
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 70(3), 2022, Article number: e140466
DOI: 10.24425/bpasts.2022.140466

ARTIFICIAL AND COMPUTATIONAL INTELLIGENCE

MFFNet: a multi-frequency feature extraction
and fusion network for visual processing

Jinsheng DENG1, Zhichao ZHANG2∗∗∗ , and Xiaoqing YIN1

1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410000, China
2 College of Computer, National University of Defense Technology, Changsha 410000, China

Abstract. Convolutional neural networks have achieved tremendous success in the areas of image processing and computer vision. However,
they experience problems with low-frequency information such as semantic and category content and background color, and high-frequency
information such as edge and structure. We propose an efficient and accurate deep learning framework called the multi-frequency feature
extraction and fusion network (MFFNet) to perform image processing tasks such as deblurring. MFFNet is aided by edge and attention modules
to restore high-frequency information and overcomes the multiscale parameter problem and the low-efficiency issue of recurrent architectures.
It handles information from multiple paths and extracts features such as edges, colors, positions, and differences. Then, edge detectors and
attention modules are aggregated into units to refine and learn knowledge, and efficient multi-learning features are fused into a final perception
result. Experimental results indicate that the proposed framework achieves state-of-the-art deblurring performance on benchmark datasets.
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1. INTRODUCTION
Image attribute restoration is a traditional computer vision chal-
lenge that can be separated into many branches: deblurring, de-
noising, deraining, coloring, and inpainting. These challenges
have similar attributes in causing image deficiencies; thus, we
can address them in using deep learning methods, which are
good at processing large datasets. We aim to find a method to
tackle the challenges in image vision processing in an efficient
and comprehensive manner.

Designing architectures and algorithms that enhance com-
puter vision performance or imitate human perception is a huge
challenge in artificial intelligence. Convolutional neural net-
works (CNNs) have exhibited promising performance in im-
itating brain neural cells to capture meaningful features and
learn knowledge from specific visual systems. However, they
employ a brute-force method to search images and locate latent
meaningful information, and the transformation of the informa-
tion obtained leads to key elements being omitted. We propose
a framework with brain-like perception. The proposed network
can handle information from multiple paths and extract features
such as edges, colors, positions, and differences. The edge de-
tectors and attention modules are aggregated into brains to re-
fine and learn knowledge, and efficient multi-learning of fea-
tures is carried out and the results are fused to obtain a final per-
ceptive result. In this manner, the proposed network, called the
multi-frequency feature fusion network (MFFNet), acts simi-
larly to the human brain to extract the local texture effectively
and process universal computer vision tasks such as inpainting,
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denoising, and super resolution. Image deblurring is a classi-
cal and important problem in industrial areas, such as aviation
photo restoration, robotics recognition, and autonomous driv-
ing [1].

To simplify deblurring, traditional methods adopt fixed blur
kernels. However, these methods are limited because they
merely classify blurriness into uniform, nonuniform, and depth-
aware categories. Moreover, while blurry images in real-world
scenarios consist of mixed types of blur such as natural motion
blur and camera shake blur, they can only identify a single type
of blur at one time.

Deep learning approaches have been proposed for handling
complicated natural blurs. These methods [2, 3] use convolu-
tional layers to extract features by scanning blurred and sharp
images, fusing features by deconvolution layers and recording
the learning results. Schuler et al. [2], Zhang et al. [4], and Xu
et al. [5] adopted this two-stage traditional procedure using an
encoder–decoder neural network. However, these methods still
adopt the traditional framework, resulting in low prediction per-
formance.

