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Abstract 
 

A classical algorithm Tabu Search was compared with Q Learning (named learning) with regards to the scheduling problems in the 

Austempered Ductile Iron (ADI) manufacturing process. The first part comprised of a review of the literature concerning scheduling 

problems, machine learning and the ADI manufacturing process. Based on this, a simplified scheme of ADI production line was created, 

which a scheduling problem was described for. Moreover, a classic and training algorithm that is best suited to solve this scheduling problem 

was selected. In the second part, was made an implementation of chosen algorithms in Python programming language and the results were 

discussed. The most optimal algorithm to solve this problem was identified. In the end, all tests and their results for this project were 

presented. 
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1. Introduction 
 

In the production of castings, the problem of scheduling tasks 

concerns both the manufacturing process of a given product and the 

queuing of accepted orders. This allows to increase efficiency or 

optimize the production process itself. The development of 

artificial intelligence is also used in the production of steel. It 

allows you to create an intelligent knowledge system that allows 

for task scheduling and production planning in an optimal way. 

Integrated planning of steel production is a problem of high 

complexity, therefore intelligent algorithms are used, which will 

allow you to obtain more accurate results than the classic 

algorithms, in a shorter time [1]. The tasks performed by training 

algorithms are often used for optimization. Their use requires less 

calculation power than the use of classical algorithms, especially 

for problems with a large number of possible solutions [2]. 

Scheduling is the process of assigning limited resources to tasks in 

order to obtain the optimal value due to the selected criterion [3]. 

In production systems, resources are understood as objects such as 

workstations, machines, means of transport, as well as fuel, energy 

and people. However, the tasks are the processes of processing, 

transporting or producing a given product [3] [4]. In order to 

present and systematize the scheduling problems, the three-field 

notation α | β | γ is used, where α is the task processing system, β is 

the task characteristics, γ is optimization criterion [3] [4] [5] [6]. 

The symbol α can be represented by equation 1, where α1 describes 

the way in which tasks are performed by the system, and the symbol 

α2 describes the amount of resources in the system, in a particular 

case it is the number of machines or stands. The α2 symbol can take 
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the empty character "ο", which means that the number of resources 

is part of the problem and is not predetermined [3]. 

 

𝛼 = 𝛼1𝛼2            (1) 

 
The way in which tasks are performed by the system can be 

divided into two main groups: systems with parallel machines, 

where each task can be performed on one of the machines, and 

systems with dedicated machines, where each task must go through 

by specific positions. The second group can be further divided into 

the following subgroups: flow shop systems, where each task must 

pass through all machines in the same order, open systems, where 

each task must be performed at all workstations, but the order is 

arbitrary and general systems (called job shop), where each job 

position and the order is arbitrary. Table 1 shows examples of the 

values that the symbol α1 can take [3]. 

 

 

2. Learning algorithms in scheduling 

tasks 
 

 

2.1. Description of the problem 
 

Learning methods are also used in scheduling problems [7] [8] 
[9] [10]. The most commonly used solutions are neural networks. 
An example of this is the Hopfield network. This is a self-
associative non-linear searching network that aims to minimize the 
function representing activation in the network units {system 
energy}. The operation of this network can be compared to an 
electrical circuit with an operational amplifier [11]. The simplest 
form of a Hopfield network is a single-layer feedback network, an 
example of which is shown in Figure 1. In this figure, each neuron 
ni is excited by external signals such as threes holds or signals 
entering ain,  additionally, it is excited by internal signals in the 
form of the feedback of the output signal aout,j multiplied by the 
respective weights in ij. The output signals are connected to all 
other neurons except the own [2]. With other learning algorithms, 
decision trees are used for solving problems. In the considered 
example, a decision tree was used, for real-time planning of the 
flow system problem. In this case, the decision tree selects the 
scheduling rule from a previously prepared list. The applied 
solution is presented graphically in Figure 2 [12]. 

 

 
Fig. 1 Hopfield network 

Three main elements can be distinguished in the applied solution: 
a real-time controller, a scheduler and a decision tree. The real state 
controller is receiving data from the flow system and sends jobs to 
be executed according to the rule issued by the scheduler. 
Additionally, it monitors the state of the system. The scheduler 
decides when a new scheduling rule is selected. It then fills in and 
releases the rules selected by the decision tree. The decision tree 
selects a new scheduling rule based on the state of the system. In 
addition, the flow system itself, the learning data, the decision tree 
and the system state, which stores current information about the 
system, are also distinguished. It is updated with every change. 
 

