versa [28]. A t-test is conducted to check the validity of each 
predictor used in the model equation. It is also a hypothesis test for which defined null hypothesis 
and alternate hypothesis are as follows:

Null hypothesis: Predictors are highly dependent on one another
Alternate hypothesis: No predictor is highly dependent on other predictors

If the probability or p-value obtained from the t-test is greater than the significance level α 
(α  =  0.05) the null hypothesis will be accepted and vise versa. When two or more independent 
variables are regressed with dependent variable multicollinearity among the predictors overfits 
the developed model. To control this problem, the estimated value of the variance inflation 
factor (VIF) must be less than 10 [25]. A regression model that passes the goodness of fit test, 
hypothesis tests but shows a VIF value greater than 10, will not be considered as a good model. 

The artificial neural network works on human brain intelligence that is analogous to the web 
of connected biological neurons [43]. Generally, it consists of an input layer, an output layer, and 
a hidden layer. A neural network may have single or multiple hidden layers between the input 
and output layers [44]. The hidden layer receives the input values as signals, processes them, and 
forwards these signals to the output layer. The neural network compares the output values with the 
target values and checks whether the outcomes meet the required criteria or not [45]. In the case 
of failure, the outcomes may be sent back for further processing and weight adjustment. In this 
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study, a cascade forward neural network was used which is the modified form of a feed-forward 
neural network. In a feed-forward neural network input layer is attached to its subsequent layers 
through synaptic weights. Whereas, in a cascade forward neural network an additional attach-
ment is established between the input layer and output layer as shown in Fig. 1. This additional 
link ameliorates the learning rate and reduces the computational time.

Fig. 1. The architecture of a two-layer cascade forward neural network.  
Where: b, W, and AF are bias, synaptic weight, and activation function respectively

In this study, predictive relationships were developed between dynamic and physical char-
acteristics of selected sandstones deteriorated by wetting-drying cycles. The dynamic elastic 
modulus and Q-factor were used as dependent variables while density, porosity, permeability, 
and water absorption were taken into account as independent variables. 

4.	R esults and discussions

4.1.	E ffect of W-D cycles on the physico-dynamic characteristics

The effect of W-D cycles on the density of sandstone specimens is shown in Fig. 2(a). It was 
observed that the density of tested samples of sandstone decreased with an increase in the number 
of W-D cycles. The density of sandstone samples collected from the Chingi formation was highest 
at the 0th cycle (2654.16 kg/m3) followed by Warcha (2595.75 kg/m3), Tobra (2539.81 kg/m3), 
Kussak (2517.87 kg/m3), and Khewra (2356.96 kg/m3). At the 25th cycle, the density of Khewra, 
Kussak, Tobra, Warcha, and Chingi Formations decreased by 3.2%, 4.2%, 3.1%, 3.2%, and 3.4% 
respectively (Fig. 2(b)). A similar trend of decrease in density with an increase in the number of 
W-D cycles was observed in previous studies [11,46]. The change in density is the result of the 
development of micro-cracks in the rock matrix. 

An increase was found in the porosity of sandstones with the increasing W-D cycles as 
shown in Fig. 3(a). The porosity of the sandstone sample for Khewra formation was highest at 
the 0th cycle (6.37%), followed by Kussak formation (5.31%), Chingi formation (3.19%), Warcha 
formation (3.15%), and Tobra formation (2.07%). The percentage increase in porosity is shown 
in Fig. 3(b). The porosity values of Khewra, Kussak, Tobra, Warcha, and Chingi formations 
increased by 40.01%, 28.53%, 50.12%, 41.88%, and 24.94% respectively after 25 W-D cycles. 
The results were consistent with literature that explained the increase in porosity as a result of 
microcracks development [12]. 
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Fig. 2. The effects of W-D cycles on (a) density and (b) percentage change  
in density of the tested sandstone samples