Inspired by the problems described above, Kupyn et al. [6]
designed a new framework for deblurring that can calculate the
differences of generative and original images. Generative ad-
versarial networks (GAN) have shown promising performance
in image deblurring. Scholars have also made significant im-
provements to GANs, with improved variants such as Deblur-
GANv2 [7]. However, GANs are resource-intensive when com-
paring the generated and real images of the discriminator. With
advancements in the design of sophisticated network models,
more complicated end-to-end deep learning approaches have
also been proposed for deblurring. Such networks can be clas-
sified into four network classes: multiscale, recurrent, multi-
patch, and scale-iterative networks.
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Nah et al. [8] and Lin et al. [9] developed multiscale frame-
works in which the underlying idea is to implement the coarse-
to-fine strategy to deblur the images in consecutive stages. The
coarse stage obtains features using scales, then the features are
halved in a series of steps. The fine stage learns the larger-scale
features with the aid of the coarse features until the original
size is reached. The coarse-to-fine mechanism needs to be per-
formed directly via the scale-cascaded structure. Thus, despite
achieving good results, the network size and depth eventually
become excessive, leading to high GPU memory consumption.

Multi-patch networks have been proposed by Nekrasov [10]
and Zhang et al. [11]. Both used a recurrent method by regard-
ing the results of the last iteration as the input of the next round
to refine final checkpoints. Images are separated into patches
for extracting features, and the meaningful results are sent to
the next iteration for further enhancement. This method is con-
ducive to parameter reduction by learning from patches in one
round. However, the approach is hindered by low image restora-
tion efficiency.

Image deblurring using CNNs is more accurate than that
using traditional methods. However, CNNs, especially mul-
tiscale deep CNNs, are memory- and computation-intensive
when deblurring images, thereby hindering real-time applica-
tion. Meanwhile, computation-efficient networks cannot han-
dle large-scale datasets and often cannot generate satisfactory
restoration results. Additionally, deep learning methods neglect
edge and color reconstruction for specific regions and differ-
ent restoration situations. Experiments have been conducted to
prove the significant impact of the lightweight process and the
residual connections on the enhanced accuracy and decreased
complexity of the proposed network. Our contributions are as
follows:
• We propose a novel multi-frequency feature extraction and

fusion network for image deblurring. Compared with the
previous multiscale and recurrent architectures, our model
is more efficient and performs well in terms of image qual-
ity as Fig. 1 shows.

• A contextual attention fusion unit is designed that fuses the
extracted edge and sharpness feature information from mul-

Fig. 1. Results of comparative experiments. Our restored images show
vivid colors and sharp details. The above are blurry, DeblurGAN,

DMPHN, SIUN, ours and ground truth images

tilevel paths. The modules can both solve the multilevel re-
quirement of concatenating different kinds of feature maps
and help to train a deep and fast network.

• A multiscale refinement loss function was developed on the
VisDrone and GOPRO datasets. State-of-the-art deblurring
performance is achieved according to the results of quanti-
tative analysis using PSNR and SSIM.

The remainder of this paper is organized as follows. We dis-
cuss related work on image deblurring network architectures in
Section 2. Section 3 illustrates the methodology and the imple-
mentation of our proposed network. We discuss our experimen-
tal results in Section 4 and conclude the paper in Section 5.

2. RELATED WORK
Traditional methods [4,5,11–15] rely on blur kernel estimation
to reconstruct images by focusing on specific types of blurs.
Recent studies [16, 17] have attempted to solve the restora-
tion problem by adopting multiscale CNNs to deblur images. In
these end-to-end frameworks [18,19], blurry images are used as
inputs for the neural network to immediately generate clear im-
ages. Compared with traditional methods, CNNs have greatly
improved computing speed, but their prediction accuracy is low,
and considerable GPU memory is needed.

As for feature extraction, image deblurring CNNs can be
categorized into GAN, multiscale network, recurrent network,
multi-patch network, and scale-iterative network architectures.

By scaling an image into different sizes, multiscale net-
works [20, 21] are able to extract various features from each
scale, as shown in Fig. 2a. The input images are converted into
feature maps, and then scales are used to halve the feature maps
at the next level. In multiscale detection, various scale features
are fused by different methods. These various scale features
contain a large quantity of information, suggesting high accu-
racy. However, the multiscale strategy strictly requires that the
features be extracted from small to large scale, which means
that large-scale concatenating needs to wait for the comput-
ing results from the small scales, resulting in a slow training
speed.

