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Abstract: The 2150 km2 transboundary Gurara Reservoir Catchment in Nigeria was modelled using the Water 
Evaluation and Planning tool to assess the hydro-climatic variability resulting from climate change and human-induced 
activities from 1989 to 2019 and projected to the future till 2050. Specifically, the model simulated the historic dataset 
and predicted the future runoff. The initial results revealed that monthly calibration/validation of the model yielded 
acceptable results with Nash–Sutcliff efficiency (NSE), percent bias (PBIAS), and coefficient of determination (R2) 
values of 0.72/0.69, 0.72/0.67 and 4.0%/1.0% respectively. Uncertainty was moderately adequate as the model enveloped 
about 70% of the observed runoff. Future predicted runoffs were modelled for climate ensembles under three different 
representative concentration pathways (RCP4.5, RCP6.5 and RCP8.5). The RCP projections for all the climate change 
scenarios showed increasing runoff trends. The model proved efficient in determining the hydrological response of the 
catchment to potential impacts from climate change and human-induced activities. The model has the potential to be 
used for further analysis to aid effective water resources planning and management at catchment scale.  
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INTRODUCTION  

Hydrology of large rivers in the world has been experiencing 
changes in their hydrological characteristics and morphological 
processes due to variations and impacts from changing climate 
[PEKEL et al. 2016]. These changes in the hydrological character-
istic have majorly been attributed to impacts from climate change 
[MA et al. 2010; WANG et al. 2009], resulting in the occurrence of 
extreme weather and variability in precipitation and temperature 
patterns [AWOTWI et al. 2017; LEHMANN et al. 2017], and caused 
increase in runoff [HUO et al. 2008]. Climate change in itself is the 
average change in weather [2013]. Climate and weather are 
closely intertwined and greatly related but still there are 
important distinctions [LEHMANN et al. 2017]. A common 
distinction is the difficulty encountered by scientists in predicting 
the weather in few weeks while confidently predicting the climate 
for a 50 year period [AGUNBIADE, JIMOH 2013; AWOTWI et al. 2015]. 

The human-induced activities [EDUVIE, OSEKE 2021; YANG, 
TIAN 2009] such as afforestation, construction of reservoirs, water 

diversion systems, deforestation, alternate land cover, agriculture, 
domestic and industrial water demands influenced catchments 
hydrology especially runoff. In this regards, changes in climate in 
region like the Gurara reservoir catchment (GRC) is envisaged to 
occur in the future [EDUVIE et al. 2019]. This is because the GRC is 
a region best described as semi-arid which is prone to extreme 
water stress, since the hydrological characteristics of a semi-arid 
environment are exceptionally vulnerable to impacts from climate 
change [AWOTWI et al. 2017]. Meanwhile, the implications of 
climate change can go well beyond the water sector, as most of the 
serious effects of climate change on non-water areas are mediated 
via water [ROGERS 2010; SYVITSKI et al. 2005]. In the GRC, 
authorities have been taking measures to protect the catchments 
ecosystem by estimating the impact of climate variability and 
human-induced activities on the runoff using a data-driven 
approach. Predicting the long-term variability using quality data 
in a hydrologic time series has scientific and practical importance 
to policy makers [KUNDZEWICZ 2004]. 
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A data-driven approach in assessing the impact of climate 
change requires specific consideration through hydrological 
research [AWOTWI et al. 2017]. In the application of hydrologic 
research, the daily, monthly and annual variability in precipita-
tion and temperature from climate change can be simulated using 
scenarios to predict the hydrological response [JIN et al. 2018]. For 
the prediction of the hydrological responses, future projections in 
climate parameters are required as inputs which are derivatives of 
global climate models (GCMs). 

Although there is global acceptance in the application of 
(GCMs) in assessing the behavior of projected climate change 
dynamics on catchments hydrology, the limitations in their ability 
to make grid-point predictions make GCMs very difficult to adapt 
to the regional analysis [AWOTWI et al. 2017]. This is because, 
though the impact of climate change is a global phenomenon, the 
consequence is mostly felt on a regional scale [EDUVIE, OSEKE 2021]. 
Not until recently, there is a need for higher resolution climate 
models for better prediction of climate change analysis. This has 
resulted in several studies propagating the use of regional climate 
models (RCMs) [AWOTWI et al. 2017]. RCMs safeguard the 
physical coherence between atmospheric and land surface factors 
[AWOTWI et al. 2018] and dynamically downscale GCMs to make 
grid-point predictions for a limited study area of interest. 
According to ANNOR et al. [2017], the use of RCMs in assessing 
the impact of climate change on water resources at regional 
scale have demonstrated higher correction outcome in predicting 
future hydrological characteristics responses than GCMs. 
Although RCMs data are regarded as being biased [FOWLER, KILSBY 

2007], it is required that RCMs be corrected before utilisation, 
particularly within the GRC, a semi-arid regions where evidence 
suggests, the catchments hydrology have been greatly influenced 
by changes in the climatic conditions [AGUNBIADE, JIMOH 2013]. 

The GRC is Nigeria’s pioneer and the only catchment 
performing a water diversion operation from the Gurara reservoir 
to Lower Usuma reservoir in Abuja. The city of Abuja is Nigeria’s 
administrative capital serving over 2.7 mln people [OSEKE et al. 
2020]. According to OSEKE et. al. [2020], upsurge in human- 
induced activities in recent years such as expanded irrigation 
activities, increased water demand for domestic and industrial 
demand consumption are major factors affecting the runoff within 
the GRC. AGUNBIADE and JIMOH [2013] reported the response from 
human-induced activities and climate change using a computer- 
based Remote Sensing and Geospatial Streamflow Model, the 
report shows that an increase in temperature will result in 
a decrease in runoff. Furthermore, the report reveals a decrease in 
rainfall will reduce runoff from the watershed. Similar observa-
tions on human-induced activities were made by DALIL et al. 
[2015], suggesting that obstructing natural stream flow by 
constructing reservoirs will result in reduced runoff downstream 
especially during the dry season. Investigations on the impact of 
land-cover changes and climate variability on water balance 
components, using SWAT model in the White Volta Basin, West 
Africa [AWOTWI et al. 2015a], reveals an increase in precipitation 
and temperature resulted in increase in surface runoff including 
base flow and evapotranspiration. Accordingly, ZHANG and TIAN 

[2009] report that human-induced activities contribute to increase 
in runoff by approximately 80% during dry season. 

