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Abstract

In this article we have described a multiproduct model of economical
dynamics of Gale type, in which the changes in production technology (the
dynamics of Gale type production spaces) depend upon the scale of targeted
investments. Under such assumptions we have proved a so-called “weak”
version of a multilane turnpike theorem in the Gale type economy with varying
technology which converges to a certain limit technology. It states that in the
long periods of time, regardless of the initial state of the economy, the optimal
growth processes almost always lie close to the family of steady growth paths
with maximum growth rate called the multilane turnpike.
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1 Introduction

More than six decades ago P. A. Samuelson (1960) formulated the hypothesis about
a specific convergence in long periods of time of the optimal growth paths to a certain
“model” path, on which the economy achieves the maximum, even production growth.
This “model” path which characterizes the economy in a specific dynamic equilibrium
(known as the von Neumann equilibrium) is suggestively compared to a highway
(a turnpike) in a road transport. If we are to reach a nearby town from a certain
location, then we go directly to our destination using local roads. However, if our
destination is far away, then we try to get in the first place a highway (a turnpike)
and then move along it for as long as possible. Only the final part of our journey will
be taken again on local roads. By identifying the location of our starting point and
destination with the states of the economy and by denoting by T = {0, 1, . . . , t1} the
period of time (horizon) of the economy that we are interested in, with the contractual
initial period t = 0 and the final period t1 < +∞, the turnpike law can be formulated
as follows: Starting from the historically shaped initial state (in the period t = 0)
a rationally functioning economy should reach its turnpike (the “model” growth path)
as quickly as possible, then in the middle growth phase it should follow this turnpike
and in the end phase (in the last periods of the horizon T ) it can possibly move away
from the turnpike to reach the final state.
The presented economic growth hypothesis aroused great interest around the world
among many mathematical economists. They proved many variants of the turnpike
theorems (production, capital, consumption turnpikes) in various multi-sector/multi-
product models of economic dynamics, mainly of the Neumann-Gale type. As a result
of the research conducted over the past half of the century, the turnpike theory
has been developed. Today it is one of the pillars of mathematical economics. In
all Neumann-Gale models of the economic dynamics, one of the main concepts are
the so-called production spaces (in other words: technological sets). In all research
on this subject it is assumed either that the production technology is stationary
(time invariable) or (less frequently) that the technological changes determining the
dynamics of production spaces (technological sets) do not require investment inputs
and thus they are a peculiar gift of God or of nature; see e.g. Giorgi G. and Zuccotti
C. (2016), Lancaster K. (1968, Part III, Chapters 10, 11), Makarov, Rubinov (1977),
Nikaido (1968, Chapter 4), Panek (2000, Part 2, Chapters 5, 6), Takayama (1985,
Chapters 6, 7). A comprehensive bibliography of papers on turnpike theory can be
found in McKenzie (2005), Mitra and Nishimura (2009). This strand also includes
the author’s earlier papers on the turnpike properties of the optimal growth processes
in the stationary (2016, 2017) and non-stationary (2017b, 2018, 2019a, 2019c, 2020a,
2020b) Gale economies with a multilane turnpike and papers focused on the turnpike
effect in a Gale economy with a general form of the growth criterion (2019b), as well
as with a minimal-time growth criterion – the so-called optimal-time growth problem
(2021).
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The assumption that changes in production technology in the economy do not require
investment expenditures is a simplification. Hence the question arises whether in
models of economic dynamics with a Gale production space the turnpike effect will also
take place after including the investment mechanism? This paper gives an affirmative
answer to this question. Its added value lies particularly in:

i) generalization of the classical model of Gale economic dynamics by (a) including
the non-stationarity of the economy (here: changes in production technology
over time) and (b) allowing in the model the existence of more than one
production turnpike and replacing the standard single turnpike (single von
Neumann ray) with a bundle of turnpikes (the so-called multilane turnpike),

ii) inclusion of an investment mechanism in the non-stationary Gale economy
and the proof of a “weak” turnpike theorem in the case when the changes in
production technology in such an economy (with the dynamics of production
spaces) are determined by the investment expenditures allocated for this
purpose.

Thus we obtain another confirmation of the universal nature of the turnpike theorem
in the mathematical economics, which states that in long periods of time the optimal
growth processes should lie near certain specific/distinguished paths of the steady
growth. Those paths are called turnpikes and the economy remains on them in
the so-called von Neumann (dynamical) equilibrium and this way achieves both the
maximum rate of growth and the highest technological and economic production
efficiency.
It is likely that the strong and very strong version of this theorem remains valid but
the confirmation of such conjecture requires further work.
The structure of the paper is as follows. In Section 2 we discuss the basic properties
of the Gale type production space which are need to construct models of economy
dynamics of Gale type with investments and limiting technology. The way in which
the investments influence the production technology (the shape of production spaces)
in our model of economy is described in Section 3. In Section 4 we define the
multilane production turnpike and the stationary growth rate. We also discuss
specific properties of those. In Section 5 we formulate the conditions under which
the dynamical von Neumann equilibrium exists in the presented Gale type economy
with investments. We also clarify the link between von Neumann equilibrium and the
growth of economy in the multilane production turnpike. The key result is contained
in Section 6. This is where we define the optimal growth process and prove the weak
version of the multilane turnpike theorem in the non-stationary Gale economy with
investments.
We indicate in the summary possible further research directions which the interested
readers can pursue.
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2 Production space. Technological efficiency of
production

We consider an economy where time is discrete, t = 0, 1, . . . In each
time period there is n goods which are produced and/or used up in
production. Let x(t) = (x1(t), . . . , xn(t)) = 0 be a vector of goods used and
y(t) = (y1(t), . . . , yn(t)) = 0 be a vector of goods produced in period t (if a, b ∈ Rn,
then a = b stands for ai ≥ bi, i = 1, 2, . . . , n; a ≥ b denotes a = b and a 6= b).
The vector x(t) is called the vector of inputs and the vector y(t) is called the
vector of outputs (production). If the available technology allows to obtain from
the input vector x(t) the output vector y(t), then the pair (x(t), y(t)) describes
a technologically feasible production process (in time period t). Let Z(t) ⊂ R2n

+
denote the set of technologically admissible production processes in the period t.
The condition (x, y) ∈ Z(t) (equivalently (x(t), y(t)) ∈ Z(t)) says that in the period t
one can produce y from the inputs x in the economy. The set Z(t) is called the Gale
production space (technological set) if the following condition are satisfied:

(G1) ∀
(
x1, y1) , (x2, y2) ∈ Z(t), ∀λ1, λ2 ≥ 0

(
λ1
(
x1, y1)+ λ2

(
x2, y2) ∈ Z(t)

)
(inputs/outputs proportionality condition and the additivity of production
processes).