A recurrent network comprises an input layer, a loop-hiding
layer, and an output layer [12, 22, 23], as shown in Fig. 2b. Re-
current networks can learn features and long-term dependen-
cies in a sequence. However, the complexity increases with the
number of network layers. As the concatenating of recurrent
networks relies heavily on last-round results, the process wors-
ens if invalid features are extracted in these last-round results;
then, the deblurring inference becomes extremely unstable if
some image restorations have poor quality.

DMPHN [11] is a CNN model that appears to be simple
but operates as an effective multi-patch network as shown in
Fig. 2c. In DMPHN, the input image is divided into different
sizes each time; then, features are extracted by the multiscale ar-
chitecture. Although DMPHN has attained remarkable progress
in terms of computational effectiveness, its precision is low.

Ye et al. [13] proposed a scale-iterative network [24] that re-
stores sharp images iteratively, as shown in Fig. 2d. The super-
resolution structure of the upsampling layer is adopted between
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Fig. 2. Various deblurring network architectures. (a) Multiscale ar-
chitecture, which extracts features from different scales. (b) Recur-
rent architecture, in which the next round of training is aided by
the last-round results. (c) Multi-patch architecture, which directly ex-
tracts features from image pairs by cropping images at different scales.
(d) Scale-iterative architecture, which is used to train the model with
an upsampling path with the aid of the last-iterative middle results.
We combine architectures (a) and (b) and propose a new framework,
whose core module involves the MFF, called MFFNet. MFFNet oper-

ates in both a multiscale and a recurrent manner

two consecutive scales to restore the details. Image features are
extracted from small to large scale, with the aim of reconstruct-
ing high-resolution images from low-resolution images. Then,
the downsampling part restores the image until its size equals

Fig. 3. Multi-frequency feature extraction and fusion (MFF) framework. The image is separated into different scales from top to bottom. Brown
blocks denote the extraction path of features from scales. The multipath refinement fusion (MRF) blocks fuse the recurrent last-round results
and the upsampling feature maps into a single refinement process. The four refinement paths finally compute the loss in the scale refinement loss
function, and then the best deblur results are obtained. RCU, residual connection unit; CRP, chained residual pooling; LW, lightweight strategy

that of the original image. Moreover, its weight sharing can
be preserved, and its training process is flexible. However, the
method fails to achieve high deblurring precision and network
efficiency, and a significant amount of memory is needed for
the iterative calculations.

Our proposed method combines the edge feature learning
strategy and the contextual attention modules for image restora-
tion, which facilitates locating the object aided by structure in-
formation and the adoption of appropriate deblurring priors to
reconstruct the sharp images.

3. MODEL DESIGN AND IMPLEMENTATION
The proposed MFFNet is designed to ensure a balance between
accuracy and speed. We first exploited the recurrent and multi-
scale strategies to learn the multi-frequency information. Then,
we designed a structure with a branch depth and fusion unit
on the basis of the lightweight process and remote residual con-
nections [25]. Finally, a multiscale refinement loss function was
used to train the network in a coarse-to-fine manner.

3.1. Multiscale and recurrent learning
Recurrent and multiscale learning strategies were applied in
this study. The basic idea of the multiscale learning strategy in
Fig. 3a is to extract features from the large, coarse scale maps
and upsampled results. Meanwhile, in the recurrent learning
strategy in Fig. 3a, the bottom layer acquires fusion informa-
tion from the small refinement maps and the top feedback. In
our work, the two strategies were combined by designing four
refinement paths to extract features at different scales instead of
directly predicting the whole deblurred image. In our method,
the network only needs to focus on learning the highly nonlin-
ear residual features, which is effective in restoring deblurred
images in a coarse-to-fine manner. The architecture of the pro-
posed MFFNet is shown in Fig. 3.
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In the multipath input stream illustrated in Fig. 3a, the upper
MFFNet layer takes blurry images as the input and processes
the deblur datasets into a total of four scales, i.e., k is from 2 to
4. The four-scale blur feature maps are denoted as bk, whereas
the refinement results are denoted as lk. First, the k level of
the multipath input stream concatenates the same scale feature
maps bk and the upsampling feature maps lk+1 into a middle
feature map, which is denoted as ck.

