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On optimal control problem subject to fractional order
discrete time singular systems

Tirumalasetty CHIRANJEEVI, Raj Kumar BISWAS, Ramesh DEVARAPALLI,
Naladi Ram BABU and Fausto Pedro GARCÍA MÁRQUEZ

In this work, we present optimal control formulation and numerical algorithm for fractional
order discrete time singular system (DTSS) for fixed terminal state and fixed terminal time
endpoint condition. The performance index (PI) is in quadratic form, and the system dynamics
is in the sense of Riemann-Liouville fractional derivative (RLFD). A coordinate transformation
is used to convert the fractional-order DTSS into its equivalent non-singular form, and then the
optimal control problem (OCP) is formulated. The Hamiltonian technique is used to derive the
necessary conditions. A solution algorithm is presented for solving the OCP. To validate the
formulation and the solution algorithm, an example for fixed terminal state and fixed terminal
time case is presented.

Key words: fractional optimal control problem, discrete time singular system, fractional
derivative, Hamiltonian technique

1. Introduction

Fractional derivatives (FDs) represent derivatives of arbitrary real order. Gen-
eralization of the calculus of integer order is the fractional calculus (FC). It is
a branch of mathematics concerned with the study of FDs and integrals. FDs
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find its application in every branch of science and engineering. The concept of
FC is as old as calculus of integer order. The origins of FDs theory may be
tracked back to a remark in Leibniz’s list to L’Hospital in which the meaning
of half order derivative is discussed [1]. FD is not a point property, perhaps for
this reason it is an outstanding tool for the depiction of memory and hereditary
effects of distinct systems. This is the primary benefit of FD as in integer or-
der representation aforesaid characteristics are ignored [2]. From the standpoint
of applicability, FDs appear in electrochemistry, viscoelasticity, control theory,
mechatronics, electrical engineering, image processing, biophysics, mechanics,
rheology, signal processing, biology, bioengineering, economics, etc. [2–4].

This work deals with the application of FDs in optimal control problem
(OCP). The calculation of optimal control subject to system constraints in order to
optimize the provided PI is defined as OCP [5]. When PI, or dynamic constraints,
or both in OCP has one FD term, the problem is referred to be fractional optimal
control problem (FOCP) [6].

Notable work has been reported in literature regarding OCP of fractional
order continuous time non-singular systems. In this context, Agrawal [6] for-
mulated FOCPs described by Riemann-Liouville fractional derivative (RLFD)
or Caputo FD (CFD). Numerical approaches are used to solve the optimal con-
ditions. Chiranjeevi and Biswas [7] presented different case studies of FOCPs
with constraints on control. Biswas and Sen [8,9], proposed formulation for fixed
terminal time and free terminal time FOCPs. For the solution of state and control,
shooting method and Grünwald-Letnikov approximation-based techniques have
been used. Biswas and Sen [10] proposed a reflection operator based solution
algorithm for FOCPs described by RLFD or CFD. Tricaud and Chen [11] in-
troduced formulation of FOCP using Oustaloup recursive approximation. Ding
et al. [12] proposed formulation and solution of FOCP of human immunodefi-
ciency virus epidemic model. They showed that fractional optimal control can
offer improved quality of treatment as compared to integer order optimal control.
Analytical method for solving conformable FOCPs is proposed by Chiranjeevi
and Biswas [13]. Dehghan et al. [14–16] proposed different numerical schemes
based on modified Jacobi polynomials, semidefinite programming approach and
collocation method, and properties of the Legendre multiwavelets for solving
FOCPs. Gomoyunov [17], presented FOCP described by CFD for optimizing
Bolza type PI.

All the above reported works in literature consider continuous time FOCPs.
Discrete time FOCP works reported in literature are very limited. In this respect,
discrete time FOCP for fixed terminal state and free terminal state systems have
been discussed in [18–20]. In these papers, RLFD and CFD are considered, and
PI is given in a quadratic form. Solution method presented is similar to integer
order solution procedure of OCP. Czyronis [21] proposed dynamic programming
approach for solving FOCP of discrete time system. Trujillo and Ungureanu [22]
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develop formulation and solution of FOCP of stochastic discrete time systems.
Ruszewski [23] considered the discrete time fractional order system stability.

