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A new extension of the Cayley–Hamilton theorem
to fractional different orders linear systems
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Abstract. The classical Cayley–Hamilton theorem is extended to fractional different order linear systems. The new theorems are applied to
different orders fractional linear electrical circuits. The applications of new theorems are illustrated by numerical examples.
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1. INTRODUCTION
The classical Cayley–Hamilton theorem [2, 8] says that ev-
ery square matrix satisfies its own characteristic equation. The
Cayley–Hamilton theorem has been extended to rectangular,
block matrices and the pairs of block matrices [4, 5]. In [6] the
Cayley–Hamilton theorem has been extended to n-dimensional
(n-D) real polynomial matrices. The Cayley–Hamilton theorem
and its generalizations have been used in control systems, elec-
trical circuits, systems with delays, singular systems, 2-D linear
systems, etc. [1,7–15]. The classical Cayley–Hamilton theorem
has been extended to simple fractional order and different frac-
tional order continuous-time linear systems in [3].

In this paper, the Cayley–Hamilton theorem will be extended
to fractional different order linear systems and applied to frac-
tional electrical circuits.

The paper is organized as follows. In Section 2 some prelim-
inaries concerning fractional linear single order and two differ-
ent orders are recalled. An extension of the Cayley–Hamilton
theorem to non-square matrices of linear systems is presented
in Section 3. The main result of the paper, a new extension of
the Cayley–Hamilton theorem to different orders fractional lin-
ear systems is given in Section 4. The new theorem is applied to
fractional different orders electrical circuits in Section 5. Con-
cluding remarks are given in Section 6.

2. FRACTIONAL DIFFERENT ORDER LINEAR SYSTEMS
Consider the continuous-time fractional different order linear
system

dα x(t)
dtα

= Ax(t)+Bu(t), 0 < α ≤ 1, (1)

where x(t)∈ℜn is the state vector, u(t)∈ℜm is the input vector
A∈ℜn×n, B∈ℜn×m, and ℜn×m is the set of n×m real matrices.
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In this paper, the Caputo definition will be used

dα f (t)
dtα

=
1

Γ(n−α)

t∫
0

ḟ (τ)
(t− τ)α

dτ, (2)

where 0 < α ≤ 1, α ∈ ℜ is the order of fractional derivative,

ḟ (τ) =
d f (τ)

dτ
and Γ(x) =

∞∫
0

e−ttx−1 dt is the gamma function.

The solution to equation (1) is given in [8].
Consider the fractional continuous-time linear system with

two different fractional orders α 6= β described by the equation
dα x1(t)

dtα

dβ x2(t)
dtβ

=

[
A11 A12

A21 A22

][
x1(t)
x2(t)

]
+

[
B1

B2

]
u(t), (3)

and 0<α , β < 1 where x1(t)∈ℜn1 , x2(t)∈ℜn2 , u(t)∈ℜm and
y(t) ∈ ℜp are the state, input, and output vectors respectively,
Ai j ∈ℜ

ni×n j , Bi ∈ℜni×m; i, j = 1,2.
Initial conditions for (3) have the form

x1(0) = x10 , x2(0) = x20 and x0 =

[
x10

x20

]
. (4)

The solution of equation (3) for 0 < α , β < 1 with initial con-
ditions (4) is given in [8].

3. THE CAYLEY–HAMILTON THEOREM
FOR NON-SQUARE MATRICES

Consider the non-square matrix A∈ℜm×n for n > m, which can
be written in the form

A =
[
A1 A2

]
, A1 ∈ℜ

m×m, A2 ∈ℜ
m×(n−m). (5)

Let

det
[
Ims−A1

]
=

m

∑
i=0

aisi (am = 1) (6)
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be the characteristic polynomial of the matrix A1 and Im is the
m×m identity matrix.

Theorem 1. The matrix (5) for n > m with characteristic poly-
nomial (6) satisfies the equation

m

∑
i=0

am−i
[
An−i

1 An−i−1
1 A2

]
= 0. (7)

Proof. By induction, it is easy to verify that[
A1 A2

0 0

]i

=

[
Ai

1 Ai−1
1 A2

0 0

]
, i = 1,2, . . . (8)

From (8) and (6) we have

det

[
Ims−A1 −A2

0 In−ms

]
= sn−m det

[
Ims−A1

]
=

m

∑
i=0

am−isn−i (9)

and applying the classical Cayley–Hamilton theorem we obtain

m

∑
i=0

am−i

[
A1 A2

0 0

]n−i

= 0. (10)

Substituting (8) into (6) we obtain

m

∑
i=0

am−i

[
An−i

1 An−i−1
1 A2

0 0

]
= 0 (11)

and from (11) the desired equation (7).