 
Fig. 2 Planning program with decision tree 

 
The ADI cast iron manufacturing process can be represented as 
scheduling problem Fn | 6 | Emin. It is a flow system with 6 stations 
and n tasks, the optimization criterion of which the purpose is to 
minimize the energy consumption of the process. The first station 
(M1) corresponds to the processes taking place in the furnace, the 
second station (M2) of the molding and casting line, the third 
station (M3) is optional technical processing depending on the 
order, the fourth station (M4) corresponds to the annealing process, 
station five (M5) to the cooling process and station six (M6) to the 
final technical treatment. In order to simplify the problem, it has 
been assumed that the machining is fully automated. The total 
energy consumption during the production of Ec was assumed as 
the optimization criterion. In the case under consideration, not only 
the duration of the process itself is of great importance for the costs 
incurred, but also the change of temperature parameters between 
individual tasks. For stations M2, M3 and M6, the power of devices 
and the duration of the process will be important factors. The power 
of these devices in turn is P2 equal to 350 kW, P3 equal to 185 kW, 
P6 equal to 140 kW. For stations M1, M4 and M5, an additional 
factor influencing energy consumption will be the influence of 
temperature on the consumed power. In the paper, it was assumed 
that in the considered temperature ranges this relationship will be 
linear as shown in equation 2.  
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P(θ)= c θ             (2) 

 
Where P (θ) - power is dependent on temperature, c- dependence 
coefficient, θ - process temperature expressed in Kelvin. The 
dependence coefficient is: 1.119 for the M1 station kW / K, for M4 
0.1063 kW / K, for M5 0.2972 kW / K. Contrary to previous 
positions, the time from the beginning of the first tp1 task to the 
end of the last tkn task will be important here, not just the duration. 
For the remaining machines, it was assumed that they only 
consume energy while working. The optimization criterion for the 
entire process is presented in Equation 3, where Ei is the energy w 
consumed in the i-th station and is described by Equation 4. 
 

𝐸𝑐  = ∑ 𝐸𝑖
𝑛
𝑖=1            (3) 

 

𝐸𝑖 = ∑ 𝑃𝑖(𝜃𝑖𝑗)(𝑡𝑝(𝑗+1) − 𝑡𝑝𝑗), 𝑖 ∈ {1,4};  ∑ 𝑃𝑖𝑡𝑗
𝑚
𝑗=1

𝑚
𝑗=1       (4) 

 
 
Where Pi is the power consumed by the i-th station, θij is the 
temperature at the i-th station during the j-th task, and ie is the 
duration of the j-th task. 

The number of tasks depends on the number of ADI cast-iron 

variants with specific properties, listed in Table 1. It was assumed 

that one task allows for the production of 20 elements with a total 

weight of 3 tons. The work assumes the implementation of a 

maximum of 3 orders from each cast iron variant. Table 2 

summarizes the required work parameters for each position for 

each task. Machining on an M3 machine depends on the 

requirements of the order and can be applied to any task. This work 

assumes that only the first two orders of each variant require this 

processing. 

 

Table 1. 

Cast iron variants ADI 
Material 

index 
Tensile 

strength, 

Rm, [MPa] 

Yield 
point,  

R0,2, 

[MPa] 

Elongation, 
A5, % 

Hardness, 
HB 

1 800 500 8 260-320 

2 1000 700 5 300-360 

3 1200 850 2 340-440 

4 1400 1100 1 380-480 

 
Table 2. 