(G2) ∀(x, y) ∈ Z(t) (x = 0⇒ y = 0) (“no cornucopia” condition).

(G3) ∀(x, y) ∈ Z(t), ∀x′ = x, ∀ 0 5 y′ 5 y ((x′, y′) ∈ Z(t)) (possibility of wasting the
inputs/outputs).

(G4) Production spaces Z(t) are closed subsets of R2n
+ .

Gale production space is a convex closed cone in R2n
+ . If (x, y) ∈ Z(t) and (x, y) 6= 0,

then under (G2) we have x 6= 0. We consider only nonzero (nontrivial) production
processes. Let us consider a process (x, y) ∈ Z(t) \ {0}. The number

α(x, y) = max {α : αx 5 y}

is called the technological efficiency rate of the process (x, y) in the period t. The
function α(·) is defined and positively homogenous of degree 0 on R2n

+ \ {0} and

α(x, y) = min
i

yi
xi
.

Theorem 1. If the production space Z(t) is of Gale type (satisfies the conditions
(G1)–(G4)), then:

∃ (x(t), y(t)) = (x, y) ∈ Z(t) \ {0}
(
α (x, y) = max

(x,y)∈Z(t)\{0}
α(x, y) = αM,t ≥ 0

)
.
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Proof. The function α(·) is positive homogenous of degree 0 and nonnegative, hence
the solution to maximization problem:

max
(x,y)∈Z(t)\{0}

α(x, y)

exists if and only if there exists a solution of the problem:

max
(x,y)∈Ω(t)

α(x, y), (1)

where
Ω(t) = {(x, y) ∈ Z(t) : ‖x‖ = 1}

(if a ∈ Rn+, then ‖a‖ =
∑n
i=1 ai). The set Ω(t) is compact (bounded and closed

in R2n). Indeed, if we consider a sequence of processes
(
xi, yi

)
∈ Ω(t) ⊂ Z(t),

i = 1, 2, . . . , and assume that
∥∥xi, yi∥∥ i→ +∞, hence

∥∥yi∥∥ i→ +∞, because
∀i
(∥∥xi∥∥ = 1

)
. Since

(
xi, yi

)
∈ Z(t), then under the condition (G1), holds from

the element where the vector ηi is defined (
∥∥yi∥∥ > 0), we have

(
ξi, ηi

)
∈ Z(t),

where ξi = (1/‖yi‖)xi = xi/‖yi‖, ηi = (1/‖yi‖)yi = yi/‖yi‖, i = 1, 2, . . . Because
ξi

i→ 0,
∥∥ηi∥∥ = 1, therefore:

∃
{
ξij , ηij

}∞
j=1

(
ξij

j→ 0, ηij j→ η 6= 0
)

and (0, η) ∈ Z(t) (since the Gale production space is closed), which is in contradiction
with the condition (G2). We have proved that the set Ω(t) is bounded. Let(
xi, yi

)
∈ Ω(t) ⊂ Z(t), i = 1, 2, . . . ,

(
xi, yi

) i→ (x, y) . It follows that ‖x‖ = 1 and
(x, y) ∈ Z, so (x, y) ∈ Ω. The set Ω(t) is therefore closed, hence compact. If the
function α(·) were continuous on Ω(t), then to finish/complete the proof it would
be enough to use the Weierstrass theorem about the existence of a maximum of a
continuous function on the compact set. The function α(·) is admittedly continuous
on int Ω(t), but unfortunately it can be discontinuous on the boundary of that set.
To avoid this problem we use the property that the task (1) is equivalent with:

max
α∈α(Ω(t))

α, (2)

where α (Ω(t)) = {α : ∃(x, y) ∈ Ω(t) (α = α(x, y))}⊂ R1
+. The equivalence means

that the process (x, y) is a solution to (1) if and only if the number α = α (x, y)
is a solution to the task (2). We present a proof that the set α (Ω(t)) is compact
(bounded and closed in R1).
(Boundedness) Assume that ∃ {αi}∞i=1

(
αi ∈ α (Ω(t)) &αi

i→ +∞
)
. Then:

∃
{
xi, yi

}∞
i=1

(
yi = αix

i,
(
xi, yi

)
∈ Ω(t) ⊂ Z(t),

∥∥xi∥∥ = 1, i = 1, 2, . . . ,
∥∥yi∥∥ i→ +∞

)
61 E. Panek
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and following the proof of compactness of the set Ω(t) we reach the conclusion that
to the production space Z(t) belongs a process (0, η) with the vector η 6= 0, which
contradicts the condition (G2).
(Closed set) Let αi ∈ α (Ω(t)), i = 1, 2, . . . , and αi

i→ α. Then:

∃
{
xi
}∞
i=1

(∥∥xi∥∥ = 1 &
(
xi, αix

i
)
∈ Ω(t)

)
.

Since ∀i
(∥∥xi∥∥ = 1

)
, then:

∃
{
xij
}∞
j=1

(∥∥xij∥∥ = 1, xij j→ x, ‖x‖ = 1
)
,

i.e.
(
xij , αijx

ij
) j→ (x, αx) ∈ Ω(t), since the set Ω(t) is compact. That proves the

property α ∈ α(Ω(t)).
The set α (Ω(t)) is a compact subset of R1

+, hence it contains the supremum of a
sequence:

∃αM,t ∈ α (Ω(t)) ,∀α ∈ α (Ω(t)) (αM,t ≥ α ≥ 0) ,

and:

∃ (x(t), y(t)) = (x, y) ∈ Ω(t)
(
αM,t = α (x, y) = max

(x,y)∈Ω(t)
α(x, y) ≥ 0

)
.

Another version of the proof was presented in Takayama (1985, Theorem 6.A.1). The
process (x(t), y(t)) is called the optimal production process in the Gale economy in
period t. All such processes are defined up to multiplication by a positive constant
(determine up to structure). The number αM,t is called the optimal technological
efficiency rate of the economy in the period t. We are interested in economies with
positive technological efficiency.

