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Abstract
Traditionally the aggregate production plan helps in determining the inventory, production,
and work-force, based on the demand forecasts without considering the productivity loss at
a tactical level in supply chain planning. In this paper, we include the productivity loss into
traditional aggregate production plan and the prescriptive analytics technique, linear pro-
gramming, is used to solve this problem of practical interest in the domain of multifarious
businesses and industries. In this study, we discussed two model variations of the aggregate
production planning problem with and without productivity loss, i) fixed work-force, and ii)
variable Work Force. The mathematical models were designated to be solved by using an
open-source python pulp package in order to evaluate the impacts of the productivity loss on
both the models. PuLP is an open-source modeling framework provided by the COIN-OR
Foundation (Computational Infrastructure for Operations Research) for linear and integer
Programing problems written in Python. The computational results indicate that the pro-
ductivity loss has direct impact on the workforce hiring and firing.
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Background and Introduction

Aggregate Production Planning (APP) is a mid-
term capacity planning problem that is used to de-
termine inventory, production, and work-force levels
to meet the changing requirements for a planning pe-
riod, comprising approximately six months to twelve
months (Cheraghalikhani et al., 2019; Demirel et al.,
2018). Usually, the planning period incorporates the
next demand at the peak of the season. The entire
planning period is further divided into a small pe-
riod. For example, a one-year planning period can be
divided into periods of one-half year and two quarter
year. Commonly, physical resources of the company
are supposed to be fixed during the whole planning
period of interest, fulfilling the external requirements
of the planning; the efforts are directed toward the
best utilization of these resources (Shi & Peng, 2001;
Souza, 2014). It is very difficult to assess every phase
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of the production process while maintaining a long
planning period, it is important to aggregate all the
information which has to be processed. The APP tech-
nique is implemented to determine a unit of aggregate
production, like the average item, or in terms of pro-
duction time, volume, weight, or dollar value (Jayaku-
mar, 2017). Plans are dependent on aggregate demand
for one or more aggregate of items. Once the aggre-
gate production plan is made, the constraints are ap-
plied to the production scheduling process thoroughly
to determine the specific quantity of each item which
should be produced accordingly (Shi & Peng, 2001).
Another fundamental phase is to evaluate how much
the plan is profitable or not to give maximum yield
and if there is any productivity loss how we would
be able to tackle this problem by reviewing every as-
pect of the implemented plan (Piper & Vachon, 2001).
This evaluative phase is very significant but the most
people are not interested to resolve this issue of loss
of productivity (Filho et. al., 2010).

It is very difficult to discuss all research papers,
relevant with APP Problems but we focused on to
sum up the reviews of the research papers which
are published in the last decade (Cheraghalikhani
et al., 2019). Silva Filho et. al., (2010) introduced
a managerial decision support system to deal with
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APP, based on an Excel spread sheet. Chaturvedi &
Bandyopadhyay (2015) launched an automated tar-
geted model to develop the resource conservation net-
work that is used in APP and energy supply chain.
Gholamian et al. (2015) developed a model that is
used to highlight the significant aspects of supply
chain production planning, approved by industries.
Jamalnia and Soukhakian (2009) reported a complex
multi-objective non-linear programming model that
was developed for achievement with different priori-
ties by resolving APP problem in a complex environ-
ment (Piper & Vachon, 2001). Some researchers e.g.
(Gilgeous, 1989) criticized the limitation of the exist-
ing methods for solving the APP problem. Stockton
and Quinn (1995) who analyze these limitations by
conducting a literature review. Mathematical mod-
els are the abstraction of real-world problems which
should express the decision maker’s needs; produce
readable and understandable results (VoB et. al.,
2006). The most frequently used important techniques
for APP are i) Trial and error methods ii) Graph-
ical techniques iii) Parametric production planning
iv) Production switching heuristic v) Linear program-
ming vi) Goal programming vii) Mixed-integer pro-
gramming viii) Transportation method ix) Simulation
models. The mathematical programming theoretician
take a great interest in these problems due to the sim-
plicity of the problem statement and complicated so-
lutions (see e.g., (Cheraghalikhani et al., 2019). The
APP problem with and without productivity loss in-
dicates the basic problems in the planning as if there
is α% productivity loss, pointing out the erroneous
planning which brings about α% loss for the company.
There is a need to evaluate all these problems to find
out the basic reasons of the productivity loss of α%
and it is very advantageous to identify the faulty line
of processes which can be improved to reduce the pro-
ductivity loss to a minimum level (Biazzi, 2018). This
study covers a variety of APP model’ characteristics
that include modeling structure, solving approaches
and important issues, as compared to other litera-
ture reviews in this filed which had focused on APP
methodologies but mainly, we focused on the produc-
tivity loss, caused by APP problem with fixed and
variable workforce (Khoshnevis et al,. 1982). Based
on the previous works, we presented the model for
APP problem, related to productivity loss with the
help of linear programming and mixed-integer pro-
gramming as compared to the model of productivity
loss with the help of non-linear programming which
was considered a complicated model (Jayakumar et.
al., 2017). In this research paper, we have set two
main objectives, firstly, to incorporate the productiv-
ity loss in APP problem and make the mathematical

