
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 70(1), 2022, Article number: e139957
DOI: 10.24425/bpasts.2021.139957

CONTROL AND INFORMATICS

Tuning PID and PI-PI servo controllers
by multiple pole placement

Andrzej BOŻEK ∗∗∗ and Leszek TRYBUS

Department of Computer and Control Engineering, Rzeszów University of Technology, W. Pola 2, 35-959 Rzeszów, Poland

Abstract. Tuning rules for PID and PI-PI servo controllers are developed using a pole placement approach with a multiple pole, i.e. a triple
one in the case of PID and a quadruple for PI-PI. The controllers involve complex roots in the numerators of the transfer functions. This is not
possible in the classical P-PI structure which admits real roots only. The settling time of the servos determined by the multiple time constant
is the only design parameter. Nomograms to read out discrete controller settings in terms of the time constant and control cycle are given. As
compared to the classical structures, the upper limit on the control cycle is now twice longer in the case of PID, and four times in the case of
PI-PI. This implies that the settling times can be shortened by the same ratios. Responses of a PLC-controlled servo confirm the validity of the
design.
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1. INTRODUCTION
Servomechanisms, called servos for short, as motion control
systems are final execution elements of robots, machine tools,
conveyors, etc. [1]. Extensive analyses, design solutions, and
applications of the servos are described in [2, 3]. Robot servos
are typically equipped with permanent magnet (PM) brushless
DC (BLDC) motors or AC synchronous motors (PMSM) driven
by suitable power devices. A classical control structure involves
a torque controller (two-axis controllers for PMSM), a PI ve-
locity loop, and an outer P position loop. This P-PI setup is
equivalent to a single PID with real roots (zeros) in the transfer
function numerator. By neglecting viscous friction, a servomo-
tor equipped with a torque controller is typically described by
a double integrator.

The double integrator with a P-PI or PID controller is a 3rd
order system expected to provide smooth responses with a pre-
scribed settling time. Identification of electrical parameters and
step-by-step tuning of current (torque), velocity, and position
controllers for a PMSM servo-drive is described in [4]. Con-
ventional frequency methods are applied for design in [2, 3],
given natural frequency and damping ratio. The considerations
on the application of root-locus method [5] can be found in [6].
The detailed design of a constrained state feedback controller
for a PMSM servo described in [7] may be an example of ad-
vanced approaches. Assessments of PD, LQG, minimum time,
sliding mode and a few other algorithms for control of the dou-
ble integrator at off-normal conditions are presented in [8]. In
practice, however, industrial servos are usually tuned by trial-
and-error.
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Fast tool servo devices, particularly direct drives, may be
equipped with additional acceleration feedback loop involv-
ing an acceleration sensor and acceleration controller providing
a set-point for the current controller. The idea was initially pro-
posed in [9]. The acceleration signal represents instantaneous
net reaction of the moved mass to current-generated control
force and disturbance forces due to varying load, vibrations, etc.
The additional loop, usually proportional, reduces the effect of
disturbance forces thus enhancing the performance of the servo.
For P-PI or PID position controllers a servo-drive equipped with
the acceleration loop still looks like a double integrator.

Application of the root-locus method for the design of P-PI
servo controller was described in this journal in [10]. The rela-
tive simplicity of the 3rd order system enabled analytic solution
for a controller with double real zero. The PI-PI structure, ap-
propriate for suppressing varying disturbances, was considered
as well. Simple rules for setting controller parameters in terms
of required settling time, design nomograms for discrete imple-
mentations, and limits on control cycle time were provided.

From a practical point of view it may be useful to indicate
that a controller with settings obtained by continuous design re-
quires sufficiently fast sampling what, if time requirements are
high, implies the application of an embedded servo-controller
or an external PLC dedicated solely to the servo. If however,
the PLC executes also some other tasks, the computational load
required by fast sampling may turn out unacceptable. In such
a case discrete design is needed, together with knowledge of
the maximum control cycle which provides the lowest compu-
tational load.

Some time ago the authors became interested in Internal
Model Control (IMC) method popular in the process control
community, particularly for plants with delay, e.g. [11,12]. IMC
design provides smooth responses defined by a time constant λ

(usually multiple) being the only design parameter. Due to such
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features, application of the IMC to servo design seemed inter-
esting.

As it turned out the IMC solution is equivalent to pole place-
ment (modal) with a triple pole 1/λ . The resulting PID con-
troller has complex zeros, so has to be implemented as "stand-
alone" (Fig. 1), and not as the P-PI structure with two nested
loops. By application of a quadruple pole placement, the PI-PI
structure can also be considered. In the case of discrete imple-
mentations, the new design relaxes considerably the require-
ments on control cycle time, which may be beneficial for high-
performance servos [7] or when a PLC executes other tasks in
parallel.