In this regard, this study aims is to predict the impact of 
climate change and hydrological response within the GRC by 
quantifying the contribution from variations in precipitation and 

temperature. This is pursued through multiple climate change 
scenarios while considering plausible socio-economic develop-
ments. Accordingly, the decisions support system Water Evalua-
tion and Planning (WEAP) model was utilised. The WEAP 
model, a computer-based analytical framework developed for 
evaluating climate change impact by water resources managers in 
response to commonly encounter challenges using different 
scenarios [YATES et al. 2005]. Likewise, the WEAP model coupled 
with RCMs from CORDEX-Africa can be used as a database for 
climate change predictions depending on the focus of the study. 
Due to prevailing heterogeneous conditions of global water 
bodies similar to GRC, findings from this study can be used as 
a baseline for other related research aimed at understanding the 
changes in water resources availability for efficient planning and 
management at catchment scale. 

MATERIALS AND METHODS 

THE STUDY AREA 

The Gurara Reservoir Catchment (GRC) lies between latitude 8° 
15’ and 10°05’ N and longitude 6°30’ and 8°30’ E on the Gurara 
River, north central Nigeria (Fig. 1). The catchments river 
system has an estimated area of 8,600 km2 with its middle and 
lower sections in Abuja. The river system originates from the high 
plateaus of Jos, and began flowing southwest covering a distance 
approximately 250 km downstream to join the Niger River at 
Dere upstream of Lokoja (a confluence town between the Niger 
River and the Benue River). Major rivers within the GRC include 
the Gurara, Kaduna, Tapa, Dinya, Usuma and the Jatau.  

Climatically, the GRC falls with the semi-arid to humid zone 
characterised by high temperature and mono-modal rainfall 
distribution. The annual rainfall within the GRC ranges between 
749 and 1464 mm with a duration spanning between four to six 
months, from May to October. The average annual temperature is 
between 30.6 and 36.5°C with the hottest period occurring in the 
months of March and April. The highest mean monthly 
temperature is observed in April with 36.5°C, while the lowest 
mean monthly temperature is in December with 14.7°C. The 
catchment mean temperature is 33.85°C while the annual mean 
evaporation is 83.3 mm.  

DESCRIPTION OF WEAP MODEL 

The WEAP model is an integrated water resources management 
system designed to simulate water supplies generated through 
watershed-scale hydrologic models, driven by water demands and 
environmental requirements [ABDULLAHI et al. 2014]. According 
to ABDULLAHI et al. [2014], WEAP analyses a wide range of issues 
concerning water resources using a scenario-based approach. The 
application of scenarios in water resources cover areas such as 
climate change and variability, ecosystem functioning, project 
water demand, policy formation, watershed conditions, opera-
tional dynamics as well as sustainability concerns of water 
infrastructures [YATES et al. 2005], assessment of climate change 
and its impact on hydrology and adaptation scenarios on water 
resources [YATES et al. 2005]. 

According to AWOTWI et al. [2017], the integration of WEAP 
model with  is useful in assessing and dealing with extensive data 
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sets on a different geographical scale in the assessment of changing 
climate. Besides, WEAP model also performs a mass balance of 
flow sequentially down a river system [YATES et al. 2005], making 
allowance for abstractions and inflows [AWOTWI et al. 2017].  

The working dynamics of WEAP involves configuring the 
model to simulate a recent baseline year for which water 
availability and demands can be determined confidently [ABDUL-

LAHI et al. 2014]. Subsequently, WEAP model also has a flexible 
user interface that ensures ease in applying the model for useful 
dialogue on water resources planning and management among 
relevant stakeholders [LEVITE et al. 2003]. The generalised form of 
WEAP model in simulating inflow and outflow scenarios is 
expressed using Equation (1) as reported by ABDULLAHI et al. 
[2014].  

Rdj
dzi;j

dt
¼ Pe tð Þ � PET tð ÞKcj tð Þ

5zi;j � 2z2
1;j

dx
� ð1Þ

þPe tð ÞZ
RRFj

1;j � fjKS;J z
2
1;j � 1 � fj

� �
KZ;J Z

2
1;j

where: Z1,j = (1,0) is the relative storage given as a fraction of the 
total effective storage of the root zone, Rdj = measured in mm for 
land cover fraction j, Pe = the effective precipitation (mm), 
excluding the snowmelt since snow is not experienced within the 
Gurara reservoir catchment. 

HYDRO-METEOROLOGICAL DATA PREPROCESSING 

The processing of hydro-meteorological data using a linear model 
in its simplest form is for trend detection using the Student’s 
t-test [HAMEED, RAO 2008]. The Student’s t-test requires that the 
series of data under testing be normally distributed [HAMEED, RAO 

2008]. Unfortunately, most researchers ignore this important 
check. If normality is violated of the measured dataset available, 
thus not following a normal distribution, then the nonparametric 

test such as the Mann–Kendall test is applied to assess the statistical 
significance of trends [TURGAY, ERCAN 2006; XU et al. 2003]. 