models and secondly, resolve this problem by using
open-source python pulp package. In order to achieve
these objectives, both models of fixed work force and
variable workforce for Aggregate Production Planning
problem with and without productivity loss are dis-
cussed in this research paper. In the fixed workforce
model, hiring and firing of the labor are disallowed
and production rates can fluctuate only by using over
time; whereas, in the variable workforce model, hiring
and firing of the labor are allowed for using overtime
from the regular workforce, moreover, backorders are
allowed.

Problem Description and
Mathematical model

The growing competition in the global market force
the manufacturing companies to manage their pro-
cesses effectively and efficiently. One of the critical
success factors for achieving this is the better

Aggregate Production Plan that may help the com-
panies to compete in the market successfully. The op-
timal Aggregate Production Plan for the company to
minimize the cost of inventory, labour (regular time
and overtime) and produce the desired quantity of
products to gain higher ratio of profitability with and
without productivity loss by handling with all kinds
of expected problems during the production processes
problems.

The two variations of the problem studied are as
follows:

i. Assume hiring and firing are not allowed (i.e.,
fixed workforce problem). Backorders are not al-
lowed.

ii. Assume hiring and firing are allowed (i.e., vari-
able workforce problem). Backorders are allowed.

Both the problem variations are dealt with and with-
out productivity loss to check its impact on the cost.

The following notations are used for the describing
both the linear programming models.
Notations:
ct – Unit production cost in period t (exclude labor

costs)
ht – Inventory carrying cost per unit held in stock

for the period t
πt – Backorder cost per unit for the period t
rt – Cost per manhour in period t of the regular

labor
ot – Cost per man-hour in period t of overtime labor
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dt – Forecasted demand in period t
ht – Cost of hiring one manhour in period t
ft – Cost of firing one manhour in period t
m – Required manhours to produce a product
R̄t – Available total manhours in period t of regular

labour
Ōt – Available total manhours in period t of over-

time labor
I0 – Initial Inventory level of the product
P – Fraction of regular hours allowed as overtime
T – Time horizon in periods
α – Productivity Loss

Model A: Fixed work force model

Decision Variables:
Xt – Production quantity in period t
It – Inventory in period t
Rt – Manhours of regular labor used during period

t

Ot – Manhours of overtime labour used during pe-
riod t

The objective (1) is to minimize the production, in-
ventory holding and labour (i.e., regular and overtime
man-hours) costs.

T∑
t=1

[ctXt + htIt + rtRt + otOt] . (1)

The well known Inventory-Balancing constraint (2)
make sure that period t demand must be fullfil. In
otherwords, sum of period (t− 1) inventory and pro-
duction quantity must be equal to leftover inventory
and demand of period t.