3 Dynamics. Feasible growth processes. Limit
production space

We assume the following:

i) production technology in the time period t+ 1 (represented by the production
space Z(t+ 1)) depends upon the production technology in the previous period
and investment inputs i(t) = (i1(t), . . . , in(t)) = 0 (which affect the outcomes
in the next year, thus, for the sake of simplification, we assume an annual
investment cycle in the economy),
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ii) the source of investment i(t) is the production generated in the economy in the
period t :

0 5 i(t) 5 y(t). (3)

We denote by σ
(
R2n

+
)
a family of the Gale production spaces (closed convex cones in

R2n
+ which satisfy the conditions (G1)–(G4)). The technology dynamics is described

by the following recurrence equation:

Z(t+ 1) = Ft+1 (Z(t), i(t)) , t = 0, 1, . . . , (4)

in which the reproduction function Ft : σ
(
R2n

+
)
× Rn+ → σ

(
R2n

+
)
has the following

properties:

(F1) ∀t ∀Z ∈ σ
(
R2n

+
)

(Ft(Z, 0) = Z) ,

(F2) ∀t ∀Z ∈ σ
(
R2n

+
)
∀i1 = i2 = 0

(
Ft
(
Z, i1

)
⊇ Ft

(
Z, i2

))
,

(F3) ∀t ∀Z1, Z2 ∈ σ
(
R2n

+
)
∀i = 0

(
Z1 ⊇ Z2 ⇒ Ft

(
Z1, i

)
⊇ Ft

(
Z2, i

))
.

A production space Z(0) is given:

Z(0) = Z0 ⊂ R2n
+ . (5)

Equation (4) informs us that the dynamics of production space (or production
technology) is determined by investments. In particular, the lack of investments
implies that the technology of production does not change (i.e. a vector i(t) is
identified with the investments netto which increase the production asset). The more
investments is made in the period t, the larger are the production capabilities of the
economy in the next period.
The economy is closed in the sense that the only source of inputs x(t+1) (incurred in
the economy in period t + 1) may be the production y(t) (generated in the previous
period) reduced by the investments i(t):

x(t+ 1) 5 y(t)− i(t), t = 0, 1, . . . ,

which under (G3) leads to the condition:

(y(t)− i(t), y(t+ 1)) ∈ Z(t+ 1), t = 0, 1, . . . (6)

We fix an initial production y0 at t = 0:

y(0) = y0 ≥ 0. (7)

If there are production spaces Z(t), t = 0, 1, . . . , meeting the conditions (G1)–(G4),
(F1)–(F3) and subject to the growth rules (3)–(7), then we say that a Gale economic
dynamic model (growth model) with investments is given. We say that a triple which
consists of three sequences:

63 E. Panek
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i) production vectors {y(t)}∞t=0,

ii) investment vectors {i(t)}∞t=0,

iii) and production spaces {Z(t)}∞t=0

satisfying conditions (3)–(7) determines a (Z0, y0,∞)-feasible growth process in
the Gale economy with investments. The sequence {y(t)}∞t=0 is a (y0,∞)-
feasible production trajectory, the sequence {i(t)}∞t=0 - a feasible investments
trajectory (corresponding to the (y0,∞)-feasible production trajectory). The sequence
{Z(t)}∞t=0 forms a (Z0,∞)-feasible sequence of production spaces. In each (Z0

, y0,∞)-
feasible growth process production spaces satisfy a condition: Z(t+ 1) ⊇ Z(t). Under
such conditions we have

∀t (αM,t+1 ≥ αM,t)
and to guarantee a positive optimal technological efficiency of the economy in every
time period t it is enough to reach the condition:

(G5) αM,0 > 0.

The rules we have imposed on the growth do not exclude the following unrealistic
situation where limt αM,t = +∞. Meanwhile, if limt αM,t = +∞, then it is
easy to show on the simplest model of single-good economy with production spaces
Z(t) ⊆ Z(t+ 1) ⊂ R2

+, t = 0, 1, . . ., that in the limit the condition (G2) is not
satisfied, i.e. there exist processes (0, y), for which it is possible to produce an
(arbitrarily) large production y > 0 under zero expenditures. To exclude such a
behavior we impose the following conditions:

(F4) (i) There exists a convex closed set Z ⊂ R2n
+ which contains all sets (cones)

Z(t) belonging to any (Z0,∞)-sequence of production spaces in any
(Z0, y0,∞)-feasible growth process.

(ii) Set Z is such the smallest set satisfying the condition (i) that if (x, y) ∈ Z
and x = 0, then y = 0.

Theorem 2. If the conditions (F1)–(F4) are satisfied, the set Z is a space of Gale
type (satisfies conditions (G1)–(G4)).

Proof. We divide the proof into several steps.
Step 1. We denote by Z̃ the set-theoretic union of production spaces in all (Z0, y0,∞)-
feasible growth processes, Z̃ ⊆ Z. If z ∈ Z̃, then there exists a (Z0,∞)-feasible
sequence of production spaces {Z(t)}∞t=0 and a time period τ , for which z ∈ Z(τ) ⊆ Z̃.

The space Z(τ) is a convex cone, hence λz ∈ Z(τ) ⊆ Z̃, where λ is any nonnegative
number. Thus:

∀z ∈ Z̃ ∀λ ≥ 0
(
λz ∈ Z̃

)
E. Panek
CEJEME 14: 57-80 (2022)

64



Gale Economy . . .

(a set with such properties is called a cone, not necessarily convex).
Step 2. Let conv Z̃ be the smallest convex set which contains Z̃ (so-called convex
hull of Z̃). We prove that conv Z̃ is a convex cone which satisfies the conditions
(G1)–(G3).
(a) Let z ∈ conv Z̃. Then

∃z1, z2 ∈ Z̃ ∃α, β ≥ 0, α+ β = 1
(
z = αz1 + βz2) .

We fix any λ ≥ 0. Since z1, z2 ∈ Z̃, then (according to Step 1) λz1, λz2 ∈ Z̃ and we
obtain from the definition of conv Z̃ that:

αλz1 + βλz2 = λ
(
αz1 + βz2) = λz ∈ conv Z̃,

hence:
∀z ∈ conv Z̃ ∀λ ≥ 0

(
λz ∈ conv Z̃

)
. (8)

Let z1, z2 ∈ conv Z̃ be two arbitrary vectors. Let z = z1 + z2. If z1 = 0, then
z = z2 ∈ conv Z̃. Similarly, when z2 = 0, then z = z1 ∈ conv Z̃. Let us suppose
that z1, z2 6= 0 and consider:

z1 = z1

‖z1‖
, z2 = z2

‖z2‖
, λ1 = 1

‖z1‖
, λ2 = 1

‖z2‖
.