Fig. 3. The effects of W-D cycles on (a) porosity and (b) percentage change  
in the porosity of the tested sandstone samples
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Fig. 4(a) shows the change in water absorption against W-D cycles. It was observed that as 
the W-D cycles increased, water absorption also increased. The sandstone of Khewra formation 
showed the highest value of water absorption at the 0th cycle (2.71%), followed by sandstones 
of Kussak formation (2.11%), Warcha formation (1.24%), Chingi formation (1.19%), and Tobra 
formation (0.82%). It was observed that after 25 cycles, water absorption for Khewra, Kussak, 
Tobra, Warcha, and Chinigi was increased by 41.21%, 28.95%, 50.30%, 42.05%, and 25.62% 
respectively as shown in Fig. 4(b). Similar behavior of increase in water absorption with an 
increase in the number of W-D cycles was also reported in the literature [12,46]. The possible 
reason for such trends in the development of microcracks. 
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Fig. 4. The effects of W-D cycles on (a) water absorption and (b) percentage change  
in water absorption of the tested sandstone samples

Fig. 5 is showing the effect of W-D cycles on the dynamic elastic Young’s modulus of tested 
rock samples. It was observed that dynamic elastic Young’s modulus decreased with an increase 
in the number of W-D cycles as shown in Fig. 5(a). The percentage decrease in dynamic elastic 
Young’s modulus is shown in Fig. 5(b). It was observed that dynamic elastic Young’s modulus of 
Khewra, Kussak, Tobra, Warcha, and Chingi formations decreased by 42.48%, 60.22%, 71.18%, 
60.67%, and 49.50% respectively after 25 W-D cycles. 

The effects of cyclic wetting and drying on the Q-factor is shown in Fig. 6(a). It was observed 
that the Q-factor decreased with an increase in the number of W-D cycles. 

At the 0th W-D cycle, the highest value was observed for Tobra formation followed by 
Chingi, Kussak, Warcha, and Khewra formations. The values decreased gradually to the 10th 
cycle. After the 10th cycle, there was no major difference in the values of Q-factor amongst the 
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Fig. 5. The effects of W-D cycles on (a) dynamic elastic Young’s modulus and (b) percentage change  
in dynamic elastic Young’s modulus of the tested sandstone samples

Fig. 6. The effects of W-D cycles on (a) Q-factor, and (b) percentage change in Q-factor,  
of the tested sandstone samples
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tested sandstone samples. The percentage decrease in Q-factor was highest for samples of Tobra 
formation 62.14%, followed by Kussak 58.40%, Chingi 48.61%, Warcha 39.66%, and Khewra 
34.46%. (Fig. 6(b)).

The results of E and Q-factor reveal that these observations give a better idea about the 
change in the rock looseness and compactness after W-D cycles. Rock is the aggregate of dif-
ferent minerals and each mineral has a different value of resistance to water. By increasing W-D 
cycles, minerals start to develop micro-cracks in their matrix material [47]. Thus, the network 
of micro-fractures deteriorates and exploits rock material. A rock sample free from major dis-
continuities may possess hidden micro flaws. In this regard, the variation in the Q-factor value 
provides a better understanding of the physical condition of rock.

Fig. 7 shows the change in permeability due to W-D cycles for the tested rock samples. 
It was observed that permeability increased with the increasing number of W-D cycles as shown 
in Fig. 7(a). The sandstone of Khewra formation showed the highest value of permeability at 0th 
cycle (2.41×10–7 cm/s) followed by the sandstone of Chingi formation (1.17×–7 cm/s), Warcha 
formation (2.10×–8 cm/s), Tobra formation (1.27×–8 cm/s), and Kussak formation (1.59×–8 cm/s). 
The percentage change in permeability is shown in Fig. 7(b). It was observed that as the number 
of W-D cycles increased, permeability also increased. Permeability of Khewra, Kussak, Tobra, 
Warcha, and Chingi increased by 40.01%, 28.53%, 50.12%, 41.88%, and 24.94% respectively 
after 25 W-D cycles. 