This paper, often referring to [10], is organized as follows.
The next section reviews briefly the previous root-locus de-
sign and presents a relatively uncomplicated new solution based
on triple pole placement. A discrete PID controller for which
the design becomes more involved is considered in Section 3.
A nomogram for the selection of controller settings and upper
limit on control cycle are given. Continuous and discrete PI-PI
structures are dealt with in Sections 4 and 5, respectively. A lab
servo set-up with responses for the control cycle correspond-
ing to the upper limit is considered in Section 6. Continuous
control is tested as well by applying the shortest control cycle
available in the set-up PLC. Alternative PID design using IMC
is presented in Appendix.

2. CONTINUOUS PID CONTROLLER FOR DOUBLE
INTEGRATOR

We begin with a review of the design from [10].

2.1. Root-locus
Consider the control system of Fig. 1 involving a double inte-
grator, PID controller, and reference filter F. The double integra-
tor ko/s2 represents in practice a connection of servo-drive, ser-
vomotor and mechanical load resulting in the effective gain ko.

yr F PID
ko
s2

y
−

Fig. 1. PID control system for double integrator

Let the controller be described by

GPID(s) = kP +
kI

s
+ kDs (1)

with the gains kP, kI , kD of corresponding PID actions. As
demonstrated later in Section 4, such a controller may be con-
verted into classical servo structure composed of PI velocity
loop and P position loop, provided that its transfer function has
real zeros. This in turn requires the ratio TI/TD of the integral
time TI = kP/kI to the derivative time TD = kD/kP to be no
smaller than 4. If TI/TD = 4, as in the familiar Ziegler-Nichols
tuning rules [13], the PID transfer function can be written as

GPID(s) = kR
(s+α)2

s
(2a)

with

kR = kP
TI

4
and α =

2
TI

. (2b)

So it is a PID controller with a double real zero −α and equiv-
alent gain kR. Taking into account the double integrator, the
open-loop transfer function

Gopen(s) = K
(s+α)2

s3 , K = kRko (3)

is of 3rd order. Conversion of the P-PI structure into PID gen-
erates the filter (see Section 4)

F(s) =
α

s+α
. (4)

Root-locus plot of the closed-loop poles shown in Fig. 2a
consists of two circular branches meeting at the double pole
s2 and the 3rd real branch approaching the zero −α . To get
smooth, critically damped responses we have to choose the
open-loop gain K corresponding to s2. From the root-locus
breakpoint condition dGopen/ds = 0 one obtains

s2 =−3α, K =
27
4

α, s1 =−
3
4

α. (5)

The pole s1 follows from the division of the closed-loop char-
acteristic polynomial s3 +K(s+α)2 by (s− s2)

2.

0

0

a)

0

0

b)

Fig. 2. Root-locus plot for the PID control system with: a) double real
zero, b) complex zeros (× – open-loop pole, ◦ – open-loop zero,

� – closed-loop pole)
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Let the system dynamic be specified by a required settling
time ts. Since ts is determined by the dominant pole s1 close to
−α (which speeds up the transient), so taking ts ∼= 3/|s1| gives
the modulus of the controller zero as

α =
4
ts
. (6)

Using it in (5) and (2b) yields the following PID settings

kP =
216
ts2ko

, kI =
432
ts3ko

, kD =
27

tsko
. (7)

2.2. Pole placement
To get a triple closed-loop time constant λ as in IMC (Ap-
pendix) we remove the condition TI/TD ≥ 4 required by the
transformation of PID to P-PI. The following pole placement
equation for the denominator of the closed-loop transfer func-
tion holds

s3 + ko
(
kDs2 + kPs+ kI

)
= (s+ p)3, p = 1/λ . (8)

Equating coefficients of the polynomials on both sides gives

kP =
3

λ 2ko
, kI =

1
λ 3ko

, kD =
3

λko
(9)

(compare Appendix). Here the ratio TI/TD = kP
2/(kIkD) equals

3, which implies complex zeros of the new controller. So its
transfer function can be written as

GPID(s) = K
(s+αc)(s+αc)

s
, K =

3
λko

, (10a)

with the complex zero

−αc =−
1

2λ

(
1+ j

1√
3

)
. (10b)

To illustrate the difference from the previous design, root-
locus plot of the new system for varying K is shown in Fig. 2b.
By construction, the triple pole s3 of the closed-loop system
equals −1/λ and is reached for K in (10a). Unlike the previous
plot (Fig. 2a), where the double zero −α stops the real branch
at s1, here the complex zeros open up the way for this branch to
meet the two circular branches at s3.

