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On the one hand, mathematics draws inspiration from everyday 
life and has the ambition to model it through a precise logical 
system, while on the other, it contributes new, sometimes very 

abstract ideas which expand our imagination and broaden 
our understanding of the surrounding reality. This is clearly 

illustrated when we scrutinize various mathematical concepts 
centered around the notion of “boundary.”
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L et us first examine various ways the notion 
of “boundary” turns up in a few everyday sit-

uations, and how the same notions are reflected in 
mathematics. For instance, when we say that Poland’s 
border with Germany partly runs along the Odra Riv-
er, we mean a line which delimits a specific area, in 
this particular case – a country. We find a very simi-
lar concept in mathematics: the boundary of a set in 
a metric space. Such a space is one where we are able 
to measure the distance between any two of its ele-
ments and therefore can easily define open balls – sets 
of elements whose distance from the center of the 
ball is less than a certain positive constant, known as 
the radius of the ball. The balls whose center falls at 
a specific point define the neighborhood of that point, 
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and the boundary of set A is a set of points whose 
neighborhood always includes at least one element 
in A and one element not in A. The “affiliation” of 
the boundary point itself is of no consequence: such 
a point may or may not belong to set A.

Next, in the sentence: “The nurse’s tolerance for her 
patients knows no bounds,” we have yet another no-
tion of boundary in mind. Here, we want to underline 
the unlimited nature of a given feature of behavior, 
which also finds its counterpart in mathematics. We 
will say that a given set (in a metric space) is bounded 
if it can be contained within a ball. If not, such a set 
– just like the nurse’s tolerance – is unbounded.

Yet another context in which the notion of 
a boundary crops us is that of record achievements, as 
in sports, the Guinness Book of Records or our ordi-
nary, private lives. For instance, the sentence “I could 
spend 200 euro on a purse, tops” refers to a certain 
maximum amount, or upper bound. In mathemat-
ics, this same notion is reflected in the concept of ex-
tremum (maximum or minimum) of a function over 
a given set and, in a subtler version, of the greatest 
lower and least upper bound (also known as the in-
fimum and supremum) of the function over that set, 
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which can be of particular use when the function does 
not actually attain its extrema.

The mathematical concept 
of “limit”
Now let us explore some of the ways mathematics has 
taken the intuitive, everyday notion of boundary and 
developed it into more rigorous, abstract concepts 
– many of them are known by the term “limit” (from 
Latin limes), and can be applied in various ways.

 ● Limits of sequences
In its basic definition, the limit of a numerical se-
quence is the number which that sequence “tends 
to” or converges on. More specifically, we say that 
a sequence of numbers that can be labeled with the 
successive natural numbers (and which we could vi-
sualize as the numbers of subsequent moments on the 
axis of time) has g as its limit when, if choosing any 
arbitrarily close neighborhood for g, we will find all 
the future terms of the sequence starting from a given 
moment in time inside that neighborhood. (We might 

add here, that, in the world of mathematical sequenc-
es, we might wait for such a given moment arbitrarily 
long.) Intuitively, the sequence for which a limit thus 
defined exists has a specific “target,” so to speak, and 
tends towards it in time. Such as, for example, the 
sequence of inverse consecutive natural numbers: 
1, 1/2, 1/3, 1/4, …, which converges to the limit 0.

Conversely, in a situation when the “appetite” of 
a sequence grows larger and larger, i.e. regardless what 
level we set, all the successive terms in the sequence af-
ter a certain moment will exceed that level. One exam-
ple here is a geometric sequence in which successive 
items are multiplied by a factor of 2 (1, 2, 22, 23 …). 
We say that such a sequence diverges to infinity (and 
we can define divergence to negative infinity in a sim-
ilar way).