ck = bk⊕ lk+1 (2≤ k ≤ 4). (1)

Then, the fusion unit adds both ck and the last-round results lk−1
as the final result, which is denoted as lk. This process briefly
demonstrates how the refinement fusion path works. The whole
process can be calculated as

lk = ck + lk−1 (2≤ k ≤ 4). (2)

3.2. Edge reconstruction and attention process
Real-world image capture cannot avoid blur. For instance,
Fig. 4a shows a fast-moving car on the street, which causes
motion blur and, owing to the distance, the street is far from the
lens, which causes Gaussian blur. The procedure employed by
MFFNet to restore images comprises three steps: edge recon-
struction (Fig. 4c), blur species locating (Fig. 4b), and patches
deblurring (Fig. 4d).

(a) (b) (c) (d)

(e)

(f)

(g)

Fig. 4. Multifeature extraction for edge and sharpness

Edge reconstruction
Edge information (high-frequency features) is very important
for reconstructing images because structure reconstruction is

beneficial for the refinement of different blur kernels [26].
Given the blur and ground truth pairs as inputs, the edge gener-
ative network predicts the structure of the whole picture. Then,
a pretrained classification network preprocesses the edge fea-
ture information to determine the location and the class associ-
ated with the deblur kernels.

The ground truth images are preprocessed into grayscale im-
ages for further edge feature extraction, and these images are
sent to a discriminator for benchmark comparison. Ledge is the
loss function of the visual evaluation; it is designed in a genera-
tive and adversarial manner. The generator Ge produces various
generative edge maps for the discriminator De to judge the re-
alness of the generation.

Ledge = min
Ge

max
De

LGe

= min
Ge

(
aadv,1 max

De
(Ladv,1)+aFMLAM

)
. (3)

Locate deblur category
The attention mechanism [28] functions like neural cells to fo-
cus on the interesting aspects: broad-view, classification, and
location. First, we search the background to make a broad view
for latent meaningful objects by convolutional layers and ex-
tract semantic information through the multipath refinement fu-
sion unit.

The next step is classification. For a given image, gl(a,b)
is the spatial information in the first layer, and Gl represents
the sum of gl(a,b). Thus, for a specific object class, the input
∑AlGl is the input of the softmax function. A is the weight
corresponding to the class; it predicts the essential level of Gl .
Finally, Q is the output of the softmax function; it is denoted as

exp(S)

∑
e

exp(S)
. The score S is defines as follows:

S =
∑A∑gl(a,b)

∑(a,b)∑Al ∑gl(a,b)
. (4)

The global average pooling score is used to predict the im-
portance of the location of (a,b) leading to the classification of
a blurry object in the image.

From Figs. 4e, 4f, and 4g, we conclude that changing the re-
ceptive field can result in the generation of different contextual
attention results. When the receptive field is large, objects are
perceived as a whole. When the receptive field is small, we find
that each part of the object is attended to, and the texture is
located in detail.

Third, we locate the deblur category. Based on the edge
maps, we can search and place the blurry objects into six cate-
gories, as depicted in Fig. 5. In terms of each category, MFFNet
has a different deblur kernel to refine the blur features for spe-
cific objects.