It follows that
∥∥z1
∥∥ =

∥∥z2
∥∥ = 1, λ1, λ2 > 0, z1 = λ1z

1 ∈ conv Z̃ and
z2 = λ2z

2 ∈ conv Z̃. Let α =
∥∥z1
∥∥ /∥∥z1 + z2

∥∥, β =
∥∥z2
∥∥ / ∥∥z1 + z2

∥∥, then α, β > 0,
α+ β = 1. Since conv Z̃ is a convex set, then

z = αz1 + βz2 =
∥∥z1
∥∥ z1

‖z1 + z2‖
+

∥∥z2
∥∥ z2

‖z1 + z2‖
=

=
∥∥z1
∥∥

‖z1 + z2‖
· z1

‖z1‖
+

∥∥z2
∥∥

‖z1 + z2‖
· z2

‖z2‖
=

= z1

‖z1 + z2‖
+ z2

‖z1 + z2‖
=

= z

‖z‖
∈ conv Z̃.

Considering λ = ‖z‖ > 0, according to (8) we obtain z = λz ∈ conv Z̃. Finally:

∀z1, z2 ∈ conv Z̃
(
z = z1 + z2 ∈ conv Z̃

)
. (9)

The conditions (8)–(9) are equivalent to (G1). The set conv Z̃ is a convex cone.
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(b) To prove that the convex cone conv Z̃ satisfies condition (G2) let us assume, to
the contrary, that the vector z = (0, y) = (0, . . . , 0, y1, . . . , yn) with zero expenditures
and production vector y with at least one positive coordinate belongs to this cone.
Then, according to the definition of conv Z̃, there exist vectors z1 =

(
0, y1) ∈ Z̃,

z2 =
(
0, y2) ∈ Z̃ and numbers α, β ≥ 0, such that α+ β = 1 and

z = (0, y) = αz1 + βz2 =
(
0, αy1 + βy2) ∈ conv Z̃.

The set Z̃ is a union of all production spaces in every
(
Z0, y0,∞

)
-feasible growth

process, so that there exists
(
Z0,∞

)
-feasible sequences of spaces

{
Zi(t)

}∞
t=0, i = 1, 2,

and time periods τ1, τ2, such that

z1 =
(
0, y1) = z1 (τ1) =

(
0, y1 (τ1)

)
∈ Z1 (τ1) , (10)

z2 =
(
0, y2) = z2 (τ2) =

(
0, y2 (τ2)

)
∈ Z2 (τ2) . (11)

Since y = y1 + y2 6= 0 (and the vectors y1, y2 are non-negative), the vector
y1 = y1 (τ1) 6= 0 or y2 = y2 (τ2) 6= 0 (or both hold). If y1 (τ1) 6= 0, then the
condition (10) leads to a contradiction with (G2). In a similar fashion, when
y2 (τ2) 6= 0, the condition (G2) contradicts (11). So if z = (0, y) ∈ conv Z̃ then
y = 0 and (G2) holds true.
(c) Let z = (x, y) ∈ conv Z̃. Given that (x, y) ∈ Z̃ ⊆ conv Z̃, there exists an(
Z0,∞

)
-feasible sequence of spaces {Z(t)}∞t=0 and time period τ , such that

z = (x, y) ∈ Z(τ) ⊆ Z̃. Then according to (G3)

∀x′ = x ∀ 0 5 y′ 5 y ((x′, y′) ∈ Z(τ)) .

Hence:

(x, y) ∈ Z̃ =⇒ ∀x′ = x∀0 5 y′ 5 y
(

(x′, y′) ∈ Z(τ) ⊆ Z̃ ⊆ conv Z̃
)
. (12)

If z = (x, y) ∈ conv Z̃, z /∈ Z̃, then

∃z1 =
(
x1, y1) ∈ Z̃ ∃z2 =

(
x2, y2) ∈ Z̃ ∃α, β ≥ 0, α+ β = 1(

z = (x, y) = α
(
x1, y1)+ β

(
x2, y2) ∈ conv Z̃

)
(13)

Since
(
x1, y1) ∈ Z̃, (x2, y2) ∈ Z̃, the method presented above leads to:

∀x′1 = x1 ∀ 0 5 y′1 5 y1
((
x′1, y′1

)
∈ Z̃ ⊆ conv Z̃

)
,

∀x′2 = x2 ∀ 0 5 y′2 5 y2
((
x′2, y′2

)
∈ Z̃ ⊆ conv Z̃

)
.
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Let z′ = (x′, y′) = α
(
x′1, y′1

)
+ β

(
x′2, y′2

)
(with α, β as in (13)). Then

z′ = (x′, y′) ∈ conv Z̃ and

x′ = αx′1 + βx′2 = αx1 + βx2 = x,

0 5 y′ = αy′1 + βy′2 5 αy1 + βy2 = y.

We draw the following conclusion:

(x, y) ∈
(

conv Z̃
)
\ Z̃ =⇒ ∀x′ = x ∀ 0 5 y′ 5 y

(
(x′, y′) ∈ conv Z̃

)
. (14)

Due to (12), (14) the convex cone conv Z̃ satisfies the condition (G3).
Step 3. Finally, let us consider the set Z again. From our assumption this is
the smallest convex closed set which contains a union of all production spaces
belonging to any

(
Z0, y0,∞

)
-feasible growth process, i.e. it is the least closed

subset which contains conv Z̃; such a set is the topological closure of conv Z̃,
Z = cl

(
conv Z̃

)
. We prove that the set Z satisfies conditions (G1), (G3). We

fix two vectors z1 =
(
x1, y1) ∈ Z, z2 =

(
x2, y2) ∈ Z, numbers λ1, λ2 ≥ 0 and a vector

z = (x, y) = λ1z
1 + λ2z

2 = λ1
(
x1, y1) + λ2

(
x2, y2) . The vectors z1, z2 are limit

points in conv Z̃, so there exist sequences z1i =
(
x1i, y1i) , z2i =

(
x2i, y2i) ∈ conv Z̃,

i = 1, 2, . . . , convergent (respectively) to z1, z2. The set conv Z̃ is a convex cone,
hence ∀i

(
zi = λ1z

1i + λ2z
2 ∈ conv Z̃

)
, and then:

lim
i
zi = lim

i

(
λ1z

1i + λ2z
2i) = λ1z

1 + λ2z
2 = λ1

(
x1, y1)+ λ2

(
x2, y2) = z ∈ Z.

The set Z satisfies the condition (G1) (is a convex cone). Similarly, if z = (x, y) ∈ Z,
then there exists a sequence zi =

(
xi, yi

)
∈ conv Z̃, i = 1, 2, . . . , convergent to z. Let:

x′ = x, 0 5 y′ 5 y, x̃i = xi + x′ − x,

ỹi = max
{

0, yi + y′ − y
}

=
(
max

{
0, yi1 + y1

′ − y1
}
, . . . ,max

{
0, yin + yn

′ − yn
})
.

