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Abstract. Computational intelligence (CI) can adopt/optimize important principles in the workflow of 3D printing. This article aims to examine
to what extent the current possibilities for using CI in the development of 3D printing and reverse engineering are being used, and where there
are still reserves in this area. Methodology: A literature review is followed by own research on CI-based solutions. Results: Two ANNs solving
the most common problems are presented. Conclusions: CI can effectively support 3D printing and reverse engineering especially during the
transition to Industry 4.0. Wider implementation of CI solutions can accelerate and integrate the development of innovative technologies based
on 3D scanning, 3D printing, and reverse engineering. Analyzing data, gathering experience, and transforming it into knowledge can be done
faster and more efficiently, but requires a conscious application and proper targeting.
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1. INTRODUCTION
We need additive manufacturing (three-dimensional printing,
3D printing) because it represents a transformational approach
to industrial production that enables the creation of lighter,
stronger parts and systems in an Industry 4.0 environment.
When you create an object using traditional methods, it is often
necessary to remove material by milling, machining, carving,
shaping, or other means, whereas additive manufacturing adds
material to the object being created. This is because 3D print-
ing uses computer-aided design (CAD) software or 3D object
scanners to guide the equipment for depositing material layer-
by-layer in precise geometric shapes [1, 2].

Technological advances since the 1980s have been made pos-
sible by the transformation of processes from analogue to dig-
ital. Communication, imaging, architecture, and engineering
have all undergone a digital revolution, making the next rev-
olution possible: 3D printing brings digital flexibility and effi-
ciency to manufacturing processes. Because of this, incremen-
tal manufacturing such as 3D printing requires a lot of expertise
to produce parts. To further increase the efficiency of the manu-
facturing process, the abovementioned problems must be solved
by computational intelligence (CI). CI can adopt/optimize im-
portant rules in 3D printing workflows. Faster and smarter al-
gorithms will reduce the manual process performed by humans.
CI will enable access to large datasets (big data) to better man-
age 3D technologies: 3D scanning, 3D printing, and reverse en-
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gineering. CI is therefore a natural solution to problems in the
digital world [1, 2].

The key issues within 3D printing are as follows:
1. Advantages:

• improved performance,
• complex geometries,
• simplified production,
• rapid prototyping,
• easy duplication.

2. Disadvantages:
• complex process,
• a vast amount of knowledge needed,
• choice of technology and its rationale (need for multifac-

torial analysis),
• slow individual production,
• environmental issues.

The disadvantages of 3D printing are problems to be solved
for CI applications. This is especially true for improving the
main printing steps using knowledge from different disciplines:
materials science, 3D printer technology, design engineering,
and software engineering. To solve them creatively, the follow-
ing are required above all: knowledge of material properties
and behavior both during printing and within the object, se-
lection of material and 3D printing technology for a specific
application, design guidelines for a specific printed part, and
optimization of parameters [1, 2]. Not only the geometrical ac-
curacy and mechanical properties must be considered, but also
the visual aspects, surface texture and color, repeatability, pro-
duction time, and costs [3]. Sometimes factors that are difficult
to predict are an obstacle, e.g. the proposed material complies
with all requirements, but the delivery time is too long in the
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lean management model. Many technological issues should be
considered in relation to 3D printing, which are related to the
specificity of the application area, such as aviation, automotive,
health care, product development, etc. First and foremost, there
are many technologies:
• sintering,
• stereolithography (SLA),
• direct metal laser sintering (DMLS),
• direct metal laser melting (DMLM),
• electron beam melting (EBM)

related to many processes:
• powder bed fusion,
• binder jetting,
• directed energy deposition,
• material extrusion,
• material jetting,
• sheet lamination,
• vat polymerization

and materials:
• thermoplastics: acrylonitrile butadiene styrene – ABS,

polylactic acid – PLA/PLA+, polycarbonate – PC,
polyvinyl alcohol – PVA,

• metals: gold, silver, stainless steel, titanium, aluminum,
• ceramics: zirconia, alumina, tricalcium phosphate, pow-

dered glass,
• biochemicals: bio-inks, silicon, calcium phosphate, and

zinc.
This article aims to examine to what extent the current pos-

sibilities for using CI for the development of 3D printing and
reverse engineering are being used, and where there are still re-
serves in this area.