The dataset collected were processed and used on monthly 
and annually basis for analytical convenience. Preprocessing of 
the data was carried to determine stationary status as quality 
control using Shapiro–Wilk (W) in agreement with SHAPIRO et al. 
[1965] and HIPEL and MCLEOD [2005]. The result is presented at 
confidence α = 0.005. The recommendation of the normality test 
for climatic dataset behaviour has been suggested by CRIBBIE et al. 
[2011], with the rationale to assess the monotonic pattern of time 
series dataset by testing its normality. The Shapiro statistical 
method of testing is given as:  

W ¼
ð
Pn

i¼1 aix ið ÞÞ
2

Pn
i¼1 ðxi � �xÞ

2
ð2Þ

where: x(i) = the ith order statistic, i.e., the ith = smallest number in 
the sample; �x = (x1 + … + xn)/n = the sample mean. The 
coefficient ai is given by:  

ai ¼
mT V � 1

C
ð3Þ

where C is a vector expressed using Eq. (4)   

C ¼ mTV � 1V � 1m
� �1=2

ð4Þ

And the vector V is the covariance matrix of those normal order 
statistics, while m is made of the expected values of the order 
statistics of independent and identically distributed random 
variables sampled from the standard normal distribution; and is 
obtained using Eq. (5):  

m ¼ ðm1 . . .mnÞ
T

ð5Þ

Fig. 1. Map showing Gurara reservoir catchment boundaries and country location; source: own elaboration 
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MODEL INPUT DATA 

Digital elevation model (DEM) 

A 90 m resolution digital elevation model (DEM) from the 
Shuttle Radar Topography Mission (SRTM) was used for this 
study (Fig 2). The DEM was used to delineate the catchment 
watershed and analyse the drainage patterns of the terrain. Other 
parameters of the catchment such as stream network character-
istics: channels slope, length, and width were also obtained from 
the DEM. 

Land cover types 

The land cover map was obtained from hybrid classification of 
2019 Enhanced Thematic Mapper (ETM+) Landsat image. The 
relevant land cover information extracted was used for analysing 
the water resources, especially the hydrological processes. 
Agricultural, forest land, woodland and water body are the main 
land-cover in the catchment (Fig. 3). 

Elevation volume curve 

The elevation volume curve (Fig. 4) is derived from previous 
bathymetry survey conducted in the Gurara reservoir. The curve 
is important for planning and operation purposes in the 
reservoir's management, reflecting the storage capacity relation-
ship to determine reservoir water volume changes. The elevation 
curve is an input in the WEAP model. 

Climate data 

Weather parameters used for deriving the hydrological balance 
are monthly mean precipitation and the mean monthly 
temperature dataset from the Jere gauging station (Fig. 5) for 
the period of 1989–2019 and were used as the baseline year. The 
yearly average of the climatic dataset used were obtained from the 
Nigerian Meteorological Agency. 

PROJECTED CLIMATIC CHANGE SCENARIOS 

This study relied on the IPCC Representative Concentration 
Pathway (RCP) 4.5, 6.5 and 8.5 scenarios to assess the impacts of 
climatic change on runoff within the GRC. The RCP8.5 is 
regarded as the strongest climate signal with the highest emission 
of greenhouse gases. RCP4.5 is presumed to be the state of 
maintaining the current emission with the prospect of reduced 
emission in the future and RCP6.5 is intermediate and rated 

Fig. 2. Digital elevation model of Gurara reservoir catchment; source: 
own study 

Fig. 3. Land use land cover categorisation map within the Gurara 
reservoir catchment; source: own study 

Fig. 4. Elevation–volume relationship of Gurara reservoir based on 
bathymetric exploration; source: own study 

Fig. 5. Mean monthly rainfall and temperature relationship in Gurara 
reservoir catchment; source: own elaboration 
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among well-performing climate models. Here, historical simu-
lated data from 1989–2005 was utilised as the reference period 
and 2005–2050 representing future projected period. The RCPs 
and their descriptions are represented in Table 1, while Table 2 
presents the overview of climate models used in this study. 

BIAS CORRECTION 

The use of a model with biases can cause unreliable outcomes in 
hydrological modelling [AWOTWI et al. 2017], thus, there is the 
need to improve the exactness of the modelled hydrological 
components. In this regard, the relative bias method was adopted 
and expressed as:  

RB ¼
Md � Ob

Ob
100 ð6Þ

where: RB = relative bias, Md = model data, Ob = observed data 
respectively. 

The rationale behind this is to normalise the modelled data 
by the average of the observed which is regarded as the deviation. 
According to AWOTWI et al. [2017], this method of bias correction 
yields a very good result in hydrological modelling.  

RANKING OF REGIONAL CLIMATE MODEL 

In selecting the best RCM for climate model ranking, it important 
to note that the model must depict the physical collaborations 
between the atmospheres, the oceans, land surfaces, and sea ice 
regarding a multitude of processes functioning on various space 
and time scales [Climate data guide 2013]. The first step in 
ranking of RCMs is through a Taylor diagram for four seasons 
(Spring – March, April, May: Fall – September, October, and 
November: Winter – December, January, and February: Sum-
mer – June, July, and August) corresponding to the wet and dry 
season. The Taylor diagram is a statistical summary that provides 
how well the models match each other in terms of their 
correlation, their root-mean-square difference and the ratio of 
their variances [Climate data guide 2013]. Taylor diagram 
provides a series of points on a polar plot. Consequently, all 
these three statistical factors should be considered at the same 
time with equal weight in selecting the best model. The best 
performing RCMs was used as input data for the WEAP model in 
this study. 