Parameters of workplaces for especially tasks 
Task 

design

ation 

Material 
designat

ion 

M1 M2 M3 M4 M5 M6 

t1, s 𝜃1, ℃ t2, s t3, s t4, s 𝜃4, ℃ t5, s 𝜃5, ℃ t6, s 

a 1 7200 900 3600 10800 90000 375 6000 375 5400 

b 7200 900 3600 8800 90000 375 6000 375 5400 

c 7200 900 3600 0 90000 375 6000 375 5400 

d 2 7200 900 3000 11800 90000 330 10000 330 6500 

e 7200 900 3000 7800 90000 330 10000 330 6500 

f 7200 900 3000 0 90000 330 10000 330 6500 

g 3 7200 900 2600 8900 10800 270 16000 270 4400 

h 7200 900 2600 6000 10800 270 16000 270 4400 

i 7200 900 2600 0 10800 270 16000 270 4400 

j 4 7200 871 4000 10800 14400 260 17000 260 8800 

k 7200 871 4000 6000 14400 260 17000 260 8800 

l 7200 871 4000 0 14400 260 17000 260 8800 

2.2. Classic algorithm 
 

The search algorithm was selected from among the classic 

algorithms presented in this paper, due to the typical and self-

defined target function. Additionally, this algorithm is used, inter 

alia, for flow problems in scheduling tasks [14]. In the problem 

under consideration, the algorithm will schedule tasks on the first 

machine. Then, in accordance with the ADI cast iron production 

process, will determine the energy consumed on both individual 

stations and across the entire process. The process of determining 

the energy consumption will be determined during each iteration. 

In order to fully describe the algorithm for this solution, the 

following should be defined: initial scheduling, traffic, final 

condition and the length of the prohibition for given traffic [13]. In 

a given study, due to the lack of information on the optimal method 

of selecting the initial solution, the algorithm will be performed for 

two different initial orderings. In each of them, the criterion will be 

the total energy consumption of a single task, assuming that only 

that one task is involved in the process. In the first case, the tasks 

are ranked in ascending order of energy consumption, and in the 

second case, in descending order. The move will be to bring the 

selected item to the top of the list and move it the remaining 

elements to the empty space in the order [13]. The final condition 

is that the maximum number of iterations, which is the product of 

the number of tasks and the number of stations, has been exceeded. 

Two values of the forbidden length were used and compared: 10% 

of the maximum number of iterations and half of the number of 

tasks rounded up because in the literature this value is not clearly 

defined for this problem. The algorithm receives the tasks with the 

data as input, as shown in Table 2. The results are presented in the 

form of a sequence of tasks on the first machine, the total energy 

consumption of this ranking, and a graphical representation of the 

ranking in the form of a Gantt chart. In addition, it will return data 

from subsequent iterations to determine which variant of the 

algorithm parameters gave the best results.4 

 

 
Fig. 3 TS algorithm scheme 

 

The scheme of the algorithm's operation is shown in Figure 3, 

where the subsequent elements of the algorithm's operation include 

selecting the initial solution, searching for the best possible motion 

along with its execution, and checking the final condition. In 

addition, the diagram shows the elements that allow you to control 

the list of prohibited moves by adding more moves and reducing 
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the forbidden time at the beginning of the loop, as well as 

controlling the improvement in subsequent moves to determine one 

of the conditions completion of the algorithm [13].  

 

 

2.3. Learning algorithm 
 

The learning algorithm was chosen due to the architecture 

properties that allow it to be used for optimization processes, 

without the need to create an additional database of learning 

examples. The algorithm checks the successive possibilities of 

ranking only the given problem and selects the best combination 

found. In the problem under consideration, the algorithm will 

change the order of tasks only on the first machine, and then, in 

accordance with the described process, it will determine energy 

consumption, the same as in the classic algorithm. The scheme of 

the algorithm's operation, adapted to the problem of scheduling 

tasks in the flow system, is shown in Figure 4. The algorithm uses 

the Q table to store values for each pair of environmental states (si) 

and actions that can be performed (a). The action to be performed 

is to select one of the tasks, which means the total number of 

possible actions is equal to the number of tasks to be performed, 

in this case, it is 12. The total number of environmental states is 

given by equation 5, which for the described case gives 4096 states. 

It follows that the size of the array Q is 4096 x 12. At the beginning 

of the algorithm, the array is initialized with the values 0 in each 

cell [14]. 