2. METHODOLOGY
A literature review is followed by research on CI-based solu-
tions applicable in the optimization of 3D printing decision-
making.

The MATLAB 16.0 software was used for artificial neural
network (ANN) training purposes. Input variables were scaled
using the same maximum and minimum values from the data in
the sample. The initial values of the network weights were esti-
mated as equally random values from –1 to 1. To prevent devia-
tions of the starting weight, randomly selected from the initial-
ization weight, they were unified. Two different stopping points
were considered in the learning process: after 1000 iterations
and 5000 iterations. The targeted MSE level was monitored.
The minimum number of inputs and outputs and the number
of neurons in the hidden layer were each time experimentally
investigated to find the minimum network load.

The results were stored in an MS Excel spreadsheet and ana-
lyzed using the Statistica 13 software.

3. RESULTS
According to the literature review, CI can help in this way: the
machine itself can solve the problem without human interven-
tion, based on previous data and experience. This is particu-

larly interesting in combination with 3D printing technologies,
as it may increase 3D printer performance by reducing the risk
of error and facilitating automated production. Importantly, we
do not have many years to develop and experiment slowly. We
must do it quickly and precisely.

The main CI-based support areas are as follows:
• process analysis and control (e.g. for advanced functions),
• selection of materials,
• development of new materials,
• further parametric optimization,
• energy optimization,
• reduced number of errors due to technical inspection for the

entire production cycle in Industry 4.0,
• automation of the entire 3D printing process: from the cre-

ation of the model in the form of a CAD file through its final
printing, to preparation for printing in a cutting program,

• predicting quality,
• alarmed impurities from the material and air,
• removal of impurities from the material and air.

We considered four base cases: two of them are the result of
our own research (Case 2, Case 3) and two are the result of
literature review (Case 1, Case 4).

3.1. Case 1: Automating of the manual tasks
Artificial intelligence is widely used in the research, planning,
optimization, and control of intelligent, efficient, high quality,
mass production, service-oriented 3D printing processes [4].

CI can provide automation for some manual tasks, such
as data collection, construction planning, and monitoring of
costs [5, 6]. CI can be used to optimize production capacity by
improving machine utilization, and scheduling production or-
ders according to availability (but see the advantages and disad-
vantages of lean management such as delays and supply short-
ages in pandemic conditions) [7]. Material selection can also
be automated with CI: depending on the requirements of the
printed part, the software provides recommendations on the ma-
terial to be used for the best result [8]. Depending on the task,
we can reduce the average 3D print preparation process from 30
minutes to even 5–30 seconds. By reducing this time, we will
increase the use of the printer, eliminate errors, and reduce the
number of iterations [9, 10]. In this way, the use of CIs reduces
the complexity of the traditionally manual process and provides
better results. Previously, model molds were made by hand,
hand-polished, epoxy resin cast or milled from wood. This was
an arduous process which can take several working days de-
pending on the complexity of the product. This procedure has
changed radically in recent years thanks to digitization [11,12].
Master forms are now designed using computer-aided design
(CAD) and manufactured from polyurethane blocks on CNC
milling machines.

To sum up, artificial intelligence is widely used in the re-
search, planning, optimization, and control of intelligent, effi-
cient, high quality, mass production, service-oriented 3D print-
ing processes. The main research effort on AI applications here
is focused on several main steps:
• checking the printability of 3D objects before starting the

print job,
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• selecting material/materials and parameters of the printing
process, considering the durability, energy, or environmen-
tal impact through the amount of waste or emission of harm-
ful particles into the atmosphere,

• optimizing and accelerating prefabrication slicing through
parallel slicing algorithms,

• optimizing path planning,
• demand matching and resource allocation for providing on-

demand 3D printing services to customers, and remote ac-
cess to a collection of shared resources (including cloud
computing),

• detecting product defects at every stage of production,
• increasing the security of the production cycle and the man-

ufacturer’s know-how by monitoring production and in-
creasing its resistance to cyber attacks,

• a virtual twin makes it possible to predict future threats,
both to the product itself and to the equipment running the
production line,

• product lifecycle analysis, including recyclability, com-
pletes the picture.