The above mentioned FOCPs are dealt with non-singular systems. Singular
systems (SSs) are of some special interest because they have some special features
like “noncausality, nonproperness of transfer matrix, consistent initial conditions,
input derivatives in the state dynamics”, etc. [24]. We find SSs in several areas
like social, engineering, economic and biological systems [24].

Reported work in literature on FOCP of continuous time SSs is not much. In
this regard, ‘pseudo state space’ formulation for FOCP of continuous time SS is
presented in [25,26]. In literature, formulation and different solution techniques,
e.g., Grünwald-Letnikov approximation based technique described byRLFD [27–
29] or CFD [30–32] and reflection operator based technique described by RLFD
or CFD [33, 34] for FOCP of continuous time SSs are presented. Kaczorek [35]
proposed coordinate transformation to convert fractional order DTSS into its
equivalent non-singular form. However, FOCPs of discrete time SSs is still an
open research area.

In this paper, we present OCP of DTSS using the coordinate transformation.
DTSS is transformed into an equivalent non-singular form, and then OCP is
formulated. An example is considered to validate the formulation and solution
algorithm. According to the state of the art, this is the first time that a formulation
and simulation algorithm of OCP of fractional order DTSS with fixed terminal
state and fixed terminal time end point condition are presented.

The rest of the article is structured as follows: OCP formulation for fractional
order DTSS is presented in Section 2; In Section 3, solution algorithm is presented
for solving FOCP; Numerical analysis is given in Section 4 for validating the
effectiveness of formulation and solution algorithm; Finally, conclusions of the
work are given in Section 5.

2. OCP formulation of fractional order DTSS

Consider the fractional order DTSS expressed in terms of FDEs as Eq. (1) [36]

E∆αx(k + 1) = Ax(k) + Bu(k), k ∈ Z+ = {0, 1, . . .}, (1)

where ∆α is the difference operator, described by Eq. (2) [36]

∆
αx(k) =

k∑
ς=0

(−1)ς
(
α
ς

)
x(k − ς). (2)
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We consider quadratic PI as Eq. (3)

J =
N−1∑
k=0

[
xT (k)M x(k) + uT (k)Su(k)

]
, (3)

where A ∈ <n×n, B ∈ <n×m, E ∈ <n×n is the singular matrix, x ∈ <n×1,
u ∈ <m×1, M ∈ <n×n > 0 and S ∈ <m×m > 0.

The problem is defined as follows: the calculation of optimal control subject
to system constraints in order to optimize the provided PI is defined as OCP.

We may describe feedback control law by considering the fractional order
system’s stabilizability and detectability properties [30] as Eq. (4)

u(k) = Kx(k) + w(k), (4)

where K ∈ <m×n is the feedback gain matrix, and w ∈ <m×1 is the new control
vector.

We may construct K to satisfy the relationship given by Eq. (5)

deg ( |zE − (A + BK) |) = rank(E).

By using Eq. (4) in Eq. (1), we obtain Eq. (5)

E∆αx(k + 1) = (A + BK ) x(k) + Bw(k). (5)

Two non-singular matrices F and G may be constructed to satisfy the Eq. (6) by
considering the Lemma mentioned in Eq. (6) [24, 30]

FEG = diag(In1,O), F (A + BK )G = diag(Λ̃, In2 ) (6)

where Λ̃ ∈ <n1×n1 is a new state matrix, n1 = rank (E), O ∈ <n2×n2 is a nilpotent
matrix and n1 + n2 = n.