Uniaxial compressive strength tests were performed on all the rock samples at the 0th and 
25th cycles. Wetting and drying (W-D) cycles were found to affect rock strength significantly as 
shown in Fig. 8. At the 0th W-D cycle, Tobra formation showed the highest strength (109.7 MPa) 

Fig. 7. The effects of W-D cycles on (a) permeability and (b) the percentage change  
in permeability of the tested sandstone samples
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followed by Chingi formation (75.4 MPa), Kussak formation (69MPa), Warcha formation 
(56.8 MPa), and Khewra formation (41.6 MPa). After 25 W-D cycles, the UCS of Khewra, Kus-
sak, Tobra, Warcha, and Chingi formations decreased by 26.97%, 42.24%, 70.09%, 46.37%, and 
54.48% respectively.

The mineralogical composition of all samples was studied using thin-section microscopy. 
The mineral composition at the 0th and 25th cycles is shown in Table 2. No significant change in 
mineralogical composition was observed. The results indicate that the dissolution of minerals 
did not occur during W-D cycles. The resistance to the dissolution of the minerals or slaking 
was due to their high value of EQC. Therefore, the observed changes in the tested properties 
of the sandstone samples were solely due to the development of microcracks in the rock matrix 
undergoing repeated wetting and drying.

Fig. 8. The effect of W-D cycles on the UCS of tested sandstone samples

Table 2

Mineral composition of selected sandstone samples

Formation Quartz Feldspar Clay 
minerals

lithic 
Fragment

Iron 
Oxide Mica Calcite EQC (%)

Cycles 0* 25 0* 25 0* 25 0* 25 0* 25 0* 25 0* 25 0* 25
Khewra 67 69 20 18 10 8 — — 1 1 1.5 2 — — 78 76
Kussak 78 75 17 14 0.5 1 — — 0.5 2 4 6 — — 84 82
Tobra 70.1 69 1.7 3 1 1 23.9 21 0.4 1 1 2 1.1 3 90 71

Warcha 56 55 28 23 9 8 3 5 3 6 1 2 — — 68 68
Chingi 63 59 7 7 — — 18 22 — — — — 12 12 65 61

* Bakar et al. [51].

4.2.	S tatistical data modelling 

Table 3 shows the results of bivariate analysis between the measured dynamic-physical 
properties of sandstones. The values of one-to-one relationships between the parameters are 
followed by the superscript single steric (*) and double steric (**) that indicates significant cor-
relations at the confidence interval (CI) level of 95% and 99% respectively. Results show that 
among all relationships between physical properties, Density vs Porosity (R = –0.87), Density 
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vs Water Absorption (R = –0.89), and Porosity vs Water Absorption (R = 0.99) had the highest 
values of R at the CI level of 99%. Similarly, the relationship between the dynamic properties 
Q-factor vs Elastic modulus (R = 0.88) was found significant at the CI level of 99%. Before 
conducting the regression analysis, the bivariate analysis helps to identify the variable that may 
produce multicollinearity. 

In this analysis, Elastic modulus and Q-factor were regressed with the density, porosity, 
permeability, and water absorption using the stepwise method. In this method, the numbers of 
variables are increased in the model equation step-by-step to get significant prediction models. 
A regression model is said to be significant if it has a high value of multi-R2, VIF value less than 
10 and validated by hypothesis testing. Table 4 and Table 5 demonstrate the R2-statistics of the 
generated models. In the first step, the Q-factor was regressed with the porosity only, and in the 
second step, it made a relationship between porosity and water absorption. The multi-R2 improves 
as the numbers of predictors are increased in the model equation [26]. As shown in Table 4, the 
R2 for model-1 was recorded as 0.24. In the case of model-2, two variables were regressed with 
the dependent variable therefore, its R2 value (i.e. 0.45) was found greater than model-1. In the 
case of elastic modulus (E), only porosity was able to make a correlation with E. Its R2 value 
was estimated as 0.36 (see Table 5).