The aforementioned approach enables artificially intelligent op-
timization of 3D printing while meeting multiple indicators/
criteria, lowering the design and product complexity threshold,
accelerating prefabrication, real-time control, increasing safety,
and defect detection throughout the production cycle within the
Industry 4.0 paradigm.

3.2. Case 2: Process analysis
The processing of new, high-performance materials is very
complex and requires the tuning of all process parameters. In
this way, we monitor the 3D printing process using various sen-
sors. Using CI, we evaluate data flow and identify hidden rela-
tionships that are not recognizable to people. This is the advan-
tage of CI: it can process very large amounts of data quickly,
which is too burdensome for people. This work enables sci-
entists to process complex alloys and predict the properties of
materials. The printability of the facility can be analyzed before
any process begins (and incurring production costs). We can
also foresee the quality of parts and control the process to avoid
printing errors and save time and material. This way, 3D print-
ing departments will be able to effectively control their produc-
tion processes and guarantee the precision and quality of manu-
factured parts. This is also becoming increasingly important as
the industry moves into live finished parts. CI can analyze both
the geometry and object color data, tracking the geometry and
textures using a scanner, and color capture also makes it easier
to, e.g., create photorealistic visuals at the design stage.

Takagishi and Umezu solved the problem of removing layer
grooves in a 3D fused deposition modeling (FDM) printer us-
ing 3D-chemical melting finishing (3D-CMF), in which a pen-
shaped device is filled with a chemical substance capable of
dissolving the materials used to build structures printed in 3D.
In this way, the convex parts of the layer grooves on the surface
of the printed 3D structure are dissolved, which in turn fills the
concave parts, ensuring safety, selectivity, and stability [13].

Modern stereolithographic devices use single-wavelength
light to initiate in-plane polymerization. However, single wave-

length irradiation causes a loss of polymerization limitation by
the accumulation of exposure to non-target light. To overcome
this disadvantage, three-color (UV, red and blue light) direct-
recording photolithography was reported in which high conver-
sion of blue light (without UV light), enhanced by pre-initial
irradiation with red light, and UV light effectively reduced the
limitation of thickness and for high printing speeds [14].

Thin shells that do not have a large volume to support or ab-
sorb the effects of differences in properties are particularly vul-
nerable to the mesostructure of 3D printing materials and nat-
ural cavities, which affects their structural stability. However,
they are very useful, providing a good strength-to-weight ra-
tio in many applications, particularly in aviation and structural
design. Traditional finite element analysis (FEA) solutions for
thin-walled buckling problems have assumed that the coating
is uniform and free of defects, which is not true for 3D print-
ing processes described in ordinary materials (acrylonitrile-
butadiene-styrene (ABS) and polylactic acid) [15].

The influence of the thermal process called ironing on the
surface, as well as on the mechanical and dimensional proper-
ties of ABS parts produced by the fused deposition modeling
method (FDM) is based on the elimination of stress concentra-
tion factors after treatment (in the melting process), which can
increase the deflection almost twofold at the break and maxi-
mum tensile strength of ABS parts produced by FDM. It can
reduce the Ra factor of ABS parts up to 60% and the level of
distortion by 33% [16].

Processing techniques used to recycle thermoplastic poly-
mers with different types of reinforcement, especially in in-
cremental (AM) applications, include primary (1◦), secondary
(2◦), tertiary (3◦), and quaternary (4◦) processing of polymer
materials from a recycling perspective, can raise the standards
of industrial processing through inexpensive 3D printing tech-
nology [17].