Xt + It−1 − It = dt ∀t. (2)

The constraint (3) make sure that total production
time of the product must be equal to the available
regular and over time in periods t (i.e., capacity of
the period t).

mXt − (Rt +Ot) = 0 ∀t. (3)

Using the constraints (4) and (5), upper bounds on
regular and over production time is applied.

0 ≤ Rt ≤ R̄t ∀t, (4)

0 ≤ Ot ≤ Ōt ∀t. (5)

Model B: Variable work force model

Decision Variables:
Xt – Production quantity in period t
I+t – Inventory in period t
I−t – Back ordered quantity in period t
It – Inventory in period t
Rt – Manhours of regular labor used during period

t

Ot – Manhours of overtime labor used during period
t

Ht – Manhours of regular workforce hired in period
t

Ft – Manhours of regular work force fired in period
t

The objective (6) is to minimize the total production,
inventory holding, backorder, labour (i.e., regular
and overtime man-hours), hiring and firing costs.

T∑
t=1

[
ctXt + htI

+
t + πtI

−
t + rtRt+

+ otOt + htHt + ftFt

]
. (6)

The Inventory-Balancing with backorders constraint
(7) make sure that period t demand must be fullfil.

Xit + Ii+,t−1 − Iit+−Ii−,t−1 + Iit− = dit ∀i, t. (7)

Constraint (8) is same as constraint (3) for periods t.

mXt − (Rt +Ot) = 0 ∀t. (8)

Constraint (9) makes sure the availability of the re-
quired regular time enough to produce the product.
Whereas constraint (10) applies the upper bound on
the overtime production.

Rt −Rt−1 −Ht + Ft = 0 ∀t, (9)

Ot − pRt ≤ 0 ∀t. (10)

Model A and B with productivity loss

The APP problem with productivity loss is similar
to the problems which are mentioned above but these
problems are also different from the above-mentioned
problems which are presented without productivity
loss while these are demonstrated with productivity
loss. In both model’s problem the one big difference
is in the 2nd constraint (Time Required to produce
products), if the productivity loss is 10% then in the
2nd constraint (mXt − (1− α) (Rt +Ot)) = 0) the
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value of (1− α) is 0.90. It is because we consider the
10% regular time and overtime labor hour is giving
loss to the company. Similarly, constraint changes for
20% to 50% with the α value 0.80 to 0.50.

Computational Study

We use the numerical data as shown below (Table 1)
in the table to conduct the computational experiment
by using python pulp package (see Appendices A and
B). We perform the computational work on HP Elite-
Book Workstation on Windows 10 Using anaconda
navigator: python 3.0 with 8 Gb RAM and 2.70 GHz
processor.

Table 1
Data set

Jan Feb Mar Apr May Jun

Demand 110 110 120 210 160 90

Unit production
cost 8 7 7 9 6 9

Unit holding cost 2 5 5 3 4 3

Unit regular labor
cost 18 17 19 17 15 17

Unit overtime
labor cost 23.5 24.5 28 28 23.5 23.5

Available man
hour R labour 130 140 150 160 110 110

Available man
hour O labour 40 50 40 40 40 40

Unit backorder
cost 15 20 25 30 25 15

Hiring cost 22 22 22 22 22 22

Firing cost 20 20 20 20 20 15

Results and discussion: Model A & B
with and without productivity loss

Table 2 shows the total minimized cost without and
with 10% to 50% productivity loss for both the mod-
els. The results indicate that the loss of productivity
has negative impact on the total cost. In other words,
as the productivity loss increases the total cost of the
aggregate production plan also increases. For exam-
ple, the total aggregate production plan cost with-
out productivity loss is 20456.0 for model-A, that is
less than the value of production with 50% produc-
tivity loss that is 41651.0. Similar results produced
by the model-B; the total aggregate production plan

cost without productivity loss is 24382.0 that is less
than the value of production with 50% productivity
loss that is 41573.