Now let us consider the matrix (5) for

A =
[
A3 A4

]
, A3 ∈ℜ

m×(n−m), A4 ∈ℜ
m×m. (12)

Let

det
[
Ims−A4

]
=

m

∑
i=0

aisi (am = 1) (13)

be the characteristic polynomial of the matrix A4.

Theorem 2. The matrix A with (12) for n > m and the charac-
teristic polynomial (13) satisfies the equation

n−m

∑
i=0

a′n−m−i

[
An−m−i−1

4 A3 An−m−i
4

]
= 0 (a′n−m = 1). (14)

Proof is similar to Proof of Theorem 1.

4. THE CAYLEY–HAMILTON THEOREM FOR FRACTIONAL
DIFFERENT ORDERS LINEAR SYSTEMS

Consider the fractional different orders linear system (3) with
the matrix

A =

[
A11 A12

A21 A22

]
, (15)

where A11 ∈ℜn1×n1 , A22 ∈ℜn2×n2 .

Theorem 3. Let

det
[
In1sα −A11

]
= sn1

α +an1−1sn1−1
α + . . .+a1sα +a0 (16a)

be the characteristic polynomial of the matrix A11 and

det
[
In2sβ −A22

]
= sn2

β
+bn2−1sn2−1

β
+ . . .+b1sβ +b0 (16b)

be the characteristic polynomial of the matrix A22.
Then the matrix (15) satisfies the equation

n1

∑
i=0

an1−i

[
An−i

11 An−i−1
11 A12

]
n2

∑
j=0

bn2− j

[
An− j−1

22 A21 An− j
22

]
= 0, n = n1 +n2 . (17)

Proof. Applying Theorem 1 to the matrix
[
A11 A12

]
, we obtain

n1

∑
i=0

an1−i

[
An−i

11 An−i−1
11 A12

]
= 0. (18)

Similarly, applying Theorem 2 to the matrix
[
A21 A22

]
, we ob-

tain
n2

∑
j=0

bn2− j

[
An− j−1

22 A21 An− j
22

]
= 0. (19)

Combining (18) and (19) we obtain (17). This completes the
proof.

Example 1. Consider the matrix (15) with

A11 =

[
−3 1
0 −4

]
, A12 =

[
0 1
1 2

]
,

A21 =

[
1 0
1 2

]
, A22 =

[
−3 1
2 −5

]
.

(20)

In this case, we have

det
[
In1sα −A11

]
= s2

α +7sα +12 (21)

and
det
[
In2sβ −A22

]
= s2

β
+8sβ +13. (22)

Using (20), (21) and (22) we obtain

2

∑
i=0

a2−i

[
A4−i

11 A3−i
11 A12

]
= a2

[
A4

11 A3
11A12

]
+a1

[
A3

11 A2
11A12

]
+a0

[
A2

11 A11A12

]
=

[
81 −175 27 47
0 256 −64 −128

]

+7

[
−27 27 −7 −5

0 −64 16 32

]

+12

[
9 −7 1 −1
0 16 −4 −8

]
=

[
0 0 0 0
0 0 0 0

]
(23)
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and

2

∑
j=0

b2−i

[
A3− j

22 A21 A4− j
22

]
= b2

[
A3

22A21 A4
22

]
+b1

[
A2

22A21 A3
22

]
+b0

[
A22A21 A2

22

]
=

[
2 102 249 −304
−49 −302 −608 857

]

+8

[
3 −16 −49 51

11 54 102 −151

]

+13

[
−2 2 11 −8
−3 −10 −16 27

]
=

[
0 0 0 0
0 0 0 0

]
. (24)

This confirms Theorem 3.

5. FRACTIONAL DIFFERENT ORDER LINEAR
ELECTRICAL CIRCUITS

In this section, Theorem 3 will be applied to the fractional dif-
ferent order linear electrical circuits. Consider the fractional
electrical circuit shown in Fig. 1 with given resistances R0 =
R1 = R2 = R3 = R4 = 1, capacitances C1 =C2 = 1, inductances
L1 = 1, L2 = 2 and source voltage e. As the state variables, the
currents i1, i2 and the voltages uC1, uC2 are chosen.