RUNOFF COMPUTATION 

Several hydrologic methods have global applications in the 
computation of catchments runoff. Popular amongst these 
methods includes SCS-CN (Soil Conservation Service curve 
number) [NEH 1985; USDA 1972], HEC-1 (model developed 
by the Hydrologic Engineering Center, U.S. Army Corps of 
Engineers), HEC-HMS (Hydrologic Modeling System) [HEC 
1990; 2001], SWAT (soil & water assessment tool) [SHADEED, 
ALMASRI 2010] and water balance model [KABEDE et al. 2006]. In 
this study, the SCS-CN method for computing runoff was 
adopted. Adopting this method is due to the absence of long time 
series hydrological data and the availability of a curve number 
(CN) within the study area. 

The SCS–CN method has been established since 1954 by the 
USDA SCS, and defined as the Soil Conservation Service (SCS) by 
the National Engineering Handbook (NEH-4) Section of 
Hydrology [PONCE, HAWKINS 1996]. The soil conversation service 
curve number approach is based on the water balance computa-
tion [LINGCHENG et al. 2015]. Accordingly, the SCS-CN runoff 
prediction method links rainfall response to soils, land use and 

Table 1. Representative concentration pathway (RCP) classified 
based on the process description 

RCP Description IA model 

8.5 rising radiative forcing pathway lead-
ing to 8.5 W∙m–2 in 2100 MESSAGE 

6.5 
stabilisation without overshoot path-
way to 6 W∙m–2 at stabilisation after 

2100 
AIM 

4.5 
stabilisation without overshoot path-

way to 4.5 W∙m–2 at stabilisation after 
2100 

GCAM 

2.6 peak in radiative forcing at ~3 W∙m–2 

before 2100 and then decline IMAGE  

Explanation: IA = integrated assessment. 
Source: VAN VUUREN et al. [2011]. 

Table 2. Model institutions, regional climate models (RCMs) and 
general circulation models (GCMs) considered and code 

Model institution RCM GCMs Model code 

Swedish Meteorolo-
gical and Hydrologi-
cal Institute (SMHI) 

RCA4 
NOAA- 
GFDL-GFDL- 
ESM2M 

RCAS 

Max Planck Institute 
for Meteorology, 
Germany 

REMO ESM-LR MPI-M-MPI- 
ESM-LR 

Climate Limited- 
Area Modeling 
community 
(CLMcom) 

CCLM4-8-17 MOHC-Had-
GEM2-ES CCL2 

Royal Netherlands 
Meteorological Insti-
tute (KNMI) 

RACMO22T ICHEC-EC- 
EARTH RACI 

Climate Limited- 
Area Modeling 
community 
(CLMcom) 

CCLM4-8-17 CNRM-CM5 CCL1 

Swedish Meteorolo-
gical and Hydrologi-
cal Institute (SMHI) 

RCA4 CCCma_Ca-
nESM2 RCA1 

Swedish Meteorolo-
gical and Hydrologi-
cal Institute (SMHI) 

RCA4 
CNRM-CER-
FACE- 
CNRM-CM5 

RCA2 

Danish Meteorologi-
cal Institute (DMI) HIRHAMS NCC-Nor-

ESM-M HIR  

Source: own study. 
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antecedent moisture condition [NEH 1985]. The soil conserva-
tion service curve number approach is frequently used empirical 
methods to estimate the direct runoff from a catchment [FMWR 
2013], with its classification descriptions shown Table 3.  

According to DOMFEH et al. [2015], the main challenge 
associated with applying the SCS-CN method lies in the lack of 
monitoring rainfall and runoff data, with both data being primary 
input in any hydrological model. The need for reliable monitoring 
flow data can lead to dependable calibration and validation of 
catchment parameters [DOMFEH et al. 2015], and best in 
predicting event-based runoff volume in an ungauged catchment. 
The general form of SCS-CN equation given as follows:  

Q ¼
ðP � laÞ

2

P � lað Þ þ S
ð7Þ

where: Q = the gathered runoff (mm), P = the rainfall amount 
(mm), la = the initial abstraction (mm) and surface storage, 
interception, and infiltration prior to runoff in the catchment and 
empirical relation was developed for the term la and it is given by. 
The empirical relationship is:   

la ¼ 0:2S ð8Þ

For the Nigeria’s condition, the form S in the potential 
maximum retention and it is given by:  

S ¼
1000

CN
� 10 ð9Þ

where: CN = the curve number which can be taken from 
SCS handbook of hydrology (NEH-4), section-4 [USDA 1972].  

A CN of 75% utilised in previous study by FMWR [2013] 
was adopted. This was due to the development level in the 
catchment and bearing in mind that the catchment is also highly 
forested [FMWR 2013]. Thus Equations (7), (8) and (9) will 
become.  

Q ¼
ðP � 0:6667Þ

2

P þ 2:6666ð Þ
ð10Þ

The  curve number is based on the ability of soils to 
allow infiltration of water with respect to land use/land cover 
and antecedent soil moisture condition [AMUTHA, PORCHELVAN 

2009]. Based on Soil Conservation Service (SCS), soils are 
distributed into four hydrologic soil groups such as group A, B, C 
and D with respect to rate of runoff probable and final 
infiltration. 

CALIBRATION, VALIDATION AND MODEL PERFORMANCE 
EVALUATION 

In the simulation of hydrological models, some input parameters 
used cannot be directly measured in the field hence the need for 
certain adjustments to enhance the correlation between observed 
and predicted datasets (Fig. 6). In this regard, the mean monthly 
discharge dataset (1st January 1978 – 31st December 1986) 
obtained from Kaduna state water cooperation were used for 
calibration, while the remaining dataset (1st January 1986 – 31st 

December 1991) were used for validation indicating the period 
data was last collected from the Gurara gauge station, the inlet to 
the GRC. 