We may choose coordinate transformation [24, 30]

x(k) = G
[
x1(k)
x2(k)

]
, x1 ∈ <

n1, x2 ∈ <
n2 . (7)

By taking into account Eq. (6) and Eq. (7), the Eq. (5) is modified as Eq. (8)
[
In1 0
0 0

]
∆
α

[
x1(k + 1)
x2(k + 1)

]
=

[
Λ̃ 0
0 I

] [
x1(k)
x2(k)

]
+

[
B1
B2

]
w(k). (8)

By considering Eq. (2), the Eq. (8) is modified as Eq. (9)

x1(k + 1) =
k∑

i=0
d(i)x1(k − i) + B1w(k),

0 = x2(k) + B2w(k).

(9)
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We obtain the following equation by considering Eq. (7) and Eq. (9) as Eq. (10)

[
x(k)
u(k)

]
=

[
I 0
K I

] [
x(k)
w(k)

]
=

[
G 0

KG I

] 

x1(k)
x2(k)
w(k)



=

[
G 0

KG I

] 

I 0
0 −B2
0 I



[
x1(k)
w(k)

]
. (10)

By using Eq. (10), we can modify Eq. (3) as

J =
N−1∑
k=0

[
x(k)
u(k)

]T [
M 0
0 S

] [
x(k)
u(k)

]

=

N−1∑
k=0




[
x1(k)
w(k)

]T 

I 0
0 −B2
0 I



T [
G 0

KG I

]T [
M 0
0 S

] [
G 0

KG I

] 

I 0
0 −B2
0 I



[
x1(k)
w(k)

]


=

N−1∑
k=0

[
x1(k)
w(k)

]T [
M̄ =

=T S̄

] [
x1(k)
w(k)

]

=

N−1∑
k=0

[
xT

1 (k)M̄ x1(k) + xT
1 (k)=w(k) + wT (k)=T x1(k) + wT (k) S̄w(k)

]
.

Finally, PI becomes as Eq. (11)

J =
N−1∑
k=0

[
xT

1 (k)M̃ x(k) + vT (k)S̄v(k)
]
, (11)

where M̃ = M̄ − =S̄−1=T , v(k) = w(k) + S̄−1=T x1(k).
Substitute w(k) = v(k) − S̄−1=T x1(k) in Eq. (8), we get Eq. (12)

x1(k + 1) =
k∑
ς=0

c(ς)x1(k − ς) + B1v(k), (12)

where c(0) = Λ̃ + α I − B1 S̄−1=T , c(ς) = (−1)ς
(
α

ς + 1

)
)I, ς = 1, 2, . . . , k.

Therefore, the fractional order DTSS given by Eq. (1) is transformed into its
equivalent non-singular form given by Eq. (12). Now, we obtain the formulation
of FOCP by considering the Eq. (11) and Eq. (12) as PI and system dynamics.
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We can define augmented PI in terms of Lagrange multiplier λ as

Ja =

N−1∑
k=0

*..
,

xT
1 (k)M̃ x1(k) + vT (k)S̄v(k)

+



k∑
ς=0

c(ς)x1(k − ς) + B1v(k) − x1(k + 1)


T

λ(k + 1)
+//
-
.

Hamiltonian function is be defined as

H (k) = xT
1 (k)M̃ x1(k)+ vT (k)S̄v(k)+



k∑
ς=0

c(ς)x1(k − ς) + B1v(k)


T

λ(k +1).

Augmented PI in terms of Hamiltonian is given by the following equation

Ja = xT
1 (0)λ(0) − xT

1 (N )λ(N ) +
N−1∑
k=0

[
H (k) − xT

1 (k)λ(k)
]
.

We can write the first variation of Ja as

δJa = −λ(N )δxT
1 (N ) +

N−1∑
k=0


*
,

∂H (k)
∂xT

1 (k)
− λ(k)+

-
δxT

1 (k) +
∂H (k)
∂vT (k)

δvT (k)

+

(
∂H (k − 1)
∂λT (k)

− x1(k)
)
δλT (k)

]
.