The attention module can find and locate the general objects
and apply different deblur approaches through the deep learn-
ing training process. It deblurs the specific objects into sharp
objects with the aid of the edge generation modules and the
contextual attention mapping.
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(a) Sharp image (b) Random deviation

(c) Change blur kernel size (d) Change shaking angle

(e) Change shaking length (f) Motion blur

Fig. 5. Overview of blur categories for latent deblur algorithms. The
first column shows a sharp image, an image blurred by changing the
blur kernel size, and an image blurred by altering the blur shaking
length. The second column shows the blurred image with a random
standard deviation added, an image blurred by changing the shaking

angle, and an image generated by real motion blur

Patches deblurring
Following edge feature extraction and location of the contextual
attention, we can determine the structure information, predicted
object, and blurry potential class. Subsequently, we use the de-
blurring feature prior network to deblur the images and obtain
sharper images. In this way, we restore the image for applying
different blur strategies in different regions. Hence, the target
is more specific, the performance is improved, and the recon-
struction of the object structure is meaningful and vivid.

4. PERFORMANCE EVALUATION
In this section, we compare MFFNet to the recently
adopted methods, DeepDeblur [27], DeblurGAN [6], Deblur-
GANv2 [7], DMPHN [10], and SIUN [13], in terms of accuracy
and time efficiency.

4.1. Experimental setup
We implemented MFFNet using Caffe. The model was trained
with Adam (β1 = 0.9, β2 = 0.999). In the training process, the
input images were randomly cropped to 256×256. A batch size
of 16 was used for the training on four NVIDIA RTX2080Ti
GPUs. At the beginning of each epoch, the learning rate was
initialized as 10−4 and subsequently decayed by half every 10
epochs. We trained 150 epochs for VisDrone and 150 epochs
for GOPRO.

For time efficiency, we evaluated the inference time of
the existing state-of-the-art CNNs on RTX2080Ti GPUs with
11 GB RAM.

4.2. Dataset
We trained and evaluated the performance of MFFNet on
two popular benchmark datasets: VisDrone and GoPro. Vis-
Drone [29] provides synthetic blur techniques and real blurry
aerial scenarios. GOPRO [7] provides real-world motion-blur
scenarios. The size of the images in GOPRO is 1280× 768,
whereas that in VisDrone is 256×256.

4.3. Comparative experiments
We conducted comparative experiments with DeepDeblur [27],
DeblurGAN [6], DeblurGANv2 [7], DMPHN [11], and
SIUN [13] to verify the performance of our model. MFFNet
achieved state-of-the-art performance compared with SIUN.
The values of PSNR and SSIM are much higher than those
of DeblurGAN, DeepDeblur, and DMPHN, suggesting that the
proposed method is advantageous in handling mix blurs.

Moreover, our method performed better than SIUN and DM-
PHN and even much better than DeblurGANv2 in dealing with
the motion blur of GOPRO. The trends in Table 1 prove the
superiority of the MFFNet framework based on the PSNR and
SSIM values. Because the VisDrone dataset has extreme blur
and distorted texture augmentation, other methods obtained
very low SSIM values. This is because they lack the ability to
restore severe cases of missing structure information from ex-
tremely blurry images.

As shown in Table 2, DeblurGAN requires the least GPU
memory at 4538 MB, while our method requires slightly more
GPU memory than DeblurGAN in GOPRO. This is because De-
blurGAN has the least parameters and the worst deblur restora-
tion performance, respectively. For the VisDrone dataset, our
network consumes the least GPU memory for the batch size of
16. The lightweight process reduces the number of parameters
of the model, which contributes to it meeting the low-memory
requirement.