Table 3. Soil Conservation Service classification 

Hydrologic soil 
group (HSG) Soil textures Runoff potential Water transmission Final infiltration 

A deep, well drained sands and gravels low low rate >7.5 

B moderately deep, well drained with moderate moderate moderate rate 3.8–7.5 

C 
clay loams, shallow sandy loam, soils with moderate to 
fine textures moderate moderate rate 1.3–3.8 

D clay soils that swell significantly when wet low low rate <1.3  

Source: own elaboration based on USDA [1974]. 

Fig. 6. The framework of the calibration process;  
source: own study 
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To obtain a certain degree of best fit, a manual method of 
calibration was applied, thus, the model parameters were 
manually adjusted till the model predict the runoff to an 
acceptable performance range. The calibration process was done 
according to the framework as shown in Figure 6 and a direct 
comparison of measured versus predicted monthly hydrographs 
was obtained. The reliability of the simulation was assessed by 
three statistical indices, namely the Nash–Sutcliff efficiency 
(NSE), percent bias (PBIAS), and coefficient of determination 
(R2), and expressed by the following equations:  

NSE ¼ 1 �

Pn
i¼1 Qobs

i � Q
sim
i

� �2

Pn
i¼1 Qobs

i � Q
obs
mean

� �2

" #

ð11Þ

PBIAS ¼

Pn
i¼1 Q

obs
i � Q

sim
i

� �

Pn
i¼1 Q

obs
i

� � 100 ð12Þ

R2 ¼

Pn
i¼1 Q

obs
i � Q

obs
mean

� �
Qsim
i � Q

sim
mean

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Q

obs
i � Q

obs
mean

� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Qsim

i � Q
sim
mean

� �q

8
><

>:

9
>=

>;
ð13Þ

where: Qobs
i and Qobs

mean = the observed and mean observed values 
respectively, while Qsim

i and Qsim
mean = the simulated and mean 

simulated values respectively.  
The rating performance according to the statistical para-

meters NSE, PBIAS and R2 for the hydrological model proposed 
by MORIASI et al. [2007] is shown in Table 4. 

CLASSIFICATION OF RAINFALL VALUES 

The classification technique for rainfall values modified by 
GAMACHU [1977] was adopted. The technique involves estimating 
a coefficient called the rainfall coefficient for each month from 
the observed data. This coefficient is the ratio between the mean 
monthly rainfall and one-twelfth of the annual mean rainfall 
[UFOEGBUNE et al. 2011]. Subsequently according to UFOEGBUNE 

et al. [2011], a month is designated as “rainy” if the rainfall 
coefficient is 0.6 or over. In like manner, “small rains” is used 
to describe the rainfall coefficients ranging between 0.6 and 0.9, 
while “big rains” designated rainfall coefficient of 1.0 and 
above. Due to the peculiarity of the study area, the “big” rainy 

months was reclassified into three categories: those with 
“moderate concentration” of rainfall (coefficient of 1.0–1.9), 
“high concentration” of rainfall (coefficient of 2.0–2.9), and “very 
high concentration” of rainfall (coefficient of 3.0 and above). 
This technique is used to determine the spatial pattern 
seasonality of rainfall by analysing mean monthly rainfall data. 
Listed in Table 5 is the classification scheme of monthly rainfall 
values. 

ANALYSIS OF CLIMATE CHANGE IMPACT  
ON HYDROLOGY 

The analysis to capture the impact of climate change on the 
seasonal variability of water availability and demand in a monthly 
time scale expressed in Equation (14) was adopted.   

PI ¼
ALSWA

ALAWA
100 ð14Þ

where: PI = percentage impact, ALSWA = available simulated 
water in a given scenario, while ALAWA = the actual available 
water from the observed dataset. 

The quantity of water available is based on the different 
projected climate scenarios. The difference between the respective 
incoming and outgoing flow rates for each scenario was used to 
estimate the average flow volumes. Thus, the available water 
within each scenario is the sum of the scenarios contributed and 
the inflow from the surrounding catchment. The relationship 
between water availability was addressed by water balance 
accounting and order of priority.  

Table 4. Statistical rating indicators recommended for model analysis 

Performance rating NSE R2 PBIAS 

Very good 0.75 < NSE < 1.00 R2 > 0.70 PBIAS < ±10 

Good 0.65 < NSE < 0.75 0.60 < R2 < 0.70 ±10 < PBIAS < ±15 

Satisfactory 0.50 < NSE < 0.65 0.50 < R2 < 0.60 ±15 < PBIAS < ±25 

Unsatisfactory NSE < 0.50 0.00 < R2 < 0.50 PBIAS > ±25  

Explanations: NSE = Nash–Sutcliffe efficiency, PBIAS = percent bias, R2 = coefficient of determination, PBIAS = percent bias. 
Source: own elaboration based on OSEKE et al. [2020]. 

Table 5. Classification scheme of monthly rainfall values 

Designation Rainfall coefficient 

Dry month <0.6 

Rainy month ≥0.6 

Small rains 0.6–0.9 

Big rains ≥1 

Moderate concentration 1.0–1.9 

High concentration 2.0–2.9 

Very high concentration ≥3.0  

Source: GAMACHU [1977]. 
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RESULTS AND DISCUSSION 

NORMALITY TEST 

The trend of the precipitation from the Gurara reservoir 
catchment (GRC) presented in Figure 7 demonstrated a normal 
distribution. Similar results were observed in the Q–Q plot 
indicating a normality trend in the rainfall dataset at 0.05 level of 
significance. In this regard, the null hypothesis is accepted as the 
rainfall is normally distributed. The Shapiro–Wilk (W) output for 
the observed rainfall dataset to detect normality is W = 0.95818, 
p-value = 0.2782. Thus, the observed rainfall dataset can be used 
for further study with RCMs owing to their stochastic nature.  