Table 2
Model A & B Total Cost with and without productivity

loss

Without
Productivity With Productivity Loss

Loss 10% 20% 30% 40% 50%

Model – A: Fixed work force model

20486.0 23572.4 25749.5 29661.1 34667.6 41651.0

Model – B: Variable work force model

24382.0 26345.1 28799.0 31900.0 35945 41573

The comparative analysis of both models with and
without productivity loss are discussed here with the
help of figures which are displayed below on the basis
of cost. As mentioned earlier that the key decisions
in aggregate production plan are production quan-
tity, inventory and workforce. The Figure 1 shows that
there is no significant impact on inventory cost due to
productivity loss in model-B. Because model-B con-
sidered variable workforce but model-A not, therefore
the impact of the productivity loss can be observed on
inventory cost while considering model-A. So, the im-
pact of productivity loss can be handled while having
large inventory in fixed workforce condition (model-
A) compare to variable workforce (model-B) which
results high inventory cost.
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Fig. 1. Cost analysis of inventory with and without pro-
ductivity loss

Whereas Figure 2 shows that the cost of hiring start
increasing as the productivity loss increases. Because
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productivity loss has direct impact on the production
capacity which can be handled either by improving
the quality of the production process or through hir-
ing more workforce in order to meet the customer de-
mand. In other words, the loss of productivity has
direct impact on quantity produced by the manufac-
turer.
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Fig. 2. Cost Analysis of Hiring and Firing with
and without productivity loss

Conclusions

On the basis of the results of the computational
experiments and logical discussions in this research-
oriented study that the evaluation of the productiv-
ity is indispensable for demonstrating the aggregate
production plan which helps the production units of
the firms in indicating the particular reasons or fault
which is causing the high APP total cost. The APP
models with and without loss of productivity are the
significant tools to identify such problems and reduce
the impact of the loss of productivity at the place
of the production unit. In this way, the APP models
would be helpful to minimize the cost of production
which is increased with the loss of productivity.

Appendices

(A)

Python pulp package: Codes
# Import Library

from pulp import *
# Lsit (TimePeriods from january to june)

t = [0,1,2,3,4,5,6]

# Assigning the variable
Xt = LpVariable.dicts("Quantity Produced", t, 0)
It = LpVariable.dicts("Inventory", t, 0)
Rt = LpVariable.dicts("R_Labor Used", t, 0)
Ot = LpVariable.dicts("O_Labor Used", t, 0)

# Parameters and Data
demand = {1:110, 2:110, 3:120, 4:210, 5:160, 6:90}
# Demand data
UPC = {1:8, 2:7, 3:7, 4:9, 5:6, 6:9}
# Unit Production Cost (Excluding Labor)
UHC = {1:2, 2:5, 3:5, 4:3, 5:4, 6:3}
# Unit Holding Cost
URLC = {1:18, 2:17, 3:19, 4:17, 5:15, 6:17}
# Unit Regular Labor Cost
UOLC = {1:23.5, 2:24.5, 3:28, 4:28, 5:23.5, 6:23.5}
# Unit Overtime Labor Cost
R_MH = {1:130, 2:140, 3:150, 4:160, 5:110, 6:110}
# Available Man-hours R
(Regular time) Labor
O_MH = {1:40, 2:50, 3:50, 4:40, 5:40, 6:40}
# Available Man-hours O (Overtime) Labor

# Setting the Problem
prob = LpProblem("Aggregate Production
Planning: Fixed Work Force Model", LpMinimize)

# Create the LP object, set up as a
MINIMIZATION problem

prob + = lpSum(UPC[i]*Xt[i] for i in t[1:])
+lpSum(UHC[i]*It[i] for i in t[1:])
+lpSum(URLC[i]*Rt[i] for i in t[1:])
+lpSum(UOLC[i]*Ot[i] for i in t[1:])