As shown in Table 3, MFFNet is the fastest method in terms
of the loading time of the network model and the inferences.
The inference was executed on an RTX2080Ti 12G GPU. The
image size from GOPRO was 1280× 768 and that from Vis-
Drone was 256×256. To prevent our network from overfitting,
several data enhancement techniques were employed. Of the
24,000 pairs of images, 22,000 pairs were used for training and
the remainder for testing. We augmented the data in VisDrone
using techniques such as extreme blur, distorted texture, crop-
ping patches, and image rotation. In terms of geometric trans-
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Table 1
Testing results of the blurred image datasets and their PSNR and SSIM values

Method DeepDeblur [27] DeblurGAN [6] DeblurGANv2 [7] DMPHN [11] SIUN [13] Our model

VisDrone
PSNR 27.1494 28.29447 28.43967 28.54136 28.28039 29.40845
SSIM 0.53937 0.60964 0.61488 0.52630 0.54342 0.86247

GOPRO
PSNR 29.4237 28.22642 32.19638 34.21846 34.46135 34.63429
SSIM 0.76137 0.74791 0.8711 0.89829 0.90091 0.90788

Table 2
GPU memory consumption by different methods (Model=MFFNet)

Method DeepDeblur [27] DeblurGAN [6] DeblurGANv2 [7] DMPHN [11] SIUN [13] Our model

VisDrone Network (MB) + Batch (8) 7930 6012 8107 7329 8561 5898
GOPRO Network (MB) + Batch (8) 6311 4538 6861 6541 8399 5452

Table 3
Average time inferring images

Method DeepDeblur [27] DeblurGAN [5] DeblurGANv2 [6] DMPHN [11] SIUN [13] Our model

VisDrone InferTime (s) 2.362 2.144 2.663 0.764 0.357 0.319
GOPRO InferTime (s) 2.427 2.346 2.528 1.886 0.684 0.494

formations, the patch was flipped horizontally or vertically and
rotated at a random angle. For color, the RGB channel was ran-
domly replaced. To consider image degradation, saturation in
the HSV color space was multiplied by a random number in the
range [0,5]. In addition, Gaussian random noise was added to
the blurred image. To make our network robust to noise at dif-
ferent levels, the standard deviation of noise was also randomly
sampled from a Gaussian distribution N (0–1). In the form of
a preset blur kernel, blur was artificially added to the clear im-
age to ensure that pairs of training data could be obtained.

4.4. Loss design and training strategy
Given a pair of sharp and blurred images as input, MFFNet pro-
duces four groups of feature maps at different scales. Assum-
ing that the input image size is H ×W , the four scales of the
feature maps are H/4×W/4, H/8×W/8, H/16×W/16, and
H/32×W/32.

Loss design
In the training process, we adopted the L2 loss between the pre-
dicted deblurring result map and the ground truth as follows:

L(θ) =
1

2N

N

∑
i=1

∥∥xi
s−F

(
xi

l
)∥∥2

, (5)

where θ is the parameter set, xi
s is the ground truth patch, and F

is the mapping function that generates the restored image from
the N-interpolated LR training patches xl . Here, the patch size
is defined at different levels.

The multiscale refinement loss function is useful in learning
the features in a coarse-to-fine manner. Each refinement path
has a loss function that can be used to evaluate the training pro-
cess. Moreover, our scale refinement loss function computes the

results at different scales, which leads to a much faster conver-
gence speed and an even higher inference precision. The final
loss is calculated as follows:

Lfinal =
1

2K

K

∑
k=1

1
ckwkhk

‖Lk−Sk‖2 +Ledge , (6)

where Lk represents the model output of the scale level K, and
Sk is the k-th scale sharp map. The loss at each scale is normal-
ized by the number of channels Ck, width Wk, and height Hk.
Lfinal is the final loss function of the training process.

Progressive weighted training process
The progressive weighted training process ensures the training
converge fast and smooth. At the multipath refinement extrac-
tion and fusion stage, the task is to fuse the deblurring feature
and the edge feature from the outputs, to generate the final re-
stored frame.

During the training process, the patches with blurry features,
refined features, and ground truth are used as inputs.