For optimum δJa = 0 [5]. Therefore, the necessary conditions are given by
Eq. (13)–(15)

x1(k + 1) =
∂H (k)

∂λT (k + 1)
=

k∑
ς=0

c(ς)x1(k − ς) + B1v(k), (13)

λ(k) =
N−1∑
k=0

∂H (k)
∂xT

1 (k)
=

[
M̃ + M̃T

]
x1(k) +

N−k−1∑
ς=0

cT (ς)λ(k + ς + 1), (14)

∂H (k)
∂vT (k)

= 0 ⇒ v(k) = −
[
S̄ + S̄T

]−1
BT

1 λ(k + 1). (15)

Finally, δJa becomes −λ(N )δxT
1 (N ) = 0.
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3. Solution algorithm

In this section, we use a general solution technique [18–20] for the solution
of fixed terminal state problem. Applying the z-transform to Eq. (13), assuming
that initial condition x(k = 0) = x0 is given, and then using inverse z-transform,
we can obtain the solution of state equation as Eq. (16)

x1(k) = ϕ(k)x1(0) −
k−1∑
ς=0

ϕ(k − ς − 1)B1
[
S̄ + S̄T

]−1
BT

1 λ(ς + 1), (16)

where ϕ(0) = In, ϕ(k) =
k−1∑
ς=0

c(ς)ϕ(k − ς − 1).

The vector representation of Eq. (16) is given by Eq. (17)


x1(1)
...

x1(N )


=



ϕ(1)
...

ϕ(N )


x1(0)

+



ϕ(0) · · · 0
...

. . .
...

ϕ(N − 1) · · · ϕ(0)


[−B1

[
S̄ + S̄T ]−1BT

1

]


λ(1)
...

λ(N )


(17)

The vector representation of Eq. (14) is obtained by Eq. (18)


λ(1)
...

λ(N )


=



ϕT (N − 1)
...

ϕT (0)


λ(N )

+



0 ϕT (0) · · · ϕT (N − 2)
...

...
. . .

...
0 0 · · · ϕT (0)
0 0 · · · 0



[
M̃ + M̃T

]


x1(0)
...

x1(N − 1)


. (18)

For fixed terminal state δxT
1 (N ) = 0, there is no transversality condition. This

problem is solved with given boundary conditions x1(0) and x1(N ). We can write
Eq. (18) by eliminating x1(0) as Eq. (19)



λ(1)
...

λ(N )


=



ϕT (N − 1)
...

ϕT (0)


λ(N ) +



ϕT (0)`1 . . . ϕT (N − 2)`1 0
...

. . .
...

...
0 . . . ϕT (0)`1 0
0 . . . 0 0





x1(1)
...

x1(N )


(19)

where `1 =
[
M̃ + M̃T

]
.
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By using Eq. (19) in Eq. (17), and simplifying, we get Eq. (20)



x1(1)
...

x1(N )


=



ε11 ε12 · · · ε1N
ε21 ε22 · · · ε2N
...

...
. . .

...
εN1 εN2 · · · εN N



−1





ϕ(1)
...

ϕ(N )


x1(0)

+



ϕ(0) · · · 0
...

. . .
...

ϕ(N − 1) · · · ϕ(0)



[
−B1`

−1
2 BT

1

]


ϕT (N − 1)
...

ϕT (0)


λ(N )




=



σ(1)
...

σ(N )


x1(0) −



θ(1)
...

θ(N )


λ(N ), (20)

where


ε11 ε12 · · · ε1N
ε21 ε22 · · · ε2N
...

...
. . .

...
εN1 εN2 · · · εN N



−1

=





I . . . 0
...
. . .

...
0 . . . I



+



ϕ(0) · · · 0
...

. . .
...

ϕ(N − 1) · · · ϕ(0)



[
B1`

−1
2 BT

1

]


ϕT (0)`1 . . . ϕT (N − 2)`1 0
...

. . .
...

...
0 . . . ϕT (0)`1 0
0 . . . 0 0





−1

,



σ(1)
...

σ(N )


=



ε11 ε12 · · · ε1N
ε21 ε22 · · · ε2N
...

...
. . .

...
εN1 εN2 · · · εN N



−1


ϕ(1)
...