# Constraints
It[0] = 4 #Inventory in Dec

for i in t[1:]:
prob + = (Xt[i] + It[i−1] − It[i]) = demand[i]
# Inventory-Balancing Constraints

for i in t[1:]:
prob + = Xt[i] − 1*(Rt[i] + Ot[i]) = 0
# Time Required to produce products

for i in t[1:]:
prob + = Rt[i] <= R_MH[i]
# Regular Time Required

for i in t[1:]:
prob + = Ot[i] <= O_MH[i]
# Over Time Required

# View the model
print(prob)

# Solve the model:
prob.solve()
print("Solution Status =", LpStatus[prob.status])

# Print the solution of the Decision Variables
for v in prob.variables():

if v.varValue>0:
print(v.name, "=", v.varValue)

# Print Optimal value
print("Total Production Plan Cost = ",
value(prob.objective))
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(B)

# Import Library
from pulp import *

# Lsit (TimePeriods)
t = [0,1,2,3,4,5,6]

# Parameters and Data
demand = {1:110, 2:110, 3:120, 4:210,

5:160, 6:110}
# Demand data
UPC = {1:8, 2:7, 3:7, 4:9, 5:6, 6:9}
# Unit Production Cost (Excluding Labor)
UHC = {1:2, 2:5, 3:5, 4:3, 5:4, 6:3}
# Unit Holding Cost
UBC = {1:15, 2:20, 3:25, 4:30, 5:25, 6:15}
# Unit Back order cost
URLC = {1:18, 2:17, 3:19, 4:17, 5:15, 6:17}
# Unit Regular Labor Cost
UOLC = {1:23.5, 2:24.5, 3:28, 4:28, 5:23.5, 6:23.5}
# Unit Overtime Labor Cost
HC = {1:22, 2:22, 3:22, 4:22, 5:22, 6:22}
# hiring cost
FC = {1:20, 2:20, 3:20, 4:20, 5:20, 6:15}
#firing cost

# Setting the Problem
prob = LpProblem("Aggregate Production
Planning: Variable Work Force Model",
LpMinimize)

# Decision Variables
Xt = LpVariable.dicts("Quantity Produced",
t, 0, None, LpInteger)
It = LpVariable.dicts("Inventory", t, 0)
Bt = LpVariable.dicts("Backorder", t, 0)
Rt = LpVariable.dicts("R_Labor Used", t, 0)
Ot = LpVariable.dicts("O_Labor Used", t, 0)
Ht = LpVariable.dicts("Labours Hired", t, 0)
Ft = LpVariable.dicts("Labours Fired", t, 0)

# Objective Function
prob + = lpSum(UPC[i]*Xt[i]
for i in t[1:]) + lpSum(UHC[i]*It[i]
for i in t[1:]) + lpSum(UBC[i]*Bt[i]
for i in t[1:]) + lpSum(URLC[i]*Rt[i]
for i in t[1:]) + lpSum(UOLC[i]*Ot[i]
for i in t[1:]) + lpSum(HC[i]*Ht[i]
for i in t[1:]) + lpSum(FC[i]*Ft[i]
for i in t[1:])

# Constraints
It[0] = 4
Rt[0] = 0
Bt[0] = 0

for i in t[1:]:
prob + = (Xt[i] + It[i−1] − It[i] −
Bt[i−1] + Bt[i]) = demand[i]
# Inventory-Balancing Constraints

for i in t[1:]:
prob + = Xt[i] − 1*(Rt[i] + Ot[i])
<= 0
# Time Required to produce products

for i in t[1:]:
prob + = Rt[i] − Rt[i−1] − Ht[i] + Ft[i] = 0
# Regular Time Required
for i in t[1:]:prob + = (Ot[i] − 0.25*Rt[i]) <= 0
# Regular Time Required

# Solving the problem
prob.solve()
print("Solution Status =", LpStatus[prob.status])

# Print the solution of the Decision Variables
for v in prob.variables():
if v.varValue>0:
print(v.name, "=", v.varValue)

# Print Optimal solution
print("Total Production Plan Cost = ",
value(prob.objective))
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