Thus x̃i = xi,0 5 ỹi 5 yi,z̃i =
(
x̃i, ỹi

)
∈ conv Z̃ ⊆ Z and

lim
i
z̃i = lim

i

(
x̃i, ỹi

)
= (x′, y′) = z′ ∈ Z

(from its definition the set Z is closed), hence

∀(x, y) ∈ Z ∀x′ = x∀ 0 5 y′ 5 y ((x′, y′) ∈ Z) .

The set Z satisfies the condition (G3).
The conditions (G2), (G4) hold under our assumptions.
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The set Z defined above is called the limit production space. A condition (x, y) ∈ Z
means that one can produce y from the inputs x. If (x, y) ∈ Z \ {0}, a number

α(x, y) = max {α : αx 5 y}

is called the technological efficiency rate of the limit process (x, y). Theorem 1 remains
valid (upon replacing the space Z(t) with its limit counterpart Z):

∃ (x, y) ∈ Z \ {0}
(
α (x, y) = max

(x,y)∈Z\{0}
α(x, y) = αM ≥ 0

)
.

A number αM is called the optimal technological efficiency rate in the Gale economy
with limit production space. The inclusion Z ⊇ Z(t+ 1) ⊇ Z(t), t = 0, 1, . . . , implies
under (G5) the following:

∀t (αM ≥ αM,t+1 ≥ αM,t ≥ αM,0 > 0) .

A process (x, y) is the optimal growth process in the Gale economy with limit
production space.

4 Multilane production turnpike. Stationary
production trajectories

We introduce the following notation:

Zopt = {(x, y) ∈ Z \ {0: α (x, y) = αM}} . (15)

The set Zopt is a union of all optimal growth processes in the Gale economy with
limit production space Z. If the conditions (G1)–(G5), (F1)–(F4) are satisfied,
the set Zopt is a convex cone in R2n

+ without 0; see Panek (2016), Theorem 1.
Moreover, if (x, y) ∈ Zopt, then under (G1), (G3) it follows that (x, αMx) ∈ Zopt
and (y, αMy) ∈ Zopt. A vector s = y/ ‖y‖ characterizes the production structure in
the optimal process (x, y) ∈ Zopt in Gale economy with limit technology. We denote
by S the set of vectors of the production structure in all the optimal processes in the
Gale economy with limit technology:

S =
{
s : ∃(x, y) ∈ Zopt

(
s = y

‖y‖

)}
.

Equivalently S = {s : ∃(x, y) ∈ Zopt (s = x/ ‖x‖)}. Our set S exists under the same
condition which gave rise to the set Zopt and exists under the same kind of conditions
imposed on Zopt. This set is convex and compact; Panek (2016, Theorem 2(i)).
The half line:

Ns = {λs : λ > 0} , s ∈ S
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is called a von Neumanna ray (single production turnpike) in the Gale economy with
limit technology. A set

N =
⋃
s∈S

Ns

is called a multilane turnpike in Gale economy with limit technology. The multilane
turnpike N is a convex cone without 0.

Lemma 3. Let us assume that the non-stationary economy with investments meets
conditions (G1)–(G5), (F1)–(F4). Then if in a certain limit production process
(x, y) ∈ Z \ {0}, the structure of inputs x/ ‖x‖ or outputs y/ ‖y‖ differs from the
turnpike’s structure, then its technological efficiency is lower than optimal:

∀(x, y) ∈ Z \ {0}
(

x

‖x‖
/∈ S ∨ y

‖y‖
/∈ S ⇒ α(x, y) < αM

)
.

Proof. (See also Panek (2018, Lemma 1)). Let x ∈ N. Then the pair (x, y) ∈ Z \ {0}
with the vector y = αMx represents an optimal production process in Gale economy
with a limit technology, or (x, y) ∈ Zopt. Therefore

∀x ∈ N ∃y ∈ Rn+ ((x, y) ∈ Z \ {0} ∧ α(x, y) = αM > 0) .

However, if x /∈ N, then the technological efficiency of the process (x, y) ∈ Z \ {0} is
lower than optimal. Indeed, assuming that (x, y) ∈ Z \{0} and α(x, y) = αM , we get:
(x, y) ∈ Zopt, that is (x, αMx) ∈ Zopt. Then x ∈ N, contrary to our assumption.
Similarly, if y ∈ N, then for the input vector x = α−1

M y we obtain an admissible
process (x, y) ∈ Z \ {0} with technological efficiency α(x, y) = αM , so (x, y) ∈ Zopt.
Therefore

∀y ∈ N ∃x ∈ Rn+ ((x, y) ∈ Z \ {0} ∧ α(x, y) = αM > 0) .

Let us suppose now that (x, y) ∈ Z \{0}, y /∈ N and α(x, y) = αM . Then (x, y) ∈ Zopt
and (y, αMy) ∈ Zopt, so y ∈ N in contradiction to our assumption. To sum up:

∀ (x, y) ∈ Z \ {0} (x /∈ N ∨ y /∈ N ⇒ α(x, y) < αM ) . (16)

The thesis of the theorem follows from the fact that condition x /∈ N is equivalent to
(x/ ‖x‖) /∈ S and (similarly) the condition y /∈ N is equivalent to (y/ ‖y‖) /∈ S.

According to (16) the maximal technological efficiency is achieved by the economy
only on the multilane turnpike N. Consider a limit production space Z. Substituting
in (4):

Z(0) = Z and i(t) = 0, t = 0, 1, . . . ,

we obtain Z(t) ≡ Z = const. Let y ∈ N, then:

(y, αMy) ∈ Zopt ⊂ Z,
(
αMy, α

2
My
)
∈ Zopt ⊂ Z, . . . ,
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and the sequence {y(t)}∞t=0, in which

y(t) = αtMy, t = 0, 1, . . . , (17)

defines a (y,∞)-feasible production trajectory in Gale economy with limit technology
and initial production vector y(0) = y∈ N. In such economy a (Z, y,∞)-feasible
growth process consists of a triple {y(t)}∞t=0, {i(t)}

∞
t=0, {Z(t)}∞t=0 with production

trajectory (17), investments i(t) = 0 and production spaces Z(t) = Z, t = 0, 1, . . . On
the trajectory (17) the economy reaches its highest growth rate αM > 0 and

∀t
(

y(t)
‖y(t)‖ = y

‖y‖
= s ∈ S

)
.

For that reason, we call such a trajectory a stationary production trajectory with
maximal growth rate (shortly: optimal stationary production trajectory). Any
positive multiple or sum of such two trajectories is again an optimal stationary
production trajectory (always with zero investments and constant production spaces
Z(t) = Z, t = 0, 1, . . .) These trajectories all lie on the multilane turnpike N.