Fig. 1. Fractional electrical circuit

Using Kirchhoff’s laws we can write the equations

e = (R0 +R1 +R2)i1−R2i2 +L1
dα i1
dtα

+R0C1
dβ uC1

dtβ
,

L2
dα i2
dtα

= R2(i1− i2),

e = (R0 +R3)C1
dβ uC1

dtβ
+R0i1 +uC1 +uC2,

C1
dβ uC1

dtβ
=

uC2

R4
+C2

dβ uC2

dtβ

(25)

which can be written in the form

dα i1
dtα

dα i2
dtα

dβ uC1

dtβ

dβ uC2

dtβ


= A


i1
i2

uC1

uC2

+Be , (26)

where

A =



− (R1 +R2)(R0 +R3)+R0R3

L1(R0 +R3)

R2

L1
R2

L2
−R2

L2
R0

C1(R0 +R3)
0

− R0

C2(R0 +R3)
0

,

R0

L1(R0 +R3)

R0

L1(R0 +R3)

0 0

− 1
C1(R0 +R3)

− 1
C1(R0 +R3)

− 1
C2(R0 +R3)

− R0 +R3 +R4

C2R1(R0 +R3)

,


,

B =



− R0

L1(R0 +R3)

0
1

C1(R0 +R3)
1

C2(R0 +R3)


.

(27)

Substituting the given values of resistances, inductances
and capacitance we obtain

A11 =

[
−2.5 1
0.5 −0.5

]
, A12 =

[
0.5 0.5
0 0

]
,

A21 =

[
−0.5 0
0.5 0

]
, A22 =

[
−0.5 −0.5
−0.5 −1.5

]
.

(28)

Note that A11 ∈M2 and−A22 ∈ℜ
2×2
+ are asymptotically stable,

where Mn is the set of n× n Metzler matrices (its off-diagonal
entries are nonnegative) and ℜ

n×m
+ is the set of n×m real ma-

trices with nonnegative entries.
In this case the characteristic polynomials (16) have the

forms

det
[
I2sα −A11

]
=

∣∣∣∣∣sα +2.5 −1
−0.5 sα +0.5

∣∣∣∣∣
= s2

α +3sα +0.75 (29)
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and

det
[
I2sβ −A22

]
=

∣∣∣∣∣sβ +0.5 0.5
0.5 sβ +1.5

∣∣∣∣∣
= s2

β
+2sβ +0.5 (30)

respectively.
Using (29), (30), and (27) we obtain

2

∑
i=0

a2−i

[
A4−i

11 A3−i
11 A12

]
=
[
A4

11 A3
11A12

]
+3
[
A3

11 A2
11A12

]
+0.75

[
A2

11 A11A12

]
=

[
50.063 −22.5 −9.188 −9.188
−11.25 5.063 2.063 2.063

]

+3

[
−18.375 8.25 3.375 3.375

4.125 −1.875 −0.75 −0.75

]

+0.75

[
6.75 −3 −1.25 −1.25
−1.5 0.75 0.25 0.25

]

=

[
0 0 0 0
0 0 0 0

]
(31)

and

2

∑
j=0

b2−i

[
A3− j

22 A21 A4− j
22

]
=
[
A3

22A21 A4
22

]
+2
[
A2

22A21 A3
22

]
+0.5

[
A22A21 A2

22

]
=

[
−0.5 0 1.25 3
−1.25 0 3 7.25

]

+2

[
0.25 0 −0.75 −1.75
0.75 0 −1.75 −4.25

]

+0.5

[
0 0 0.5 1
−0.5 0 1 2.5

]
=

[
0 0 0 0
0 0 0 0

]
. (32)

Substitution of (31) and (32) into (17) confirms that the frac-
tional different orders linear electrical circuit satisfies Theo-
rem 3.

6. CONCLUDING REMARKS
The classical Cayley–Hamilton theorem has been extended to
the different order fractional continuous-time linear systems
(Theorem 3). The new theorem has been applied to different

order fractional electrical circuits. The considerations can be
extended to fractional different order linear systems described
by a linear equation with any finite number of sub-vectors of
the state vector [6] and to the fractional different order discrete-
time linear systems.
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