Samples of the effect of the most common technological
problems in 3D printing are shown in Figs. 1–11, including:
• stringing/oozing/whiskers, hairy prints – when small strips

of plastic remain on the 3D printed model (Fig. 1, Fig. 2),
• over-/under-extrusion – when the printer is unable to supply

the exact amount of the material (Fig. 3 and Fig. 4, respec-
tively),

• weak infill – when the print speed is too high (Fig. 5),
• scars, scratches, or drips on the top surface of the printed

object – due to, e.g., incorrect temperature, flow rate, or
printing speed as well as incorrect slicer profile (Fig. 6),

• outer shell not sticking to inner shell – due to low adhesion
of the materials (Fig. 7),

• too thin/high layers (Fig. 8 and Fig. 9, respectively),
• X or Y axis shift/layer shift – when the extruder or bed

moves during printing and continues in another area of the
build plate (Fig. 10),

• failure to feed filament or it stops mid-print (Fig. 11).
The above-mentioned wide spectrum of problems can be

solved using more exact AI-controlled 3D printing procedures.
Automatic computational analysis of network data in real or

near real time is a practical implementation of the IoT paradigm
(layers: things-network-cloud) and Industry 4.0 (collection of
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Fig. 1. Most common problems in 3D printing:
stringing or oozing

Fig. 2. Most common problems in 3D printing:
stringing or oozing

Fig. 3. Most common problems in 3D printing:
over-extrusion

Fig. 4. Most common problems in 3D printing:
under-extrusion

sensor data, construction of virtual twins of the production line
and products, technical control at each stage). For the above-
mentioned reasons, there is a need to reconcile an individual

Fig. 5. Most common problems in 3D printing:
weak infill

Fig. 6. Most common problems in 3D printing: scars
or drips on the top surface

Fig. 7. Most common problems in 3D printing: outer
shell not sticking to the inner shell

approach to the 3D printing of objects with simultaneous stan-
dardization of the procedures of design, manufacturing, mon-
itoring of equipment operation, and life cycle control of 3D
printed products.

ANNs, as an optimization and prediction system, provide op-
timal parameter selection while increasing the efficiency of the
3D printing planning process. In this context, ANNs are used
to explore, model and predict the relationships between input
and output datasets, reflecting non-linear relationships between
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Fig. 8. Most common problems in 3D printing:
too thin layers

Fig. 9. Most common problems in 3D printing:
too high first layers

Fig. 10. Most common problems in 3D printing:
X or Y axis shift

Fig. 11. Most common problems in 3D printing: failure
to feed filament or stops mid-print

them that are difficult to capture using traditional analysis meth-
ods. Connections between neurons in successive ANN layers
(input, hidden, output) are strengthened by similarities in the
measured datasets, and complex, incomplete, or noisy datasets
are not an obstacle. The aggregation of input data and the trans-
fer function of the hidden layer are used to calculate a response
(estimate), thanks to a learning process that is more accurate,
sensitive, and specific than traditional statistical procedures.
The new optimization decision rules are valid for the vast ma-

jority of 3D printing materials, technologies, and their features,
and the networks are learned as new ones emerge. By inferring
and predicting hidden causal relationships between large sets of
properties, it is possible to find optimal and innovative ways to
solve technological problems.

A relatively simple artificial neural network (ANN) based
on multilayer perceptron, called MLP-5-17-9 (Fig. 12, Table 1)
may solve similar problems, achieving (after 1000 epochs):
• MSE for the data in the training set: 0.02.
• Quality (learning): 0.8911.
• Quality (testing): 0.9134.

Fig. 12. Simple neural network optimized to solve problems
with the choice of 3D printing process features

Table 1
Characteristics of used inputs and outputs

Number and
kind of input

data

Number and kind
of output data

Number of datasets
and source of datasets

(sensors used to
collect them)

(5)
maximum

tensile force
part no. 1

x dimension
y dimension
z dimension

(9)
layer height

shell thickness
bottom thickness

top thickness
fill density
print speed

bed temperature
printing temperature

second nozzle temperature

(110)
datasets taken directly
from the software of

the 3D printer

Datasets from industrial and research practice with 3D print-
ers were used to teach the neural networks. The datasets
were initially divided into three groups: learning (70% of the
dataset), testing (20% of the dataset), and validation (10% of
the dataset).