Table 3

Bivariate analysis between the measured parameters 

Density Porosity Water 
Absorption Permeability Q-factor Elastic 

Modulus

Density
Pearson 

Correlation 1

Sig. (2-tailed)

Porosity
Pearson 

Correlation –0.87** 1

Sig. (2-tailed) 0.00

Water 
Absorption

Pearson 
Correlation –0.89** 0.99** 1

Sig. (2-tailed) 0.00 0.00

Permeability
Pearson 

Correlation –0.49** 0.61** 0.63** 1

Sig. (2-tailed) 0.00 0.00 0.00

Q-factor
Pearson 

Correlation 0.36 –0.49** –0.46* –0.31 1

Sig. (2-tailed) 0.05 0.00 0.01 0.09

Elastic 
Modulus

Pearson 
Correlation 0.45* –0.60** –0.58** –0.54** 0.88** 1

Sig. (2-tailed) 0.01 0.00 0.00 0.00 0.00
**	 Correlation is significant at the 0.01 level (2-tailed)
*	 Correlation is significant at the 0.05 level (2-tailed)

Table 6 and Table 7 display the results of the ANOVA test. For Q-factor, the probability value 
of both model-1 and model-2 was found less than the significance level α = 0.05. This signifies 
that both models had rejected the null hypothesis (i.e. Dependent variable is not affected by 
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any predictor) as described in Table 6. In the case of elastic modulus, the developed regression 
model also accepted the alternate hypothesis (see Table 7). Since all models have rejected the 
null hypothesis therefore F-test has validated alternate hypothesis. 

Table 6

Results of the ANOVA test to check the significance of regression models

Modela Sum of Squares df d Mean Square F e Sig. f

1
Regression 144.59 1 144.59 9.08 0.00b

Residual 445.73 28 15.92
Total 590.32 29

2
Regression 265.11 2 132.55 11.00 0.00c

Residual 325.22 27 12.04
Total 590.32 29

a – Dependent Variable: Q-factor
b – Predictors: (Constant), Porosity
c – Predictors: (Constant), Porosity, Water Absorption
d – Degree of freedom
e – Mean square ratio
f – Significance value

Table 7

Results of the ANOVA test to check the significance of regression models

Modela Sum of Squares df c Mean Square F d Sig.e

1
Regression 8704.62 1 8704.62 15.74 0.00b

Residual 15481.38 28 552.91
Total 24186.01 29

a – Dependent Variable: Elastic modulus (E)
b – Predictors: (Constant), Porosity
c – Degree of freedom
d – Mean square ratio
e – Significance value

Table 4

R2-statistics for the prediction models

Model R R Square Adjusted R Square Std. Error of the Estimate
1 0.49a 0.24 0.22 3.98
2 0.67b 0.45 0.41 3.47

a – Predictors: (Constant), Porosity with Dependent variable (Q-factor)
b – Predictors: (Constant), Porosity, Water Absorption with Dependent variable (Q-factor)

Table 5

R2-statistics for the prediction models

Model R R Square Adjusted R Square Std. Error of the Estimate
1 0.60a 0.36 0.34 23.51

a – Predictors: (Constant), Porosity with Dependent variable (E)
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After the F-test analysis, the t-test was applied to check the validity of each predictor used in 
the model equation. Table 8 illustrates that for Q-factor the value of significance level (α = 0.05) 
of both model-1 and model-2 was determined greater than the probability value obtained from 
the t-test analysis. Therefore, both models accepted the alternate hypothesis (No predictor is 
highly dependent on other predictors). The collinearity statistics show that the VIF value for 
model-1 was estimated as 1. However, in the case of model-2, the VIF value was found far greater 
than the threshold limit (VIF = 211.15 > 10). Thus, model-2 cannot be accepted due to its high 
multicollinearity problem. For elastic modulus (E), the probability value of the predictor in the 
model equation was found less than the significance level (α = 0.05) as demonstrated in Table 9. 
In this case, E made a relationship with only a single predictor (i.e. porosity) and its VIF value 
was determined as 1. Therefore, no multicollinearity problem arose. The final prediction model 
equations for the estimation of Q-factor and elastic modulus are as follows:

	 Q-factor = 21.49 – 0.94Φ	 (6)