WATER RESOURCES ASSESSMENT 

The use of efficient and robust techniques in ensuring optimal 
distribution of water resources is important in setting up an 
evaluation tool helps in creating an integrated mechanism [DESSU 

et al. 2014]. In addition to the quantity and distribution of 
available water, assessment procedures need to address the 
relationship between available water and impact of climate 
change to ensure sustainability and ecosystem functioning 
[AWOTWI et al. 2017; DESSU et al. 2014; EDUVIE, OSEKE 2021]. 
The findings from this study when analysed presented an easy to 

understand method by relevant stakeholders with an opportunity 
to negotiate and address priority of water use. The method of 
predicting available water using different projected climate 
change scenarios has been applied in Ghana by AWOTWI et al. 
[2017], in the United Kingdom by FOWLER and KILSBY [2007] and 
in Nigeria by GLORIA and OGBU [2018]. Thus, the study exploited 
the rank of relationship between climate change and water 
availability in a semi-arid catchment to predict water resource 
status and impact of climate change in the GRC. 

RUNOFF CALIBRATION AND VALIDATION 

The comparison of observed and predicted hydrographs for the 
calibration and validation epochs is illustrated in Figure 8. The 
graph revealed a decent agreement between the observed and 
predicted mean monthly runoff producing a correlation.  

The calibrated and validated estimated runoff dataset using 
the SCS-CN method is listed in Table 6. The coefficient of 
determination (R2); calibration 0.72; validation 0.69, obtained 
describes the degree of colinearity between observed and the 
predicted runoff. The correlation coefficient, which ranges from 
–1 to 1, is an index of the degree of linear relationship between 
observed and predicted dataset. If R2 = 0, no linear relationship 
exists; if r = 1 or r = –1, a perfect positive or negative linear 
relationship exist. Here, R2 ranges from 0 to 1, with higher values 
demonstrating less error variance, and typically values greater 
than 0.5 are considered unacceptable according to VAN LIEW et al. 
[2003]. 

Fig. 7. Q–Q plot of annual rainfall (mm) in Gurara reservoir catchment; 
source: own study 

Fig. 8. Model flow fit on the predicted flow for the period of 1978–1991; source: own study 

Table 6. Calibration and validation performance of the SCS-CN 
model method 

Stage 
Statistics indicators  

NSE PBIAS R2 

Calibration 0.72 –0.04 0.70 

Validation 0.69 –0.01 0.72  

Source: own study. 
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Although coefficient of determination (R2) has been widely 
used for model performance evaluation especially in hydrology, 
these statistical indices are oversensitive to high extreme values 
(outliers) and insensitive to additive and proportional differences 
between model predictions and observational datasets [MORIASI 

et al. 2005].  
The dependability of the model developed from the SCS-CN 

method to predict runoff was additionally affirmed by percent 
bias (PBIAS) values within the range of ±10% which demonstrates 
very good performance of the model. The percent bias measures 
the average tendency of the predicted data to be larger or smaller 
than their observed counterparts [MORIASI et al. 2005]. The Nash– 
Sutcliffe efficiency (NSE) value of more than 0.72 is adequate for 
further hydrological analysis and is a normalised statistic that 
determines the relative magnitude of the residual variance 
compared to the measured data variance [MORIASI et al. 2005]. 
It is worth knowing that the runoff model developed using SCS- 
CN method is not a physical model, as such, it should not be 
expected to yield usable results outside the range of runoff for 
which it was calibrated. 

Despite the suitability of the SCS-CN model for further 
hydrological analysis, the predicted model overestimated the 
observed runoff of 0.06% and 0.025% in the calibration and 
validation process respectively. The overestimation is portrayed 
by the negative PBIAS value (Tab. 5). A similar calibration 

concern was faced by HJELMFELT et al. [2001], when the SCS-CN 
based model was used to predict surface runoff in the forested 
Coweeta catchment. This may be attributed to the general 
assumption that the predicted flow in catchment using SCS-CN 
method is all overland flow. This is because the hypothesis behind 
SCS-CN method is based on the empirical prediction of how 
much of the rainfall contributes to the surface runoff [HJELMFELT 

et al. 2001]. Furthermore, the overestimation of the runoff may be 
due to the curve number, as the land-cover might have changed 
over time which could result in increased or decreased 
contribution from direct precipitation in the catchment. This is 
a condition which is synonymous models developed using SCS- 
CN method [HJELMFELT et al. 2001].  

SELECTION OF RCMS USING RANKING OF CLIMATE MODEL 

The eight selected models represented in Taylor diagrams for 
projected temperature and precipitation climate models dataset 
are shown in Figures 9 and 10 respectively.  

THE MODELS FOR FUTURE CLIMATE PROJECTIONS  

The analysed projected temperature (Tab. 7) represented in 
Taylor diagram (RCP4.5, RCP6.5 and RCP8.5) is based on the 
annual mean and the monthly mean. This is because these 

Fig. 9. Taylor diagram for the selected climate regional climate models (RCMs) modelled against the observed depicting the normalised standard 
deviation, the correlation, and the root mean square error (RMSE) within the precipitation models in the Gurara reservoir catchment; source: own study 
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seasons have a dataset from RCMs with describable tendencies. 
The RCM MOHC-HadGEM2-ES model performs best by 
optimally predicting the variability of the observed dataset. 
According to IPCC [2017], the annual mean temperature globally 
is predicted to show an increase from the currently experienced, 
hence, there will be more emission of greenhouse gases into the 
atmosphere. Consequently, the scenario represented as RCP8.5 
projected higher temperatures than RCP4.5 and RCP6.5 even 
with the same climate models. The projected higher temperatures 
for both RCP6.5 and RCP8.5 reveal a possible warmer period in 

future climate. These projections are in agreements with 
ABDULLAHI et al. [2014] in the Sokoto Rima River Basin and 
MORÁN-TEJEDA et al. [2014] in Aragón, where increase in 
temperature are envisage in the near future and end of the 21st 

century. 
Presented in Table 8 is the ranked climate model of 

precipitation within the GRC, showing the percentage mean 
annual for climate scenarios RCP4.5, RCP6.5 and RCP8.5. The 
analysis revealed CNRM-CERFACE-CNRM-CM5 model pre-
dicted the observed better and subsequently adopted for the 