First, the edge feature is extracted from the ground truth in
the patches. Here, α is a hyperparameter that is set to zero ini-
tially to control the proportion of the refined resource. Second,
the refined patches and the mixed edge feature patches are fused
in the contextual attention module. Then, the contextual atten-
tion module uses the softmax function to predict the foreground
and generate the preliminary activated heatmaps. Third, α is set
to one, and the deblur refined feature patches are sent to the at-
tention module during the training process and predicted by the
attention module once again. The results are compared with the
synthesis loss function between the predicted deblurring results
and the patches with sharp feature. Therefore, at the beginning
of the training, the deblurring feature refines the input blurry
images and benefits the edge feature extraction; in the middle of
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Table 4
Quantitative numerical results for PSNR and SSIM values

Method RefineNet [9] LR-RefineNet EA-RefineNet MFFNet

VisDrone
PSNR 28.73991 29.24461 29.03971 29.40845
SSIM 0.85476 0.86016 0.85860 0.86247

GOPRO
PSNR 34.17826 34.21445 34.3943 34.63429
SSIM 0.89437 0.90700 0.90301 0.90788

the training process, the deblurring and edge features are fused
by controlling the parameter α; each path containing a differ-
ent scale of double feature patches is refined and matched by the
multipath context attention module with the activated heatmaps
to infer the final predictions.

4.5. Ablation experiments
The original MFFNet uses RefineNet [9] as the benchmark. We
added a lightweight and residual connection to the benchmark
and denoted it as LR-RefineNet. Next, we added edge recon-
struction and attention modules to LR-RefineNet and denoted it
as EA-RefineNet. Finally, we combined the lightweight resid-
ual strategy and attention modules into MFFNet.

As shown in Table 4, LR-RefineNet and EA-RefineNet per-
formed slightly better than RefineNet. MFFNet had the best nu-
merical results.

As illustrated in Fig. 6, the multiscale refinement loss func-
tion takes each sub-task as an independent component within
a joint task, allowing the training process to converge more
rapidly and perform better than the other training methods. The
training losses of other approaches decrease remarkably in the
first round and consistently remain at 6% in a smooth trend in
the following training courses. Our method, aided by the loss
weight scheduling technique, exhibits a dramatic downward
trend first and remains at approximately 4%. The model ac-
curacy improvements (approximately 10–21%) resulting from
multiple rounds of training for the four loss weight groups ver-
ify the convergence and advantages of our method’s training
strategy.

Fig. 6. Training loss of the four methods. Only the first two epochs
are shown

In summary, the experimental results indicate that MFFNet
can achieve considerable precision. Furthermore, MFFNet runs
4–5 times faster than other deblurring models such as SIUN
and DMPHN. Compared with DeblurGAN and DeblurGANv2,
the proposed MFFNet model performs well both in terms of
speed and the deblurring quality of images. Owing to the added
lightweight process, the GPU memory occupation remains at
a low level. Our method can also recover more details and
achieve relatively high SSIM and PSNR values. Figure 7 shows
the results of other models whose images remain unstable
and sometimes contain artifacts and color distortions, whereas
the MFFNet performs image deblurring in a stable and sharp
manner.

Fig. 7. Results of comparative experiments: (left to right) blurry,
DeblurGAN, DMPHN, SIUN, ours, and ground truth images

5. CONCLUSION AND FUTURE WORK
In this study, we propose an efficient and accurate framework
called MFFNet. The proposed network utilizes a lightweight
process, remote residual connection, edge attention mecha-
nisms, and scale refinement loss function to enable the model
to handle real blur scenarios, preserving fast inference speed
and high precision. It can extract various features by schedul-
ing the weight of the joint training losses and carries out fusion
guided by attention modules, leading to accurate and efficient
image restoration. We compared MFFNet with existing models
on two popular deblurring datasets and showed that it achieves
state-of-the-art performance.

In future work, we will develop a faster deblurring inference
engine for MFFNet. The computational capability will likely
be much lower than that of the GPUs used in our experiments.
Model compression techniques, such as pruning and quantiza-
tion, will also be explored. We will also apply this model to
video deblurring or the deblurring of inpainting results at the
post-processing stage.
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