5 Economic efficiency of production and
von Neumann equilibrium

Let us consider any production process (x, y) ∈ Z \ {0}. Let p = (p1, . . . , pn) ≥ 0
denote a vector of commodity prices. A number:

β(x, y, p) =
∑n
i=1 piyi∑n
i=1 pixi

= 〈p, y〉
〈p, x〉

(〈p, x〉 6= 0) is called the rate of the economic efficiency of the process (x, y) (with
prices p). A triple {αM , (x, y) , p} which satisfies the following conditions:

αMx 5 y, (18)
∀(x, y) ∈ Z (〈p, y〉 ≤ αM 〈p, x〉) , (19)
〈p, y〉 > 0 (20)

is called an optimal von Neumann equilibrium state in Gale economy with limit
technology (shortly: von Neumann equilibrium state). The vector p is called a von
Neumann (equilibrium) price vector. It follows from (18)–(20) that:

αM 〈p, x〉 = 〈p, y〉 > 0

and
β (x, y, p) = 〈p, y〉

〈p, x〉
= max

(x,y)∈Z\{0}
β (x, y, p) = α (x, y) = αM > 0.
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The von Neumann equilibrium is such a state of the economy (represented by
production and prices), in which the economic efficiency equals the technological
efficiency (at its highest possible level). The equilibrium prices p and the production
processes (x, y) in von Neumann equilibrium are defined up to structure (up to
multiplication by a positive constant).

Theorem 4. (i) Suppose that the conditions (G1)–(G5), (F1)–(F4) hold, then
there exist vector of prices p which satisfy (19).

(ii) In addition, if:

(FG1) ∀(x, y) ∈ Z \ {0}
(
α(x, y) < αM ⇒ β (x, y, p) = 〈p,y〉

〈p,x〉 < αM

)
holds (assuming that 〈p, x〉 6= 0), then the value of production vector y expressed
in terms of prices p in any optimal production process (x, y) ∈ Zopt is positive,
i.e. condition (20) is satisfied.

Proof. (See Panek (2019a, Theorem 1)). (i) Since, in particular, the zero production
process belongs to the limit production space Z, so according to (G3) processes(
ei, 0

)
∈ R2n

+ also belong to this space (ei = (0, . . . , 1, . . . , 0) ∈ Rn in an n-dimensional
vector with 1 on ith place. Set

C = {c ∈ Rn| c = αM,tx− y, (x, y) ∈ Z}

is a convex cone in Rn (as a linear image of the Z cone) containing no negative vectors.
Indeed, suppose that:

∃ (x′, y′) ∈ Z (c′ = αMx
′ − y′ < 0) .

Then:
∃ε′ > 0

(
αM = max

(x,y)∈Z\{0}
α(x, y) ≥α (x′, y′) ≥ αM + ε′

)
,

which contradicts the definition of the optimal αM indicator. Since the processes(
ei, 0

)
, (i = 1, 2, . . . , n) belong to Z, therefore:

ci = αMe
i − 0 = (0, . . . , αM , . . . , 0) ∈ C, i = 1, 2, . . . , n

(in the vector ci, the number αM > 0 is on the ith position). From the hyperplane
separation theorem we conclude that:

∃ p 6= 0∀c ∈ C (〈p, c〉 ≥ 0) , (21)

in particular: 〈
p, ci

〉
= αMpi ≥ 0, i = 1, 2, . . . , n,

which means p ≥ 0. The condition (21) is equivalent to (19).
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(ii) We will show that if the condition (FG1) holds, then the condition (20) also
holds. For this purpose let us take any process (x, y) ∈ Zopt, where the set Zopt is as
in (15). Then from (18) and (19) we get 〈p, y〉 = αM 〈p, x〉 ≥ 0 and according to the
definition of the optimal process:

∃k
(
α (x, y) = min

i

yi
xi

= yk
xk

= αM > 0
)
.

Let x̃ = x + ek, where ek = (0, . . . , 1, . . . , 0) is an n-dimensional vector with the kth
coordinate equal to 1. In Gale economy with the limit technology, the pair (x̃, y) is
an admissible process (according to (G3)), but not optimal, because α (x̃, y) < αM .
Then, regarding (FG1), we get β (x̃, y, p) < αM , or equivalently:

〈p, y〉 − αM 〈p, x̃〉 < 0.

Suppose that 〈p, y〉 = 0, then pk = 0, that is 〈p, x̃〉 = 〈p, x〉 . However if 〈p, y〉 = 0,
then from (18), (19) it follows that 〈p, x〉 = 0, so also 〈p, x̃〉 = 0. Then:

〈p, y〉 − αM 〈p, x̃〉 = 0.

This contradiction closes the proof.

Condition (FG1) means that in the Gale economy with limit technology does not
achieve the highest economic efficiency a process (x, y) ∈ Z\{0} that does not have the
highest technological efficiency. Let us note that the condition (18) of the definition of
the optimal von Neumann equilibrium state is satisfied by every process (x, y) ∈ Zopt.
Thus, when the condition (FG1) is met, then the optimal equilibrium state is created
by every triplet {αM , (x, y) , p} with any process (x, y) ∈ Zopt.
Let x ≥ 0 be any commodity vector. We define a distance between x and the multilane
turnpike N:

d (x,N) = inf
x′∈N

∥∥∥∥ x

‖x‖
− x′

‖x′‖

∥∥∥∥ . (22)

A key role in the proof of the turnpike theorem (Theorem 7) is played by the following
lemma which is an adjusted to our purposes version of the lemma of Radner (1961).

Lemma 5. Assume that (G1)–(G5), (F1)–(F4) and (FG1), then

∀ε > 0 ∃δε ∈ (0, αM )∀(x, y) ∈ Z \ {0}(
d (x,N) ≥ ε⇒ β (x, y, p) = 〈p, y〉

〈p, x〉
≤ αM − δε

)
. (23)

Proof. (See Panek (2017, Theorem 5)). Let us take any number ε > 0. If the process
(x, y) ∈ Z \ {0} satisfies the lemma conditions, then also any process λ(x, y) with any
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number λ > 0 does (and vice versa). Therefore, for the proof it is enough to limit
oneself to the admissible production processes (x, y) from the set

V (ε) = {(x, y) ∈ Z| ‖x‖ = 1 ∧ d (x,N) ≥ ε} .

This set is compact (limited and closed on R2n). From (16) it follows that:

∀(x, y) ∈ V (ε) (α(x, y) < αM ) ,

so (regarding (FG1))

∀(x, y) ∈ V (ε)
(
β (x, y, p) = 〈p, y〉

〈p, x〉
< αM

)
.