2.3. Tunings
Assume as before that a required settling time ts and the servo
gain ko are given. For the triple time constant λ we may write
ts ∼= 8λ , so λ ∼= ts/8. Now according to (9)

kP =
192
ts2ko

, kI =
512
ts3ko

, kD =
24

tsko
. (11)

So the new settings are only slightly different from the previous
ones in (7), hence very similar behavior may be expected. It is
also natural to assume the reference filter as

F(s) =
Reαc

s+Reαc
, (12)

where Reαc = 1/(2λ ) = 4/ts, i.e. the same as α in (6).

If natural frequency ωn is the preferred specification param-
eter to calculate the settings, the corresponding settling time
follows from ts ∼= 4/ωn [5] (for unity damping ratio).

The experimental step response of the designed PID system
strictly corresponding to P-PI is shown in Section 6, as well
as the response when the derivative action involves additional
filtering.

2.4. Frequency characteristics
To compare the robustness of the pole placement and root-
locus designs one can check sensitivity with respect to the servo
gain ko which may be inaccurately determined. Sensitivities
|dGclosed/dko| of the closed-loop transfer function for ko = 1,
λ = 1 (ts = 8) in relevant frequency range are shown in Fig. 3.
As seen, the pole placement design is slightly more sensitive to
ko than the root-locus.

0.1 1 10
0

0.2

0.4

0.6

0.8

1
pole placement

root-locus

Fig. 3. Sensitivities of closed-loop transfer functions
with respect to ko

3. DISCRETE PID CONTROLLER
3.1. Basic derivation
If a PLC implementing a continuous control algorithm cannot
sample fast enough, in particular two hundred times per settling
time for P-PI [10], the continuous design should be transformed
into equivalent discrete form. So let ∆ denote a discretization
step (control cycle). Discrete time transfer function of the dou-
ble integrator ko/s2 has the following form [1, 5]

Go(z) = ko
∆2

2
z+1

(z−1)2 . (13a)

Likewise the PID controller becomes

GPID(z) = kP + kI∆
z

z−1
+

kD

∆

z−1
z

=
k1z2−k2z+k3

z(z−1)
, (13b)

where

k1 = kP + kI∆+
kD

∆
, k2 = kP +2

kD

∆
, k3 =

kD

∆
. (13c)

The open-loop transfer function takes the form

Gopen(z) =
(z+1)(K1z2−K2z+K3)

z(z−1)3 (14a)

Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 1, p. e139957, 2022 3
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with

Ki = koki
∆2

2
(14b)

for i = 1,2,3. Therefore the denominator of the closed-loop
transfer function becomes

f (z) = z(z−1)3 +(z+1)(K1z2−K2z+K3). (15)

Following the continuous case, we want f (z) to have a triple
root

r = e−p∆ (16)

with p = 1/λ .
It is known that if a function f (z) has a root r of multiplicity

k, then

f (r) = f ′(r) = f ′′(r) = . . .= f (k−1)(r) = 0. (17)

Applying these conditions to f (z) for k = 3 one obtains a sys-
tem of three equations linear with respect to K1, K2 and K3,
having the solution [14]

K1 =C(3r3 +8r2 +5r−4),

K2 =C(3r4 +12r3 +14r2−4r−1),

K3 =Cr3(r2 +4r+7),

(18a)

where

C =
1− r

(r+1)3 . (18b)

3.2. Interval for r
For a feasible value of r (see below), root-locus plot with re-
spect to the open-loop gain is shown in Fig. 4. The right part
of the plot with the triple breakpoint z3 = r corresponds to con-
tinuous case (Fig. 2b), whereas the left one with the pole z1
reflects the increased order of Gopen(z) from (14a) compared to
its continuous counterpart. The analytic expression for z1 may
be obtained from the division

f (z)
∣∣
K1(r),K2(r),K3(r)

(z− r)3 = z− z1 , (19)

which gives

z1 =
(1− r)(r2 +4r+7)

(r+1)3 =
K3

r3 . (20)

With decreasing r the right and left part of the plot (Fig. 4)
converge and meet at some value of r for which the equation
z1(r) = r holds. The only real solution of this equation gives
r = r4 = 4

√
8− 1 ∼= 0.682, i.e. the unique quadruple real pole

of the closed-loop transfer function. Analytic properties of the
expression (20) assert that if r ∈ [r4,1) then z1 ∈ (0,r4], hence
the system is stable and its dynamic is dominated by the triple
pole r or the quadruple if r = r4.