  

  

  
Fig. 10. Taylor diagram for the selected climate regional climate models (RCMs) modelled against the observe depicting the normalised standard 
deviation, the correlation, and the root mean square error (RMSE) within the mean temperature models in the Gurara reservoir catchment; source: own 
study 
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climate change impact assessment. For all scenarios, CNRM- 
CERFACE-CNRM-CM5 predicted more precipitation with an 
average increase of approximately 3% for RCP6.5 and 5% for 
RCP8.5. The upsurge in predicted mean monthly precipitation in 
all scenarios measuring up to 2% reveals some level of uncertainty 
in the near future and thus, TALL et al. [2016] suggest more 
rainfall. Unlike variations in temperature, precipitation variations 
indicate much uncertainty under different RCMs and climate 
change scenarios. These results are consistent with studies carried 
out by TALL et al. [2016] in Lake of Guiers, AWOTWI et al. [2017] in 
the Pra Basin and DOMFEH et al. [2015] in the Berekese reservoir 
catchment, where climate models have predicted different trends 
of annual precipitation increase under different emissions 
scenarios. The uncertainties resulting from the use of climate 
models might be associated with the assumptions and results 
surrounding models construction [AWOTWI et al. 2017].  

STATISTICAL CLASSIFICATION OF RAINFALL COEFFICIENT 

The coefficient of rainfall value classification is listed in Table 9 
describing the increasing pattern from moderate to high rainfall 
within the catchment area. The statistical classification reveals the 
GRC is highly prone to the risk of flooding suggesting more rain 

Table 7. Weighted and ranked climate model of team 
temperature 

Global climate model Model code Correlation Standard 
deviation 

Annual mean 

NOAA-GFDL-GFDL- 
ESM2M RCAS out of range out of range 

ESM-LR MPI-M-MPI- 
ESM-LR 0.70 1.75 

MOHC-HadGEM2-ES CCL2 0.71 0.88 

ICHEC-EC-EARTH RACI 0.73 0.63 

CNRM-CM5 CCL1 0.55 1.25 

CCCma_CanESM2 RCA1 out of range out of range 

CNRM-CERFACE- 
CNRM-CM5 RCA2 out of range out of range 

NCC-NorESM-M HIR 0.70 0.625 

Monthly mean 

NOAA-GFDL-GFDL- 
ESM2M RCAS out of range out of range 

ESM-LR MPI-M-MPI- 
ESM-LR 0.50 0.75 

MOHC-HadGEM2-ES CCL2 0.50 0.69 

ICHEC-EC-EARTH RACI 0.50 0.38 

CNRM-CM5 CCL1 0.80 0.63 

CCCma_CanESM2 RCA1 out of range out of range 

CNRM-CERFACE- 
CNRM-CM5 RCA2 out of range out of  range 

NCC-NorESM-M HIR 0.50 0.38  

Source: own study. 

Table 8. Weighted and ranked climate model of precipitation 

Global climate model Model code Correlation Standard 
deviation 

Summer 

NOAA-GFDL-GFDL- 
ESM2M RCAS 0.76 0.27 

ESM-LR MPI-M-MPI- 
ESM-LR 0 0 

MOHC-HadGEM2-ES CCL2 0.25 1.63 

ICHEC-EC-EARTH RACI 0.75 0.38 

CNRM-CM5 CCL1 0.10 0.75 

CCCma_CanESM2 RCA1 0.25 0.44 

CNRM-CERFACE- 
CNRM-CM5 RCA2 0.25 0.44 

NCC-NorESM-M HIR 0.75 0 

Fall 

NOAA-GFDL-GFDL- 
ESM2M RCAS out of range out of range 

ESM-LR MPI-M-MPI- 
ESM-LR 0.85 1.25 

MOHC-HadGEM2-ES CCL2 1.19 0.19 

ICHEC-EC-EARTH RACI 0.85 1.00 

CNRM-CM5 CCL1 0.85 1.13 

CCCma_CanESM2 RCA1 out of range out of range 

CNRM-CERFACE- 
CNRM-CM5 RCA2 0.85 0.56 

NCC-NorESM-M HIR 0.85 1.13  

Source: own study. 

Table 9. Rainfall coefficient and aerial pattern in Gurara reservoir 
catchment 

Month 
Rainfall 

coefficient 
value 

Season Classifi- 
cation 

Further 
classification 

Jan 0.0 dry     

Feb 0.0 dry     

Mar 0.0 dry     

Apr 0.4 dry     

May 0.9 raining small rains   

Jun 1.6 raining big rains 
moderate 
rains 

Jul 2.0 raining big rains high rains 

Aug 2.4 raining big rains high rains 

Sep 1.7 raining big rains 
moderate 
rains 

Oct 0.8 raining small rains   

Nov 0.0 dry     

Dec 0.0 dry      

Source: own study. 
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in the future. The rainfall classification shows the coefficients 
agrees with the predictions based on RCPs projections in the near 
future. 

The projected climate data following the statistical output 
was assumed to be reliable for predicting the impact of climate 
change. The projected dataset up to 2050 climate pattern run 
from 1989–2005 representing the present (baseline data). 