The function β (·, ·, p) is continuous on V (ε) (since everywhere on V (ε) we have
〈p, x〉 > 0), so there exists a solution to the problem

max
(x,y)∈V (ε)

β (x, y, p) = βε

and βε < αM . Then:

∃δε > 0 ∀(x, y) ∈ V (ε) (β (x, y, p) ≤ αM − δε)

or equivalently:

∃δε > 0 ∀(x, y) ∈ V (ε) (β (〈p, y〉 ≤ (αM − δε) 〈p, x〉)) .

Lemma 5 plays a key role in the proof of the “weak” multilane turnpike theorem,
which will be presented later (Theorem 7).

6 Optimal growth processes. “Weak” turnpike
effect

We fix a time period t1 < +∞ and denote by T = {0, 1, . . . , t1} a finite horizon
in the economy which is of interest to us. A finite production sequence {y(t)}t1t=0,
investments {i(t)}t1−1

t=0 and production spaces {Z(t)}t1t=0 satisfying (3)–(7) define a
(Z0, y0, t1)-feasible growth process in the Gale economy with investments; compare
with a similar definition of a (Z0, y0,∞)-feasible growth process in Section 3. If a
triple of sequences {y(t)}∞t=0, {i(t)}

∞
t=0, {Z(t)}∞t=0 forms a (Z0, y0,∞)-feasible growth

process (in the unbounded time horizon), then a triple {y(t)}t1t=0, {i(t)}
t1−1
t=0 , {Z(t)}t1t=0

forms a (Z0, y0, t1)-feasible growth process in the finite time horizon T .
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A sequence {y(t)}t1t=0 is called a
(
y0, t1

)
-feasible production trajectory, the

sequence {i(t)}t1−1
t=0 -feasible investments trajectory (corresponding to

(
y0, t1

)
-feasible

production trajectory). We say about the sequence {Z(t)}t1t=0 that it defines a (Z0, t1)-
feasible sequence of production spaces. Under our assumptions (Z0, y0, t1)-feasible
processes exist for ∀t1 ≤ +∞.
We denote by u(·) a utility function in the Gale economy defined on the production
vectors in the last time period t1 of horizon T . Function u(·) satisfies the following
conditions:

(U1) Function u : Rn+ → R1
+ is continuous, positive homogenous of degree 1, concave

and increasing.

(U2) ∃a > 0∀y ∈ Rn+ (u(y) ≤ a 〈p, y〉).

Property (U1) has the standard form. Property (U2) implies that there exists a > 0,
such that the utility function can be approximated from above by a linear form with
the coefficients vector ap, where p is a vector of von Neumann prices. Conditions
(U1)–(U3) are satisfied, among others, by positive homogenous of degree 1 utility
functions of CES type.
We concentrate now on the following maximization problem of target growth
(maximization of the production utility function in the final period of the horizon
T = {0, 1, . . . , t1}:

max u (y (t1))
under conditions (3)–(7) (24)

(space Z0 and the vector y0 are fixed).

A sequence of production vectors which is a solution this problem is denoted by
{y∗(t)}t1t=0 and called a

(
y0, t1

)
-optimal production trajectory. In addition, we

have a sequence of investments {i∗(t)}t1−1
t=0 (optimal investments trajectory) and an

optimal sequence of production spaces {Z∗(t)}t1t=0. A triple {y∗(t)}t1t=0, {i∗(t)}
t1−1
t=0 ,

{Z∗(t)}t1t=0 satisfying conditions (3)–(7) is called a (Z0, y0, t1)-optimal growth
process.
The last condition means that the economy can reach (in at least one process) the
multilane turnpike before reaching the end of horizon T :

(FG2) There exists such a
(
Z0, y0, ť+ 1

)
-feasible growth process {y̌(t)}ť+1

t=0, {ı̌(t)}
ť
t=0,{

Ž(t)
}ť+1

t=0
, ť < t1, for which ı̌

(
ť
)

= 0 and: α
(
y̌
(
ť
)
, y̌
(
ť+ 1

))
= αM .

If that condition is satisfied, then y̌
(
ť
)
∈ N. Without it the turnpike N would be

an example of a highway (in the usual traffic sense), although existing, but without
connections to local roads. We will prove that such a property allows the economy not
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only to reach the turnpike, but to remain on the turnpike (and production increase
with the pace αM ) until the end of horizon T .

Lemma 6. If the conditions (G1)–(G5), (F1)–(F4), (FG1), (FG2) are satisfied,
there exists a

(
y0, t1

)
-feasible production trajectory {ỹ(t)}t1t=0 of the following

ỹ(t) =
{
y̌(t), t = 0, 1, . . . , ť,
αt−ťM y̌

(
ť
)
, t = ť+ 1, . . . , t1,

(25)

where y̌(t) ∈ N for t = ť, ť+ 1, . . . , t1.

Proof. It follows from the definition of a
(
Z0, y0, ť+ 1

)
-feasible growth process that:

y̌(0) = y0, Ž(0) = Z0,

(y̌(t)− ı̌(t), y̌(t+ 1)) ∈ Ž(t+ 1),

Ž(t+ 1) = Ft+1

(
Ž(t), ı̌(t)

)
,

0 5 ı̌(t) 5 y̌(t),

t = 0, 1, . . . , ť.

Since the condition (FG2) is true, we have

ı̌
(
ť
)

= 0 and αM y̌
(
ť
)
5 y̌

(
ť+ 1

)
.

Let i(t) = 0 for every t = ť+ 1, . . . , t1 − 1. It implies that:

∀ t ∈
{
ť+ 1, . . . , t1

} (
Z(t) = Ž

(
ť
)
⊆ Z

)
,

hence: (
y̌
(
ť
)
, αM y̌

(
ť
))
∈ Ž

(
ť
)
⊆ Z,(

αM y̌
(
ť
)
, α2

M y̌
(
ť
))
∈ Ž

(
ť
)
⊆ Z,

. . .(
αt1−ť−1
M y̌

(
ť
)
, αt1−ťM y̌

(
ť
))
∈ Ž

(
ť
)
⊆ Z,

or equivalently:

(y(t), y(t+ 1)) ∈ Ž
(
ť
)
⊆ Z, t = ť, ť+ 1, . . . , t1 − 1,

where
y(t) = αt−ťM y̌

(
ť
)
.
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The production trajectory (25) with the companion investments trajectory

ı̃(t) =
{
ı̌(t), t = 0, 1, . . . , ť− 1,
0, t = ť, ť+ 1, . . . , t1 − 1,

and corresponding production spaces

Z̃(t) =
{
Ž(t), t = 0, 1, . . . , ť,
Ž
(
ť
)
, t = ť+ 1, . . . , t1,

determines a
(
Z0, y0, t1

)
-feasible growth process, in which the economy from the

period ť until the end of horizon T stays on the turnpike.