1

0

Fig. 4. Root-locus for discrete PID

3.3. Discretization step
The discrete form of the controller requires evaluation of the
step ∆ for which the design is feasible. The admissible ∆ is
determined by the lower limit condition r ≥ r4. Using (16) for
r4 = 0.682 yields ∆ ≤ −(lnr4)/p or ∆ ≤ 0.383λ . Since λ ∼=
ts/10 for the quadruple time constant limit, we get

∆≤ ts
26

, (21)

which is the requirement for discrete implementation providing
the settling time ts.

Analogous requirement for the discrete P-PI (or, equiva-
lently, PID with a reference filter) having a double real zero
yields ∆≤ ts/45 [10]. Thus the benefit from the pole placement
design rests in almost twice longer limit on the discretization
step than in the former case.

3.4. Tunings and responses
Given a required settling time ts, gain ko, and step ∆ one should
determine the corresponding value of r from (16) with p= 1/λ ,
λ = ts/8, i.e. r = exp(−8∆/ts). If the condition r≥ r4(= 0.682)
does not hold, larger ts must be chosen. Then the parameters K1,
K2, K3 need to be calculated according to (18) and, finally, the
target settings obtained by the formulas

kP=
2(K2−2K3)

ko∆2 , kI =
2(K1−K2+K3)

ko∆3 , kD=
2K3

ko∆
(22)

derived from (13c) and (14b). Analytic properties of the func-
tions (18) assert that K2−2K3 > 0, K1−K2+K3 > 0 and K3 > 0
for r ∈ [r4,1). Hence (22) provide realizable settings of the dis-
crete PID controller.

In practical applications it could be often more convenient to
calculate the settings from

kP =
ρP

950ko∆2 , kI =
ρI

9400ko∆3 , kD =
ρD

230ko∆
, (23)

after reading out the values ρP, ρI , and ρD from the nomograms
in Fig. 5 for a given r. The nomograms have been obtained by
combining (18) and (22).

Simulated step responses for the discrete PID and the P-PI
from [10] are compared in Fig. 6. The controller settings are
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Fig. 5. Nomograms for the discrete PID controller settings

calculated for the discretization step ∆ = 0.015 s as in labora-
tory experiments in Section 6. It implies the approximate lower
bounds on settling time equal to 26∆ ∼= 0.4 s and 45∆ ∼= 0.7 s
for the PID and P-PI, respectively. One can try to ignore the
condition ∆ ≤ ts/45 for P-PI to obtain a system as fast as for
PID, but then the step response becomes oscillatory (Fig. 6).

0 0.2 0.4 0.6 0.8 1

t [s]

0

0.2

0.4

0.6

0.8

1

y

PID+F,  ts = 0.4

P-PI [10], ts = 0.7

P-PI [10], ts = 0.4

Fig. 6. Step responses for the considered discrete PID and the P-PI
proposed in [10]

4. CONTINUOUS PI-PI CONTROL
4.1. Control structures
By applying PI control both for velocity and position loops we
get the system of Fig. 7a, where

PIV (s) = kPV +
kIV

s
,

PIP(s) = kP +
kI

s
.

(24)

Additional integral in the position loop improves the accu-
racy of servos tracking complicated trajectories and suppress-
ing varying disturbances. The two loops may be replaced by a

a)

yr PIP PIV
ko
s2

s

y

v−−

b)

yr F R
ko
s2

y
−

Fig. 7. a) PI-PI servo control system, b) single-loop equivalent

single one of Fig. 7b, where [10]

R(s) =
(kPV s+ kIV )(s2 + kPs+ kI)

s2 , (25a)

F(s) =
kPs+ kI

s2 + kPs+ kI
. (25b)

Before going into design issues note that by setting kI to 0
we get the classical P-PI structure represented by

R(s)
∣∣
kI=0 =

(kPV s+ kIV )(s+ kP)

s
,

F(s)
∣∣
kI=0 =

kP

s+ kP
.

(26)

So R(s) for kI = 0 is just the PID controller of Fig. 1. As seen
from above, such a controller may have real zeros only. If kP =
kIV/kPV , it has a double zero equal to −α in (2a).

4.2. Pole placement
For notational convenience, let us rewrite (25a) as

R(s) = K
(s+α)(s2 +β s+ γ)

s2 (27a)

with

K = kPV , α =
kIV

kPV
, β = kP , γ = kI . (27b)

The open-loop transfer function Gopen(s) = R(s)ko/s2 is now of
4th order, so a quadruple pole may be required.