 

𝑠 = 2𝛼            (5) 

 
The next steps of the algorithm are cycled over a specified number 

of iterations. Based on the analysed literature, the number of 

iterations was determined as the product of the number of tasks and 

machines, in this case, it is 72 iterations. The first step in this loop 

is to initialize a randomly sorted set of tasks. In this 

implementation, it will be the alphabetical order of the task 

designation. Primary rankings in this algorithm have no effect on 

the final rankings [14]. The next step is, the next loop and this is 

performed until all tasks from the set are completed. In this loop, a 

number between 0 and 1 is first drawn and compared with the 

‘greedy strategy’ coefficient ε to decide whether the model will 

search arrays. If the value is greater than ε then the action is selected 

based on the Q table, such an action is called an array search 

because it is already based on the known actions in a given state 

and their values in the Q table. If the value is smaller than the action 

is selected randomly, it is called this is discovery because the model 

selects actions without checking the values in the Q table for that 

state. This situation is advantageous when, for example, there are 

no values other than 0 [14] in the table yet. This solution provides 

two values of the ε coefficient to choose from. In the first solution, 

it is a value that is constant and unchanging throughout the duration 

of the program and amounts to 0.1. In the latter case, the value 

decreases from 1 by 10% for each iteration. This allows the 

algorithm to initially discover the values of the Q array by 

randomizing actions, and the more information the model has about 

that array, the more likely it will be to choose an action based on 

the values of the Q array. However, there will always be a low 

probability of taking a random action. After selecting the action, it 

is performed, in this case, it consists in assigning a given task to the 

spot list. After completing the entire loop, the program has full task 

scheduling for a given iteration. After the action is performed, the 

values of the predicted future state (s) and the reward (r) determined 

according to equation 6 are examined. At the end of the loop, table 

Q is updated according to equation 7 and the task set by deleting 

the task that has been selected [14]. 

 

 
Fig. 4 Learning algorithm scheme 

 

𝑟 =
1

𝑓(𝑆𝑜𝑝𝑡)
           (6) 

 

𝑄′(𝑠. 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼𝑞𝑙 (𝑟 + 𝛾𝑞𝑙𝑚𝑎𝑥𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎))      (7) 

 

Where, f (sopt) - the value of the objective function for a list of 

ordered tasks, Q '(s, a) - the value in the Q table after the update, Q 

(s, a) - the value of the Q table before the update, α ql - the constant 

learning coefficient, γql - constant discount factor [14]. The 

learning coefficient αql can be interpreted as the degree of updating 

the values in the Q table, for the case considered in this paper its 

value was assumed to be 0.1. The discount factor γql determines 
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the significance level of the future, anticipated reward, here 

adopted at the level of 0.8 [14]. If the set of tasks in this iteration is 

already empty, it means that each task has been ranked. Then the 

obtained value of the objective function for this ranking is 

compared with the currently best ranking, and if the new ranking is 

better, it is stored as the currently best ranking. After all, iterations 

are completed, the algorithm returns the best-found solution. 

Additionally, the program has the ability to print out the solution 

after each iteration [14]. Works on similar solutions have also been 

described in other literature books.[15 - 18].  

 

 

3. Description of achieved results of 

own research 
 

The results of assigning tasks from the described problem were 

presented separately for each algorithm, and then their comparison 

was made. Each algorithm was performed for three data sets. The 

materials for checking the operation of the algorithms came from 

item [19].  

 

 

3.1. Classical algorithm results 
 

The classic algorithm allows the selection of three work 

parameters, two of which may affect the value of the result. These 

are the length of the prohibition and the primary alignments. The 

last parameter determines whether all results are saved or only one. 

Table 3 summarizes the results for all three data sets, performed for 

all combinations of parameters affecting the result. The first 

column contains the designation of sets, where 1 is a set with four 

tasks, 2 is a set with eight tasks, and 3 is a set with twelve tasks. In 

the second column, the selected prohibition length. Primary 

alignments are selected in the third column. The fourth column 

shows the final rankings. In the fifth, the value for this ranking. The 

last column shows the execution time of the algorithm. Only the 

versions with the best ranking were selected for these results.  

The table shows that different orderings give the same results, 

which is additionally confirmed by the analysis of the results after 

each iteration. Results after each iteration were also generated for 

each variant and each combination of parameters. By analysing the 

results after each iteration, it can be concluded that the rankings 

presented in the table are optimal. On the basis of the obtained 

results, there is no visible influence of the original ranking and the 

length of the prohibition on the solution. This may result from the 

characteristics of the considered example, and not the 

characteristics of the issue itself. For the first two data sets, there is 

no additional impact on the length of the algorithm's execution. In 

the option with the prohibition length equal to half the number of 

tasks, the time is significantly longer than with the 10% number of 

iterations. You can see the effect of the forbidden length on the 

algorithm by analysing the results after each iteration. For the 

bypass length equal to half the number of tasks, the algorithm more 

often returned the result already achieved earlier than for the bypass 

length equal to 10% of the number of iterations. Additionally, 

extreme results were achieved more often. 