ϕ(N )


,



θ(1)
...

θ(N )


=



ε11 ε12 · · · ε1N
ε21 ε22 · · · ε2N
...

...
. . .

...
εN1 εN2 · · · εN N



−1


ϕ(0) · · · 0
...

. . .
...

ϕ(N − 1) · · · ϕ(0)



·
[
−B1`

−1
2 BT

1

]


ϕT (N − 1)
...

ϕT (0)


and `2 =

[
S̄ + S̄T

]
.
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From Eq. (20), we get Eq. (21)

λ(N ) = θ−1(N ) [σ(N )x1(0) − x1(N )] . (21)

By using λ(N )in Eq. (20), then we get the optimal statex1(k). We get the costate
λ(k) by substituting x1(k) and λ(N ) in Eq. (19). Once λ(k) is known, we can
obtain v(k)by using Eq. (15). We get w(k) by using v(k) from the relation
w(k) = v(k) − S̄−1=T x1(k). Thereafter, u(k) and x2(k)can be obtained by using
the Eqs. (4) and (9).

4. Experiments and results

Consider a fractional order DTSS (1) with

E =


1 0 0
0 0 1
0 0 0


, A =



1 0 0
0 1 0
0 0 1


, B =



1
0
1



PI (9) with Q =


1 0 0
0 1 0
0 0 1


, R = [2] and the given conditions as x1(0) =

[
0.5
0.7

]
,

x1(10) =
[

0.0570
−0.0322

]
, N = 10.

The matrices F, G and K can be constructed as [37] F =


1 0 −1
0 1 −1
0 0 1


, G =



1 0 0
0 −1 1
0 1 0


and K =

[
0 1 0

]
.

Let x1(k) =
[
x11(k)
x12(k)

]
,
[
x11(0)
x12(0)

]
=

[
0.5
0.7

]
.

By applying the solution algorithm discussed in previous section, we get the
results shown in Figs. 1–5.

Numerical results are presented for distinct α and N = 10. Figures 1–5 show
the optimal states x11(t), x12(t) and x2(t), control uopt and minimum value of PI
Jmin for the fixed terminal state problem. From these results, we can observe that
if α increases the amplitudes of both the states and control also increases like in
references [18, 19]. These results also show that large values of αdemand more
control effort. We can also observe that when α decreases minimum value of PI
is decreased.
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Figure 1: Optimal state x11 for α = 0.6, 0.8, 1.0

Figure 2: Optimal state x12 for α = 0.6, 0.8, 1.0

Figure 3: Optimal state x2 for α = 0.6, 0.8, 1.0

Figure 4: Optimal control uopt for α = 0.6, 0.8, 1.0
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Figure 5: Minimum value of PI Jmin for α = 0.6, 0.8, 1.0

5. Conclusions

Formulation and solution algorithm for OCP of fractional order DTSS in
terms of RLFD has been discussed in this paper. The general form of PI in
terms of x(t) and u(t) is considered. By using transformation, we have converted
fractional order DTSS into its equivalent non-singular form, and then applied
optimal control theory for obtaining necessary conditions. A general solution
method has been proposed for numerical simulation. An example is considered
for validating the adequacy of formulation and numerical algorithm. Numerical
results are produced at distinct α. From these results, we can observe that if α
increases, then the amplitudes of both the states and control also increases. These
results also show that large values of α demand more control effort. We can
also observe that when α decreases, then the minimum value of PI is decreased.
Therefore, we conclude that consideration of FOCP can give considerable benefits
than equivalent integer order OCP. According to the state of the art, this is the
first time a formulation and solution of FOCP of DTSS with fixed terminal state
and fixed terminal time end point condition is presented.

Nomenclature

FD – Fractional derivative
DTSS – Discrete time singular system
RLFD – Riemann-Liouville fractional derivative
CFD – Caputo fractional derivative
FOCP – Fractional optimal control problem
OCP – Optimal control problem
PI – Performance index
FC – Fractional calculus
SS – Singular system
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