To simplify development we introduce normalization with
respect to α , obtaining the open-loop transfer function

Gopen(s) = K′
(s′+1)(s′ 2 +β ′s′+ γ ′)

s′ 4
, (28a)

with

s′ =
s
α
, K′ =

Kko

α
, β

′ =
β

α
, γ

′ =
γ

α2 . (28b)

Characteristic polynomial of the closed-loop transfer function
becomes

f (s′) = s′ 4 +K′(s′+1)(s′ 2 +β
′s′+ γ

′). (29)
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We want this polynomial to have a quadruple root s′4, so

f (s′) =
(
s′− s′4

)4
. (30)

Equating coefficients of the expanded forms of (29) and (30)
yields the simple solution

K′ = 8, β
′ = 2, γ

′ = 2, s′4 =−2. (31)

One may comment that the solution can also be obtained from
the equations f (s′4) = f ′(s′4) = f ′′(s′4) = f ′′′(s′4) = 0 (see (17)
in Section 3). Roots of the polynomial s′ 2+2s′+2, i.e. normal-
ized zeros of the controller, are −1± j1.

4.3. Tunings
As before, assume that a settling time ts and gain ko are given.
For the quadruple pole s4 = s′4α = −2α one may write ts ∼=
10/|s4|, hence

α ∼=
5
ts
. (32)

Values of the remaining parameters K, β , γ follow from (28b)
and those of the PI controllers from (27b). Finally, one obtains
the settings for the pair of controllers

kP =
10
ts

, kI =
50
ts2 ,

kPV =
40

tsko
, kIV =

200
ts2ko

.

(33)

Step and ramp responses for such settings are presented in Sec-
tion 6.

4.4. Idea of the previous design [10]
Although not necessary, the term s2+kPs+kI in (25a) has been
assumed to have a double root −β , analogously as in the P-PI
case. So the controller transfer function becomes

R(s) = K
(s+α)(s+β )2

s2 . (34)

The corresponding root-locus plot shown in Fig. 8a has two
breakpoints sb1 and sb2. Critically damped responses are ob-
tained when the two breakpoints are reached simultaneously.
This condition yields the following solution

K =
16α

ko
, β = 2α . (35)

Settling time is determined by the pair of dominant poles in the
breakpoint

sb1 =−2(2−
√

2)α ∼=−1.17α.

In the pole placement case, instead of the two breakpoints,
we have one quadruple breakpoint s′4 as in Fig. 8b, where the
internal and external branches meet.

0

0

a)

-3 -2 -1 0

-2

-1

0

1

2

b)

Fig. 8. Root-locus plot for PI-PI structure with: a) three real zeros
(β double), b) two complex zeros and a real one

5. DISCRETE PI-PI CONTROL
We follow the steps of Section 3 with some extensions.

5.1. Basic derivation
Discrete implementation of the PI-PI system from Fig. 7a con-
sists of the double integrator (13a) and the controllers

GPI p(z) = kP + kI∆
z

z−1
,

GPIv(z) = kPV + kIV ∆
z

z−1
,

(36)

whith the operator s replaced by (z− 1)/(∆z). As before, the
two loops are equivalent to the single one of Fig. 7b with [10]

R(z) = kR
(z−α)(z−β )(z− γ)

∆z(z−1)2 , (37a)

F(z) =
∆z [(kP + kI∆)z− kP]

(kI∆2 + kP∆+1)(z−α)(z−β )
, (37b)

where

kR = (kPV + kIV ∆)(kI∆
2 + kP∆+1),

αβ =
1

kI∆2 + kP∆+1
,

α +β =
kP∆+2

kI∆2 + kP∆+1
,

γ =
kPV

kPV + kIV ∆
.

(38)
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In [10] it was assumed that α , β , γ are real (R). However, since
the formulas above express the product and sum of the zeros α ,
β , they remain correct also for complex (C) case provided that

β = α ∈ C, γ ∈ R. (39)

We want the closed-loop system with a quadruple pole z4 = r.
Let us rewrite R(z) in the form similar to PID in (13b),

i.e. with the numerator linear with respect to the coefficients

R(z) =
k1z3− k2z2 + k3z− k4

z(z−1)2 . (40)

For such R(z) the denominator of the closed-loop transfer func-
tion becomes

f (z) = z(z−1)4 +(z+1)(K1z3−K2z2 +K3z−K4) (41)

with Ki, i = 1, . . . ,4 defined in (14b). Applying the condi-
tion (17) with the multiplicity k = 4 to f (z) above, we get a
system of four equations linear with respect to K1, . . . ,K4. Its
solution has the form [14]