CLIMATE CHANGE IMPACT ON HYDROLOGICAL PROCESSES 

The result of climate change impact on hydrological processes 
reveals increase in surface runoff which is in agreement with the 
study carried out by AGUNBIADE and JIMOH [2013], within the 
GRC. The increasing rainfall from moderate to high subsequently 
experienced within the GRC (Tab. 8) corresponds to increase in 
monthly peak runoff. The monthly runoff increased from 311 to 
326 m3·s–1 which represents 23%, in response to an incremental 
rainfall of 8.3% and 4.3% in temperature respectively. The future 
runoff scenario and pattern in the catchment is the same as the 
present, but differs in magnitude with the rainfall being the 
deciding factor (Fig. 8).  

WATER BALANCE AND AVAILABILITY 

The water balance illustrating the demand reliability on inflow 
and outflow under current and projected climate change 
scenarios is shown in Figure 11. Similarly, Figure 12 illustrates 
the consumption, inflow, outflow and precipitation for the 
climate change scenario. Listed in Table 10, is the projected 
water availability which substantially increases up to 3.5% and 

4.3% for RCP6.5 and RCP8.5 climate scenarios respectively. The 
shows increased runoff depths with the highest under RCP8.5 
emission scenario and lowest under RCP6.5. This result agrees 
with the findings from research in the Pra Basin where RCP8.5 
emissions regarded as the worst case scenario predicting 
increasing changes in runoff [AWOTWI et al. 2018]. 

The variation from the predicted runoff in the future 
may have significant concern for the resident of Abuja and by 
extension Abuja water board management authority, as Abuja is 
already faced with water availability problems [AGUNBIADE, JIMOH 

2013] from Lower Usuma reservoir during the dry season. 
The city of Abuja is rapidly expanding, as such, the 

occurrence of an extreme event such as late onset of rainfall 
Fig. 11. Mean monthly simulated inflow (a) and outflow (b) under 
current and projected climate change for all scenarios; source: own study 

Fig. 12. Mean monthly water balance on inflow and outflow under 
current and projected climate change scenarios (RCPs): a) RCP4.5, 
b) RCP6.5, c) RCP8.5; source: own study 

Table 10. Water availability based on simulation of projected 
climate change scenarios (RCPs) 

Specification 
Amount of water available (mln m3) 

RCP4.5 RCP6.5 RCP8.5 

Available water (mln m3) 4.38 4.46 4.78 

Difference (mln m3) NA 319 398 

% of increase NA 3.5 4.3  

Source: own study. 
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and reduction in the length of wet season as a result of variability 
in future climate will result in changes in the magnitude of 
rainfall. Subsequently, these changes in the magnitude of rainfall 
combined with occurrence of higher temperatures may affect 
operations of the Abuja water treatment plant and the water 
diversion, which are primary beneficiaries of the GRC. Conse-
quently, higher temperatures in water at catchment level will have 
an unfavorable effect on the water environment [AWOTWI et al. 
2015], leading to increase in blue-green algae populations. In this 
regard, there should be an advocacy campaigns to sensitise 
relevant stakeholders concerning the risk associated with climate 
change, coupled with a robust water supply and management 
mechanism. This is to increase awareness while attempting to 
alleviate impending water stress in catchments. This must be 
carried out without undermining the need for infrastructural 
development within the catchment [DOMFEH et al. 2015]. 

The realisation from the result illustrating an increase in the 
runoff within the GRC strengthens the need for authorities to put 
in place appropriate investments in the planning and manage-
ment of the water resources, like the expansion of the irrigation to 
accommodate multiple planting season and expansion of the 
Abuja water treatment plant that can effectively and efficiently 
utilise the expected increase in runoff. 

Abuja will continue expanding in its infrastructural 
development due to urbanisation and growth in population. 
Hence, to achieve the objective of utilising the excess water, there 
is the proposed project of further transferring water from the 
Gurara reservoir to a new destination, namely: the Shiroro 
catchment for hydropower generation [KATASHAYA 1986]. Besides, 
to supply water to support the Izom irrigation farm [KATASHAYA 

1986] with the view that more water will be put into productive 
use like agriculture to ensure food security. However, it is 
regrettable to note the current practice and designs of the water 
infrastructures within the catchment area are being carried out 
without assessing the impacts of climate change. It is the position 
of this study that during design stage, the components of climate 
change impact is factored in, using RCMs which depict an 
alternative climate scenario for robust assessment. This will 
usually result in a logical conclusion, as logical conclusions are 
important for wide acceptance of research findings, especially for 
integrated water resource management.  

In line with sustainability, authorities within the catchments 
management ranks should ensure that existing infrastructures 
and yet to be initiated water infrastructures must count the 
plausible climate change impact on catchments hydrology and 
take mitigating measures which are to be accommodated in the 
planning and design. 

CONCLUSIONS 

The vulnerability of GRC to climate change was simulated while 
improving management options using relatively bias-corrected 
CORDEX-Africa and RCP based climate model. The technique 
was customised to illustrate the delicate balance of water 
utilisation by human settlement through water diversion opera-
tion. The model outcomes predicted greater climate variability 
such as higher temperature. Similarly there observed uncertainties 
over the trend of the variations for both precipitation and runoff 
during the period of 1978–2019.  

The climate scenarios RCP6.5 and RCP8.5 evidently reveals 
the impact of climate change, thereby recommending appropriate 
authorities within the catchment to invest in cost-effective water 
management techniques like constructing of water infrastructures 
such as treatment plants, irrigation system to utilise more of the 
available water during the wet season, and reservoirs to store for 
gradual release during the dry season. This is necessary because 
optimal use of the catchments water resources is geared towards 
sustainable development and food security. A projected change in 
climate within the catchment supposes that future development 
within the catchment should incorporate in it, the probable 
effects of climate change on the future hydrological character-
istics, and ensure adequate measures for mitigation.  
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