In the preparation process, the input values were rescaled to
values within ranges of the same maximum and minimum val-
ues. In addition, the initial values of the network weights were
pre-estimated, normalized, and set between –1 and 1. This pre-
vented bias in the weights when the network was started.

The MATLAB 16.0 (MathWorks) software, including the
Statistics and Machine Learning Toolbox and the Deep Learn-
ing Toolbox, was used to develop, test, and optimize the pro-
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posed ANN-based solution. The structure of the ANN was op-
timized using a genetic algorithm (GA). More neurons were
needed in the hidden layer of the network due to the complex
connections to the output layer. Our experience shows that we
can achieve similar results using MAXNET ANN.

Linking 3D printing technology with parameter selection
support in the ANN model facilitates easier prediction and
monitoring of energy consumption for different types of 3D
printers and the integration of artificially intelligent analysis
and prediction of energy consumption into Industry 4.0 pro-
cesses using 3D printing. This is because the good quality
(0.8911, 0.9134), low MSE (0.02) (Table 2), and short com-
putation time facilitate the aforementioned optimization of the
3D printing process in real or near real time. The actual effects
of the aforementioned optimization are observed from the first
moments of using the improved process.

Table 2
Selected ANN quality assessment (bolded is the best)

Network name
Quality

(learning)
Quality
(testing)

MSE

MLP-5-13-9 0.8832 0.8977 0.04

MLP-5-15-9 0.8856 0.9011 0.03

MLP-5-17-9 0.8911 0.9134 0.02

MLP-5-20-9 0.8901 0.9034 0.03

MLP-5-25-9 0.8847 0.9001 0.03

3.3. Case 3: Material choice
The processing of new, high-performance materials is very
complex and requires the tuning of all process parameters. In
this way, we monitor the 3D printing process using various sen-
sors. Using artificial intelligence, we assess the data flow and
identify hidden relationships that are not recognizable to peo-
ple. This is where the advantage of artificial intelligence lies:
it can process very large amounts of data quickly, which is too
burdensome for people. Thanks to this work, scientists can pro-
cess complex alloys and preserve the properties of the materials.
CI can combine many (up to 10) materials with a vision system
that it uses in machine learning processes.

An innovative approach to the manufacture of flexible and
expandable organic thermoelectrics includes printed thermo-
electric polyurethane nanocomposites/multilayer carbon nan-
otubes. The 3D printing of such components using flex-
ible, stretchable, and electrically conductive thermoplastic
polyurethane (TPU) / multilayer carbon nanotubes (MWCNT)
for 3D printing (TPU granules and two different types of
MWCNT, namely NC-7000 MWCNT (NC-MWCNT) and
Long MWCNT (L-MWCNT)) has been performed using melt
deposition modelling (FDM). All samples printed in 3D showed
anisotropic electrical conductivity and the same Seebeck factor
in the print and cross-print directions. TPU/MWCNT can act
as an excellent organic thermoelectric material for 3D printed
thermoelectric generators (TEG) for potential large-scale en-
ergy storage applications [18].

Traditional methods of repairing bone defects have many dis-
advantages, and 3D bio-indication techniques offer new pos-
sibilities for designing and manufacturing bone implants for
patients. The influence of composite materials, such as bioce-
ramics, is important for resistance to polymer degradation of in
vivo media. The new nano-architecture of hydroxyapatite (HA)
in polymeric base material such as PLA can improve bone 3D
printing properties [19].

A relatively simple artificial neural network (ANN) based on
a multilayer perceptron, called MLP-8-24-1 (Fig. 13, Table 3),
may solve similar problems, achieving (after 1000 epochs):
• MSE for the data in the training set: 0.01.
• Quality (learning): 0.9143.
• Quality (testing): 0.9303 (Table 2).