K1 =C(4r4 +15r3 +19r2 +5r−11),

K2 =C(6r5 +30r4 +55r3 +35r2−25r−5),

K3 =C(4r6 +20r5 +44r4 +45r3−11r2−5r−1),

K4 =Cr4(r+3)(r2 +2r+5),

(42a)

where

C =
1− r

(r+1)4 . (42b)

Comparing (37a) with (40) and taking into account (14b), we
get

kR =
2K1

ko∆
(43)

and α , β , γ as the roots of the equation K1z3−K2z2+K3z−K4 =
0. Assuming K1 6= 0, it is a cubic equation in a general form
whose real root γ , as well as the product a = αβ and the sum
b = α +β of the two other roots can be consecutively obtained
from the following expressions to satisfy the conditions (39)

δ =
27K1

2K4−9K1K2K3 +2K2
3

54K1
3

+

√
27K1

2K4
2+(4K2

3−18K1K2K3)K4+4K1K3
3−K2

2K3
2

33/22K1
2 ,

γ =
3√

δ − 3K1K3−K2
2

9 3√
δK1

2
+

K2

3K1
∈ R,

a = αβ =
K4

γK1
∈ R, b = α +β =

K2− γK1

K1
∈ R,

(44)

where δ is an auxiliary variable calculated first to get γ .

5.2. Intervals for r and ∆

The general shape of root-locus plot (not shown) is very similar
to the one of Fig. 4, but with the right part replaced by discrete
version of Fig. 8b. The fifth single pole z1 is obtained by substi-
tuting (42) into (41) and dividing the resulting f (z) by (z− r)4.
This yields

z1 =
(1− r)(r+3)(r2 +2r+5)

(r+1)4 =
K4

r4 . (45)

As before, the equation z1(r) = r gives the unique real solution
r5 =

5√16−1∼= 0.741 that represents the quintuple pole of the
closed-loop system. Moreover, properties of the expression (45)
imply that if r ∈ [r5,1) then z1 ∈ (0,r5], hence the system is
stable with the dominant pole r.

This time the condition r ≥ r5 yields ∆ ≤ 0.3λ , so for ts ∼=
12λ (quintuple λ ) we get

∆≤ ts
40

. (46)

This is considerably better than ts/130 in [10] where the double
real zero prevented getting the quadruple pole (see Fig. 8a).

5.3. Tunings and responses
Having kR, a, b, γ calculated from (43) and (44), the original pa-
rameters of the controllers are obtained by solving (38). Hence

kP =
b−2a

a∆
, kI =

1+a−b
a∆2 ,

kPV = aγkr , kIV =
a(1− γ)kr

∆
.

(47)

As in Section 3 we can combine the formulas (42), (43), (44),
(47) to get the following compact expressions for the settings

kP =
ρP

300∆
, kI =

ρI

2000∆2 ,

kPV =
ρPV

110ko∆
, kIV =

ρIV

930ko∆2 .

(48)

The coefficients ρP, ρI , ρPV , ρIV are read out from the nomo-
grams in Fig. 9 for a given r. The nomograms confirm that the
PI-PI structure is realizable for the quadruple pole placement,
since all the settings are positive for r ∈ [r5,1).

Simulated step responses for the PI-PI controllers with the
settings developed in this section and those proposed in [10]
are compared in Fig. 10. The discretization step ∆ = 0.015 s
is used as in Section 3. Approximate lower bounds on settling
time are 40∆∼= 0.6 s and 130∆∼= 2.0 s for the new PI-PI settings
and the previous ones from [10], respectively. Again, one can
try to ignore the condition ∆≤ ts/130 attached to the formulas
from [10] to have the settling time 0.6 s, but this leads to an
unstable system. The stability limit is reached for the settling
time 0.75 s, as shown in Fig. 10.
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Fig. 9. Nomograms for the discrete PI-PI control structure settings
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Fig. 11. Laboratory servo system

6. EXPERIMENTAL RESULTS
A laboratory servo system shown in Fig. 11 has been set-up
to verify the designs. It consists of a ball screw linear actua-
tor, Estun AC servomotor and servo drive [15] with EtherCAT
bus, Beckhoff C6920 industrial PC [16] for PLC code execu-
tion, and standard PC with TwinCAT 3 engineering software
for programming. The continuous and discrete controllers have
been implemented in ST (Structured Text) language as function
blocks of the IEC 61131-3 standard [17]. All calculations de-
scribed by the formulas (11), (18), (22) for PID, and (33), (42),
(43), (44), (47) for PI-PI have been embedded in a PLC pro-
gram to compute target settings for given data. Although some
of the formulas look complicated, they can be expressed by ele-
mentary ST instructions, including EXPT function for the cube
root in (44).