	 E = 102.97 – 7.30Φ	 (7)

Table 8

The t-test results along with collinearity statistics

Modela
Unstandardized 

Coefficients
Standardized 
Coefficients

t b Sig.c

95.0% Confidence 
Interval for B

Collinearity 
Statistics

B Std. 
Error Beta Lower 

Bound
Upper 
Bound Tolerance VIF

1 (Constant) 21.49 1.79 11.99 0.0 17.82 25.17
Porosity –0.94 0.31 –0.49 –3.01 0.0 -1.58 -0.301 1.00 1.00

2

(Constant) 27.72 2.51 11.04 0.0 22.57 32.87
Porosity –13.39 3.94 –7.04 –3.39 0.0 -21.49 -5.29 0.00 211.15
Water 

Absorption 27.76 8.78 6.56 3.16 0.0 9.75 45.77 0.00 211.15

a – Dependent Variable: Q-factor
b – t-test score
c – Significance value

Table 9

The t-test results along with collinearity statistics

Modela
Unstandardized 

Coefficients
Standardized 
Coefficients

tb Sig.c

95.0% Confidence 
Interval for B

Collinearity 
Statistics

B Std. 
Error Beta Lower 

Bound
Upper 
Bound Tolerance VIF

1 (Constant) 102.97 10.57 9.74 0.00 81.32 124.62
Porosity –7.30 1.84 –0.60 –3.97 0.00 –11.07 –3.53 1.00 1.00

a – Dependent Variable: Elastic modulus (E)
b – t-test score
c – Significance value
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The validation of Eq. (5) and Eq. (6) was done using a separate dataset of the physical and 
dynamic properties of the sandstones deteriorated by wetting-drying cycles. Fig. 9(a-b) illustrate 
the relationship between the estimated and predicted values of Q-factor and E respectively in 
terms of their goodness of fit (R2). The R2 value for Q-factor and E was determined as 0.30 and 
0.36 respectively. This indicates that both models are not good enough for the estimation of 
Q-factor and E. 

Fig. 9. The scatter plot between the estimated and predicted values of the (a) Q-factor and (b) elastic modulus 
(E) through the multiple linear regression analysis

It is evident from the results of multivariate statistics that no multiple linear regression 
model was developed between the physical and dynamic properties of the sandstones. A high 
level of multicollinearity restricted the prediction models to only one-to-one relationships with 
a low value of goodness of fit. To overcome this problem, a backpropagation neural network 
technique i.e. cascade-forward neural network was used to train prediction models. The training 
of a neural network is an adaptive process that gives different outcomes for each attempt. This 
process continues until the output values come up very close to the target values. Fig. 10a shows 
the mean squared error (MSE) plot for Q-factor to find the MSE between the training, valida-
tion, and test values. The best validation performance was 8.38 in terms of MSE at cycle 1. In 
the case of elastic modulus, the minimum value of MSE between the training, validation, and 
test values, was recorded as 298.8 at cycle 1. After that error values were started to increase as 
shown in Fig. 10b.
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The training and learning phase help to fit the model on the training dataset by evaluating 
the relationship between the output values and target values as described in Fig. 11 and Fig. 12 
for both Q-factor and E respectively. In the case of the Q-factor the Pearson’s correlation (R) for 
training, validation, and testing was determined as 0.93, 0.88, and 0.90 respectively. The overall 
R-value for dependent variable E was found as 0.92. Furthermore, the relationship (R-value) 
between the output and target values during training, validation, and testing was estimated as 
0.95, 0.89, and 0.87 respectively as demonstrated in Fig. 12.

The prediction models developed by the neural network were validated by using a separate 
validation dataset. The goodness of fit or coefficient of determination (R2) between the esti-
mated and predicted values for Q-factor and E was calculated as 0.86 and 0.91 respectively (see 
Fig. 13(a-b)). These results are much better than those determined by the multiple linear regres-
sion analysis. It shows that in prediction modeling, the neural network has a competitive edge 
over linear regression analysis. Because in linear regression, the ordinary least-squaring method 

Fig. 10. The mean squared error convergence between training, validation,  
and test values for the (a) Q-factor and (b) elastic modulus (E)
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Fig. 11. Pearson’s correlation (R) between the output and target values of dependent variable Q-factor  
during the training, validation, and testing of the dataset

and multicollinearity restrict to have significant models. Whereas, in the neural network, the 
optimization of configured models and fitting of nonlinear function to training dataset enhances 
their performance.