There are at least three known terms that correspond to different types of turnpike
theorems: “weak”, “strong” and “very strong” turnpike theorem. Weak turnpike
theorems claim that the optimal growth processes in almost all periods of the fixed
time horizon T (i.e. in all periods except their finite number, independent of the
horizon length) lie in any arbitrarily close neighborhood of the turnpike. Strong
turnpike theorems specify the time at which the optimal process can be precipitated
from the turnpike neighborhood. They proof that all such possible events can only
take place in the initial and/or final periods of the horizon. Also here the number
of time periods in which an optimal growth process may be precipitated from the
turnpike neighborhood is also limited and independent of the length of the entire
horizon. Finally, very strong turnpike theorems refer to processes/trajectories that
almost always (for almost all periods in horizon T ) lie on the turnpike. Particularly,
this group of theorems includes theorems that state that the entry of the optimal
growth process onto the turnpike is irreversible.
The meaning of the theorem which we formulate below is that every optimal
production trajectory – a solution of the task (24) – independently of the length of
horizon T , almost always remains in an arbitrarily close neighborhood of the multilane
turnpike N (in the sense of measure (22)) or lies on that turnpike. In simple words,
no optimal economy growth can hold away from the multilane turnpike.

Theorem 7. Let {y∗(t)}t1t=0 be a
(
y0, t1

)
-optimal production trajectory (solution of

the problem (24)). If the conditions (G1)–(G5), (F1)–(F4), (FG1), (FG2) hold,
then ∀ ε > 0 there exists a natural number kε, such that the number of time periods
for which

d (y∗(t),N) ≥ ε (26)

does not excess kε. The number kε does not depend on the length of the time horizon
T . The metric function d(·) is defined in (22).

Proof. The definition of a
(
y0, t1

)
-optimal production trajectory {y∗(t)}t1t=0,
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properties (6), (19) and (F4) (i) imply that:

〈p, y∗(t+ 1)〉 ≤ αM 〈p, y∗(t)− i∗(t)〉 , t = 0, 1, . . . , t1 − 1,

hence:

〈p, y∗ (t1)〉 ≤ αM 〈p, y∗ (t1 − 1)− i∗ (t1 − 1)〉
≤ α2

M 〈p, y∗ (t1 − 2)〉 − αM 〈p, i∗ (t1 − 1)〉 − α2
M 〈p, i∗ (t1 − 2)〉

≤ . . . ≤ αt1M
〈
p, y0〉− t1∑

k=1
αkM 〈p, i∗ (t1 − k)〉. (27)

We denote by A = {τ1, . . . , τk} the set of time periods, for which the condition (26)
holds, 0 ≤ τ1 < τ2 < . . . < τk < t1. According to Lemma 5:

〈p, y∗(t+ 1)〉 ≤ (αM − δε) 〈p, y∗(t)− i∗(t)〉 , t ∈ A. (28)

It follows from (27)–(28) that:

〈p, y∗ (t1)〉

≤ αt1−k

M (αM − δε)k
〈
p, y0〉− t1−1∑

τ=0
τ /∈A

αt1−τM 〈p, i∗(τ)〉 −
∑
τ∈A

(αM − δε)t1−τ 〈p, i∗(τ)〉

≤ αt1−k

M (αM − δε)k
〈
p, y0〉 ,

and under (U2) we reach the conclusion:

u (y∗ (t1)) ≤ aαt1−kM (αM − δε)k
〈
p, y0〉 . (29)

On the other hand, Lemma 6 shows that there exists a
(
y0, t1

)
-feasible production

trajectory {ỹ(t)}t1t=0 of the form (25). The positive homogeneity of degree 1 of the
utility function (condition (U1)) implies:

u (y∗ (t1)) ≥ u (ỹ (t1)) = u
(
αt1−ťM y̌

(
ť
))

= σαt1−ťM u (š) > 0, (30)

σ =
∥∥y̌ (ť)∥∥ > 0, š =

y̌
(
ť
)∥∥y̌ (ť)∥∥ ∈ S. Conditions (29)–(30) justify the inequality:

0 < σαt1−ťM u (š) ≤ aαt1−kM (αM − δε)k
〈
p, y0〉 ,

which allows us to bound k :

k ≤ lnA
lnαM − ln (αM − δε)

= B,
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where A = maxs∈S{(aαťM
〈
p, y0〉)/(σu(s))} > 0. If B ≤ 0, then kε = 0 and the(

y0, t1
)
-optimal production trajectory {y∗(t)}t1t=0 stays on the turnpike in all time

periods t ∈ T . This is true as well for the initial time period t = 0, which means that
a
(
y0, t1

)
-feasible production trajectory {ỹ(t)}t1t=0 of the form (25) is also a

(
y0, t1

)
-

optimal one, hence ∀ t (ỹ(t) = y∗(t)).
If B > 0, it is enough to consider the number kε time periods for which the
condition (26) holds to be the least integer not smaller than {0, B}.

7 Final remarks
Conditions (F1)–(F3) which determine the properties of the map Ft(·) have a very
general form. These properties condition the production technology (dynamics of
production spaces) upon investments. This was a conscious decision, which allows
us to extend/generalize the presented model of Gale type with investments in many
different directions. We can build a whole generation of such models which opens an
interesting research direction.
What remains to do, is to investigate the “strong” and “very strong” turnpike effect
in the Gale economy with investments which were mentioned in the introduction. We
would like to study this effect from the point of view of the target growth of type (24),
as well as, from the point of view of maximization of production utility, generated
in all time periods of the horizon T = {0, 1, . . . , t1} . In the classic variant of the
non-stationary model of Gale type economy, this last problem was described, among
others, in the paper Panek (2019b).
An interesting research problem is to investigate turnpike properties of optimal growth
processes in Gale type economy with investments without assuming the existence
of limit technology space. Some results of research in the classic variant of Gale
nonstationary economy are contained in Panek (2019c, 2020a, 2020b).
The weakness of the model presented in this paper is the implicit assumption that
the only consequence of the suspension of production investments in the economy in
time t is the stabilization of its production technology in the next period (i.e. no
depreciation of fixed production assets). The first results of the research currently
conducted by the author in this field lead to the conclusion that also taking into
account the depreciation of fixed production assets does not deprive the economy of
its turnpike properties.
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