The servo has been controlled using a combined reference
trajectory composed of step and ramp parts shown in Fig. 12.
Disturbance has been simulated by a signal added to controller
output.

The discrete control algorithms have been running with the
cycle ∆ = 15 ms. Their settings have been calculated for the
multiple poles corresponding to the shortest settling time, i.e.
for the design parameter r = r4 = 0.682 in the case of PID (Sec-
tion 3) and r = r5 = 0.741 in the case of PI-PI (Section 5). Con-
tinuous algorithms have been emulated by the Euler backward
approximation executed with the shortest cycle ∆min = 1 ms
available in the lab system.

Step responses of the originally designed discrete controllers
exhibit overshoots due to zeros of the transfer functions. Hence
the reference filters have to be added. Zeros of the PID con-
troller are the roots (complex) of the polynomial K1z2−K2z+
K3. Following the continuous filter (12), one can apply its 1st
order discrete counterpart
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Fig. 12. Experimental results recorded by TwinCAT 3 software: green – reference position, blue – actual position, red – control output

F1,PID(z) =
(1− z f )z

z− z f
, (49)

where z f denotes the real part of the zeros, i.e. z f = 0.5K2/K1.
The full 2nd order filter

F2,PID(z) =
(K1−K2 +K3)z2

K1z2−K2z+K3
, (50)

slightly more complicated, cancels out both zeros.
The discrete PI-PI control structure has two real zeros

z f a =
kP

kP + kI∆
, z f b =

kPV

kPV + kIV ∆
, (51)

where z f a emerges in the connection of R(z) from (37a) with
F(z) from (37b) according to the diagram in Fig. 7b, and z f b
follows from (37a) and (38). One can eliminate the zero z f a by
the reference filter

F1,PI-PI(z) =
(1− z f a)z

z− z f a
(52)

or, equivalently, by splitting the position PI controller to get
the I-P-PI structure proposed in [10]. If the filter (52) turns out
insufficient, one can use the following variant

F2,PI-PI(z) =
(1− z f a)(1− z f b)z2

(z− z f a)(z− z f b)
(53)

that cancels both zeros.
Comparison of experimental step responses for the two con-

trollers (PID, PI-PI) and related filters (F1, F2) is presented in
Fig. 13a. The configuration PID+F1 works correctly in general,
however, the motion is not smooth, with oscillations of velocity.
There is no such behavior in the case of PID+F2. The structure
PI-PI+F2 settles down aperiodically, whereas PI-PI+F1 exhibits
an overshoot of about 10%. Barely visible oscillations in the
vicinity of yr are due to static friction. Experimental responses
for the P-PI and PI-PI controllers tuned according to [10] are
also presented in Fig. 13a. Their settling times are longer, par-
ticularly for the PI-PI, as shown earlier in Sections 3 and 5.
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Fig. 13. Step responses of control structures: a) discrete, b) continuous

The filters F2 in the structures PID+F2 and PI-PI+F2 cancel
all zeros affecting the shape of responses. Therefore the settling
times determined by (21) and (46) may be expected, namely
tPID
s ≥ 26 · 0.015 s ∼= 0.4 s and tPI-PI

s ≥ 40 · 0.015 s = 0.6 s, for
PID+F2 and PI-PI+F2, respectively. As seen from Fig. 13a the
actual settling times are close to the estimates. Table 1 col-
lects them and compares them with those obtained for the dou-
ble zero design [10]. The approximate minimum settling times
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Table 1
Settling times of discrete control structures

Multiple pole Double zero [10]
Controller

MIN EX MIN EX

PID / P-PI 26∆ 0.4 s 45∆ 0.7 s

PI-PI 40∆ 0.6 s 130∆ 2.0 s

(MIN) in terms of ∆ are given, along with the values obtained
in the experiments for ∆ = 15 ms (EX).

The continuous control has been emulated for the shortest
available cycle ∆min = 1 ms. The controllers are tuned for ts =
0.5 s, being actually the average of settling times obtained in the
discrete control (0.4 vs. 0.6 s). Experimental step responses are
presented in Fig. 13b. The responses of the structures without
reference filters exhibit overshoots, as in the case of discrete
controllers. The control structure PID+F1 with the filter (12)
completely eliminates the overshoot. For the PI-PI structure,
the inertial filter

F1,PI-PI(s) =
kI

kPs+ kI
=

1
ts
5

s+1
(54)

is applied, which is equivalent to splitting the position PI into
I and P, as proposed in [10]. However, this filter leaves a few
percent overshoot. To eliminate the overshoot completely, the
following extended filter can be used

F2,PI-PI(s) =
kI

kPs+ kI
· kIV

kPV s+ kIV
=

1( ts
5

s+1
)2 . (55)

All the responses are smooth and settle down according to the
assumed settling time 0.5 s.