5.	C onclusion

This research work focuses to study the effect of W-D cycles on the physico-dynamic proper-
ties of sandstones taken from the salt range area of Pakistan. For this purpose, a series of laboratory 
tests were performed to investigate any significant change in the engineering properties of the 
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sandstones in terms of their density, porosity, permeability, water absorption, Q-factor, elastic 
modulus, and unconfined compressive strength (UCS). Results show that with the increase in the 
number of W-D cycles, the measured values of density, Q-factor, and elastic modulus depreciate. 
Whereas, the estimated values of porosity, permeability, and water absorption appreciate. The 
overall maximum reduction in density, Q-factor, and elastic modulus was found as 3-4%, 34-62%, 
and 42-71% respectively. In the case of porosity, permeability, and water absorption, the maximum 
increment was determined as 24-50%, 31-64%, and 25-50% respectively. The development of 
intergranular cracking in rocks deteriorated by the wetting-drying cycles leads to a reduction 

Fig. 12. Pearson’s correlation (R) between the output and target values of dependent variable E during  
the training, validation, and testing of the dataset
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in their strength. This fact was studied by conducting a UCS test on sandstone samples treated 
under wetting-drying cycles. Their UCS values got reduced by 26-70%.

After evaluating the effects of W-D cycles on the physical and dynamic properties of the 
sandstone samples, bivariate analysis was performed to identify the variables having strong 
correlations. The physical parameters, density, porosity, and water absorption showed a strong 
correlation with one another. Their Pearson’s coefficient (R) values ranged from 0.87-0.99. In 
the case of dynamic parameters, Q-factor, and elastic modulus made a good relationship with 
each other (R = 0.88). 

To make an empirical relationship between the dynamic and physical properties of the tested 
sandstone samples regression analysis was performed using the stepwise method. Two regression 
models were developed using Q-factor as a dependent variable with R2 values of 0.24 and 0.45 
respectively. Both models were found significant in their hypothesis testing; however, the VIF 
value for model-2 was found much greater than the threshold limit. Therefore, only model-1 
was considered significant. In the case of elastic modulus (E), only porosity was regressed with 
the dependent variable E, and the rest of the predictors were excluded from analysis due to their 
high multicollinearity problem. 

The validation of the developed linear regression models was done using a validation dataset. 
The value of R2 between the estimated and predicted values of Q-factor and E was determined 
as 0.30 and 0.36 respectively. The linear regression analysis did not provide satisfactory results. 

Fig. 13. The scatter plot between the estimated and predicted values of the (a) Q-factor and (b) elastic  
modulus (E) through the cascade-forward neural network 
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Therefore, the cascade-forward neural network technique was employed to develop meaningful 
prediction models. The neural network fitted the nonlinear function to the training dataset and 
optimized it as well to get the optimal solution. The best validation performance was noted at 
cycle 1 for both Q-factor and E. At cycle 1 the mean squared error (MSE) for Q-factor and E was 
estimated by 8.38 and 298.8 respectively. During the training, validation, and testing the overall 
relationship (R-value) between the output and the target value for Q-factor and E was calculated 
as 0.91 and 0.92 respectively. The validation of prediction models generated by the neural network 
showed that they had a high value of goodness of fit. The R2 between the estimated and predicted 
values of Q-factor and E were found as 0.86 and 0.91 respectively. 

The overall results of this research work reveal the significance of W-D cycles as a major 
factor that alters the dynamic and physical properties of the rocks. Such studies are of utmost 
importance for the local areas to better understand the engineering behavior of the rocks undergo-
ing environmental changes during and after the construction of mega structures.
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