 

 

Table 3. 

Ranking results for the classical algorithm 

Set 

designation  

Length of 

forbiddance  

Primary 

ordering  

Final 

ordering  

Ordering 

value  

[MJ]  

Time of 

performance  

[ms]  

1  

10 % amount 

of iteration  

From higher 

energy 

consumption  

j, d, a, g  64387  249  

Half of tasks 

amount  

From higher 

energy 

consumption  

j, d, a, g  64387  253  

10 % amount 

of iteration  

From lower 

energy 

consumption  

j, g, a ,d  64387  244  

Half of tasks 

amount  

From lower 

energy 

consumption  

j, g, a, d  64387  249  

2  

10 % amount 

of iteration  

From higher 

energy 

consumption  

d, f, i, l, j, 

g, a, c  
120949  306  

Half of tasks 

amount  

From higher 

energy 

consumption  

g, i, l, j, d, 

a, f, c  
120949  323  

10 % amount 

of iteration  

From lower 

energy 

consumption  

l, e, i, f, g, 

a, d, j  
120949  305  

Half of tasks 

amount  

From lower 

energy 

consumption  

j, l, d, g, c, 

I, f, a  
120949  321  

3  

10 % amount 

of iteration  

From higher 

energy 

consumption  

k, g, c,a, b, 

d, c, f, I, l, 

j, h  

182801  334  

Half of tasks 

amount  

From higher 

energy 

consumption  

g, j, d, k, a, 

e, b, h, l, f, 

I, c  

182801  487  

10 % amount 

of iteration  

From lower 

energy 

consumption  

l, e, i, f, h, 

b, e, g, a, 

k, d, j  

182801  334  

Half of tasks 

amount  

From lower 

energy 

consumption  

l, e, i, f, h, 

b, e, g, a, 

k, d, j  

182801  494  

 

Figure 5 shows the Gantt charts for the optimal ordering. In Figure 

5 a) for option 1, at 5 b) for the 2nd option and at 5 c) for the 3rd 

option. In all examples, the forbidden length was chosen to be 10% 

of the number of iterations and the primary ordering decreasing 

with respect to energy consumption. The drawings clearly show the 

breaks in the work of individual machines and the desire to avoid 

breaks in the machines that draw power not only during the 

performance of tasks. Additionally, one can observe in Figures 5 b) 

and 5c) interruptions resulting from the lack of performance of 

some tasks on the M3 machine. 
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a)  

b)  

c)  

Fig. 5. Gantt chart for a) 1st variant, b) 2nd variant, c) 3rd variant 

 

 

3.2. Learning algorithm results 
 

The learning algorithm requires the selection of only two 

parameters: the ε coefficient and the result variant. Only the first 

factors can have an impact on finding the optimal solution. In Table 

4, as for the classical algorithm, the results for all three data variants 

were collected for both options of the ε coefficient. Only the 

versions with the best ranking were selected for these results. When 

analyzing the ranking for this algorithm, it is worth highlighting its 

random nature. The results do not need to repeat when the 

algorithm is called again. The results after each iteration were also 

generated for each variant and each option of the ε coefficient. By 

analyzing these results, it can be concluded that the rankings 

presented in the table are optimal. No influence of the ε coefficient 

on the final solution was observed, nor on the algorithm execution 

time. However, you can see its effect on the operation of the 

algorithm by analyzing the results after each iteration. For the ε 

coefficient decreasing by 10% from 1, it can be seen how the 

algorithm initially selects solutions that are far from optimal, and 

only from a certain moment selects the optimal ones. For a constant 

value coefficient, optimal results started to appear earlier, leading 

to fewer extremely bad results appearing. 

 

Table 4. 