Note that for ∆min = 1 ms we may get the shortest settling
time ts = 26 ms∼= 30 ms of the discrete PID servo control pro-
vided by the Beckhoff PLC or other modern PLCs.

The integral actions of the plant and controllers should pro-
vide exact tracking of higher-order reference trajectories. Of
course, the tracking will be error-free only without the reference
filters which, as shown for the ramps in Figs. 14a, b, introduce
unavoidable delays.

Control error responses of continuous structures due to dis-
turbances acting at steady-state are compared in Fig. 15. Al-
though the PI-PI structure suppresses the step and ramp distur-
bance much better, it suffers from a visible limit cycle due to
friction. So in practice a tracking PI-PI controller may switch
into PID control mode while approaching the steady-state.
Guidelines on how to reduce to some extent the effect of friction
on servo behavior can be found in [2, 3].

In practical implementations, so-called real PID algorithm is
most often used with the filtered derivative block, here in the
form kDs/(TDs/D+ 1), TD = kD/kP, to suppress measurement
noise and high-frequency disturbances. In the experiments, two
implementations of the continuous PID with the reference fil-
ter (12) have been compared: 1) basic derivative kDs (PID),
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Fig. 14. Ramp tracking for control structures: a) discrete,
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2) real version as above with D = 5 (PIDR). Note that D = 5
is a default value in a number of industrial controllers. As seen
in Fig. 16, step responses of the position y almost overlap. How-
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ever, the control signal u for the PIDR is a decaying oscillation
due to the increased order of the system and unchanged set-
tings. Since high-resolution encoder is used in the servo, the
oscillations may be easily reduced by increasing D. Neverthe-
less, extension of the pole placement method on arbitrary D in
the real PID remains a subject of future work.
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Fig. 16. Step responses of the servos with ideal and real continuous
PID controllers

7. CONCLUSIONS
New tuning rules for PID and PI-PI servo controllers have been
derived using multiple pole placement approach, as an alter-
native to the root-locus design [10]. The root-locus assumes
real zeros of the PID controller, so it can be converted into the
classical P-PI two-loop structure. This is not the case for the
pole placement PID which has complex zeros, so it must be
implemented in a standard single loop. The new approach ad-
mits twice longer control cycle for the discrete PID and four
times for PI-PI. This in turn implies that twice or four times
shorter settling times can be obtained for the same control cy-
cle. Shorter settling time may be important in the case of high-
performance servos, whereas longer control cycle suits heavily
loaded PLCs executing demanding tasks in parallel. Actually,
the pole placement approach has been motivated by an earlier
IMC solution for a double integrator.

Nomograms for tuning the discrete PID and PI-PI controllers
given a settling time and control cycle are provided. They may
be useful to obtain the settings quickly in practical applications.
However, the design formulas can also be directly implemented
using an IEC 61131-3 engineering software.

Lab experiments have confirmed the feasibility of the pole
placement design. In particular, the smooth shape and settling
time of the step responses have been verified both for continu-
ous and discrete cases, as well as the ability of ramp tracking
and disturbance suppression.

APPENDIX
Following notation from [11], let G denote a plant transfer func-
tion, G̃ its approximation such that G̃ = G̃+G̃− where G̃+ in-
cludes delays and right half-plane zeros, and has unity steady-
state gain. To analyze the robustness of the approximation, an
IMC controller R∗ is defined

R∗ =
1

G̃−
f , (56)

where f denotes a low-pass filter that specifies a closed-loop
transfer function (actually equal to G̃+ f ). The controller R∗ is
designed for a feedback system involving G− G̃ as a place-
holder plant. It can be converted into the standard system with
the original plant G and the controller R, where

R =
R∗

1−R∗G̃
. (57)

In the case of the double integrator and perfect approxima-
tion we have G = ko/s2 = G̃ = G̃− since G̃+ = 1. Taking into
account integral action of the controller, assume the closed-loop
transfer function as

f =
as2 +bs+1
(λ s+1)3 , (58)

so with a triple time constant λ . Using (58) in (56), and
then (56) in (57) gives

R =
1
ko

s(as2 +bs+1)
λ 3s2 +(3λ 2−a)s+(3λ −b)

. (59)

By taking a = 3λ 2 and b = 3λ the controller R becomes of PID
type, namely

R =
3

λ 2ko
+

1
λ 3ko

1
s
+

3
λko

s. (60)
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