Table 3
Characteristics of used inputs and outputs

Number and
kind of input data

Number and
kind

of output data

Number of datasets
and source of datasets

(sensors used to
collect them)

(8)
tensile strength

bending strength
modulus of elasticity

in bending
part no. 7

x dimension
y dimension
z dimension

weight

(1)
suggested

material type

(73)
datasets taken directly
from the software of

the 3D printer

Suggested 
material type 

Required feature 1 
Requied feature 2 

Required feature 3 
Kind of part 
x dimension 
y dimension  
z dimension 

weight 

. 

. 

. 

Input layer 
8 neurons 

Hidden layer 
24 neurons 

Output layer 
1 neuron 

X1 

X8 

Y1 

. 

. 

. 

. 

. 

. 

Fig. 13. Simple neural network optimized to solve problems
with material (filament) choice

In our study, we used real datasets from industrial and re-
search practice using 3D printers in normal operation (i.e. we
did not develop sets of standardized tasks in the form of print-
ing sample parts that might need to be introduced in subsequent
stages of the research). The aforementioned sets were divided
into three groups: 70% (teaching), 20% (testing) and 10% (val-
idation). The input parameters were rescaled to the same maxi-
mum and minimum values, and the initial values of the network
weights were estimated and randomly selected at initialization
from –1 to 1 to prevent bias in the weights at network start-up.

6 Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 1, p. e140016, 2022



Computational intelligence in the development of 3D printing and reverse engineering

The MATLAB 16.0 (MathWorks) software was used for
the ANN work, including the Statistics and Machine Learn-
ing Toolbox and the Deep Learning Toolbox. The structure
of the ANN was optimized using a genetic algorithm (GA).
Our experience shows that we can achieve similar results us-
ing MAXNET ANN.

Even today, environmental pollution from plastic waste (both
solid and fine air and water pollutants) which is the main mate-
rial used for 3D printing, is already a major problem due to its
lack of biodegradability and only partial recycling. It is reason-
able to assume that the widespread use of 3D plastic printing
technology should incorporate sustainability principles, includ-
ing more economical use of materials (for printing and auxiliary
materials, e.g. support materials and fluids for cleaning mod-
els), optimization of energy consumption, and safe collection
and use of waste, and lifecycle monitoring and recycling of the
3D printed products themselves. Better matching of materials
and properties of 3D printed products will allow them to be bet-
ter suited to customers’ needs, used longer, life cycle controlled,
and recycled. The research results in easier prediction and eval-
uation of the selection of properties and material types, with
short computation time, very good quality (0.9143, 0.9303),
and low MSE (0.01), allowing optimization of the 3D printing
process in the real world (Table 4). The above AI-based solu-
tions can significantly contribute to the understanding of life
cycle mechanisms and recycling of materials used in 3D print-
ers as the beginning of the necessary research. The processes
of control and optimization of 3D printing products are subject
to multifactorial analysis and therefore require a systemic ap-
proach, urgent diagnosis, monitoring, and effective solutions.

Table 4
Selected ANN quality assessment (bolded is the best)

Network name
Quality

(learning)
Quality
(testing)

MSE

MLP-8-16-1 0.8892 0.8997 0.02

MLP-8-20-1 0.8947 0.9123 0.02

MLP-8-24-1 0.9143 0.9303 0.01

MLP-8-34-1 0.9093 0.9212 0.01

MLP-8-42-1 0.8912 0.9043 0.02

3.4. Case 4: Unidentified potential
Unidentified potential lies directly in troubleshooting and
heuristic problem-solving. We aim to produce an automatic CI-
based problem-solving guide for the most common problems
with 3D printing (helpdesk bot). The further indirect, unidenti-
fied potential of the application of CI in 3D printing also lies in
three main areas:
• medical applications of 3D printing [20, 21], both from

polymeric materials (for educational purposes, testing
(neuro) surgical access paths or implants and soft tissue
strengthening with medical supplies), metal powders (pros-
theses), and bio-ink (printing of innervated and vascular-
ized skin, parts of organs such as the heart [22, 23], mus-

cles [24,25]), as far as bioinspired labs-on-a-chip and asso-
ciated systems [26–29]

• communications (including emerging IoT and Industry 4.0
abilities supported by AI) [30–32]

• safety of data and systems – even advanced technologies
such as iris, facial, and finger vein recognition may not guar-
antee data security when faced with a 3D reconstruction of
features based on medical imaging and 3D printing [33]

The sustainability of the 3D printing processes may be also
supported by CI-based solutions – such solutions should be
built into 3D printers in the future.