Classification results for the learning algorithm 

Set desig

nation  
ɛ factor  Final ordering  

Orderi

ng valu

e  

[MJ]  

Time of performance  

[ms]  

1  

Constant 0.1  j, a, g, d  64387 276  

Decreasing every itera

tion by 10%  
j, a, g, d  64387 246  

2  

Constant 0.1  
g, l, j, i, c, a, f, 

d  

120949

   
302  

Decreasing every itera

tion by 10%  

l, f, g, j, i, c, d, 

a  

120949

  
286   

3  

Constant 0.1  
j, i, f, l, a, c, e, 

h, g, b, k, d  

182801

   
373  

Decreasing every itera

tion by 10%  

l, h, k, f, e, d, 

b, c, a, i, j, g   

182801

   
380  

 

Figure 6 shows the Gantt charts for the optimal ordering. In Figure 

6 a) for variant 1, to 6 b) for the 2nd variant and to 6 c) for the 3rd 

variant. In all examples, a constant value of the ε coefficient equal 

to 0.1 was chosen. The charts have the same characteristics as the 

classical algorithm. 
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a)  

b)  

c)  

Fig. 6 Gantt chart for a) 1st variant, b) 2nd variant, c) 3rd variant 

 

3.3. Comparison of algorithms 
 

The comparison of algorithms was also made for all three data 

sets, but one set of algorithm operation parameters was selected. 

For comparison, the following were selected: for the classical 

algorithm, the length of the sequence equal to 10% of the number 

of iterations and the primary ordering from the highest energy 

consumption, and for the learning algorithm, the value of the ε 

coefficient equal to 0.1. It was decided to set these parameters 

because they were recognized 

for the most advantageous. For the classical algorithm, this 

parameter value gives a shorter algorithm execution time and 

greater differentiation during the search. In addition, this value 

more often allowed to find various optimal solutions. The 

comparison of the results is presented in Table 5, where the first 

column is the number of the data variant, in the second column is 

the name of the algorithm, in the third is the optimal sequence, in 

the fourth column is the objective function value for this ranking, 

and in the last column is the algorithm execution time. Algorithms 

return different orderings, but with similar values. After analysing 

the results after each iteration, these rankings can be considered 

optimal. The only difference between the algorithms shown in the 

table is the execution time for the set with the most tasks. Classic 

algorithms here return results much faster than the learning 

algorithm. When additionally analysing the results obtained after 

each iteration for the described parameters of the algorithms, it can 

be observed that the learning algorithm returns more differentiated 

orderings. No line-up repeats itself. This gives the possibility of 

finding a greater number of optimal orderings. The downside of 

this algorithm, in this case, is its randomness, which causes it to be 

returned in an extremely unfavourable case the end result will not 

be the optimal ranking. 

 

Table 5. 

Comparison of the obtained results for the classical and learning 

algorithms 

Designation of the 
set 

Algorithm name Final ranking 
The value of 
the ranking 

[MJ] 

Execution time 
[ms] 

1 
Classic j, d, a, g 64387 249 

Learning g, j, a, d 64387 257 

2 
Classic d, f, i, l, j, g, a, c 120949 306 

Learning g, j, l, d, i, f, c, a 120949 317 

3 

Classic k, g, c, a, b, d, 
e, f, i, l, j, h 

182801 334 

Learning g, k, l, d, e, h, c, 
i, b, a, f, j 

182802 436 

 

 

4. Conclusions 
 
The goals of the work were fully achieved. Two algorithms 

were implemented and compared: Classic and Learning. An 
Algorithm has been implemented to solve the scheduling problem 

for the simplified ADI cast iron manufacturing process. The 

operation of the algorithms has been tested for various tasks. 
For the described problem, the algorithms returned different 

orderings, but with the same value of the objective function. All the 
solutions returned were considered optimal. The work of the 

algorithms for different parameter values was checked and the sets 
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best suited to this problem were selected. For the learning 

algorithm, the ε coefficient with a constant value equal to 0.1 more 
often, during the work of the algorithms, it found the optimal 

ordering and found different orderings, which reduces the chances 
of finding the local optimum instead of the global one. In the 

classical algorithm, for a sequence length equal to 10% of the 
number of iterations, the algorithm was faster and found more 

differentiated orderings during operation. The original rankings in 
this case did not matter. Of these two algorithms, Classic 

algorithms were found to be better for this problem. 
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