4. DISCUSSION
Examples from the literature and our own ANN-based ap-
proaches have shown that CI-based problem-solving in 3D
printing is possible. Currently, it is not yet a common approach,
but the development of 3D printing and the increase in com-
plexity of these technologies and materials should significantly
increase the popularity of CI-based decision support.

Even the proposed AI solutions with relatively simple struc-
tures (MLP-5-17-9 and MLP-8-24-1) are effective and can sig-
nificantly contribute to the understanding of material and fea-
tures selection in 3D printers, and their automatic or semi-
automatic optimization. Incorporating the above-mentioned
functionalities into Industry 4.0 systems involving 3D printing
is essential to developing effective strategies for material prop-
erties optimization, life cycle control, and then environmental
impact assessment and control, and prevention of environmen-
tal risks associated with industrial 3D printing and generated
pollution.

The advantages of the proposed solutions are their simplicity,
very short computation time allowing their use in real-time sys-
tems, good quality, and low MSE (0.01–0.02 for both). Their
performance is progressing in the desired direction of better
product personalization.

The proposed CI-based software is effective, but in the pro-
posed scope of material and feature selection, it does not re-
place but only complements existing 3D printing software solu-
tions. This involves not only the development of new 3D print-
ing technologies, but also novel software, and new materials
with improved properties and equipment operating conditions.

Written knowledge, experiences, and observations have be-
come a structured process, with standardized procedures and
methods for sharing with subsequent generations of scientists,
practitioners, and new trainees. At the end of the 20th century,
many innovative processes, analyses, as well as the exchange of
knowledge and experience have become highly dependent on
technology: electronic datasets, ICT for information exchange,
3D printing, sensors, effectors, CI algorithms, decision support
systems, etc. Moreover, technology has started to influence de-
cisions and the course of actions (within business intelligence
and strategic planning). Advanced technologies, such as CI,
will start a real era of expanded capabilities in many areas.

Directions for further research concerning support for 3D
printing and reverse engineering based on CI should also in-
clude organizational, technical, and material problems.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 1, p. e140016, 2022 7



I. Rojek, D. Mikołajewski, J. Nowak, Z. Szczepański, and M. Macko

Future developments may be hampered by the lack of spe-
cialists and the inconsistent pace of development in the various
fields of advanced technology underlying 3D printing (mate-
rials science, nanotechnology, attotechnology) or based on 3D
printing and reverse engineering (e.g. advanced diagnostic de-
vices, neuro-prostheses, and brain-computer interfaces). Wider
use of information technology, including more precise data
analysis, inference, and prediction, can help overcome these
limitations and contribute to the next breakthrough.

5. CONCLUSIONS
CI can effectively support 3D printing and reverse engineering
especially during the transition to Industry 4.0. Wider imple-
mentation of CI solutions can accelerate and integrate the de-
velopment of innovative technologies based on 3D scanning,
3D printing, and reverse engineering. Analyzing data, gather-
ing experience, and transforming it into knowledge can be done
faster and more efficiently, but requires a conscious application
and proper targeting. This is demonstrated by the practical ex-
amples of process and material feature selection discussed in
the paper. On the other hand, CI may mainly, but not only, sup-
port less experienced engineers, scientists, and clinicians, but
the ‘master-student’ method will still not be fully replaced. The
aforementioned solution may rather serve to supervise the qual-
ity of the work of teams without the support of advanced R&D
departments.
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