Finally, a sequence which has no limit (neither con-
vergent nor divergent) can be compared to an individ-
ual who is extremely irresolute and who, throughout 
his or her life – infinite in this case – keeps wavering 
over the choice of objective. This can be simply il-
lustrated by the sequence 1, −1, 1, −1, 1, −1, …, which 
ever keeps changing its direction, flip-flopping back 
and forth.
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The world of sequence limits is governed by its 
own distinctive laws, such as for example the theo-
rems for calculating the sum or product of conver-
gent sequences or the “sandwich” rule, which allow 
for a sequence to be identified as convergent and its 
limit found more easily than when directly referring 
to its definition. This world also has its mysteries, such 
as so-called indeterminate forms, when all intuitive 
bets seem to be off (for instance, even though two se-
quences each tend to the same limit, equal to 0, their 
quotient does not necessarily tend to 1 – indeed, for 
any given number, we can actually provide examples 
of such sequences where the limit of the quotient is 
equal to that number).

For some sequences, we know a limit exists even 
though we lack detailed information about it. Here, 
we can refer to the monotonic and bounded sequence 
theorem, which states that if the subsequent term in 
a sequence is always larger than the previous one, and 
if all the terms lie below a certain “ceiling,” then the 
sequence must be convergent, and its limit lies some-
where below or at that ceiling. Although we do not 
know the exact location of the limit, it is approximated 
by the values of the sequence terms with high num-
bers. Also, if we know that the limit exists, we can 
examine many of its properties.

To illustrate this, let us take the sequence (1 + 1/n)n, 
(cf. Fig. 1). It is increasing and is bounded from above, 
and therefore is convergent, and its limit is known 
as Euler’s number, e. In other words, the constant 
e ≈ 2.7182818284590452... (strongly linked with log-
arithms and the exponential function, and therefore 
with many applications of mathematics) is defined as 
the limit of the above sequence. We have known since 
back in the 18th century that it is an irrational num-
ber, much like the number π, so it cannot have a full 
decimal expansion, but only rational approximations 
which can be obtained, for instance, by calculating 
the value of (1 + 1/n)n for some specific, large n. The 
correctness of such a method for making approximat-
ed calculations stems directly from the relationship 
between a sequence and its limit assumed in the defi-

nition according to which the difference between e 
and (1 + 1/n)n does not exceed desired accuracy ε for 
a sufficiently large n (and what the “sufficiently large” 
actually stands for depends on the selected value of ε). 
Incidentally, the above example also serves as an ex-
cellent illustration of the mystery of indeterminate 
forms: although the base of 1 + 1/n tends to 1, the se-
quence (1 + 1/n)n does not converge to 1, but instead to 
e ≠ 1. This is because the exponent n tends to infinity, 
a situation when the usual principles of arithmetic 
simply do not apply…

 ● Theory of series
Defining the limit of a sequence and being able to ex-
amine and apply such a limit even in situations when 
its value is unknown or even in a sense unknowable 
(as in the example of Euler’s number) allows us to 
enter the theory of series, i.e. infinite sums – first 
numerical series, and then functional series. In the 
latter, Taylor series and Fourier series play a major 
role as they allow many functions to be represented 
as infinite sums of polynomials or simple trigonomet-
ric functions (cf. Fig. 2). In turn, such representation 
significantly informs the development of a host of 
numerical methods for calculating approximations. 
And who of us, ordinary users of a calculator, might 
think that, somewhere deep in its entrails, it actually 
works based on the notion of the limit of a sequence?

 ● Limits of functions, derivatives and integrals
The concept of the limit of a numerical sequence 
can be expanded in another direction. Instead of re-
stricting ourselves to sequences alone, we can analyze 
a function as such, and analyze its values when the 
arguments tend towards a specific target. Naturally, 
to do this, we need to define not only what we mean 
by saying that the arguments tend to a target, but also 
need to describe the manner in which we measure/
assess so-called asymptotic notation of the function 
f (x). The general concept can be formulated relatively 
simply, when both the arguments and the function 
values come from metric spaces. In such a situation, 
we can say that the function f (x) has the limit g (or 
that the values of the function f (x) tend to g) as x con-
verges to a, when, if we select, from the set of function 
values, a ball Kg with center g and an arbitrarily small 
radius, we will find such a ball Ka with center a in the 
domain of the function, that all the function values for 
the arguments from Ka will fall within ball Kg. In other 
words, g is the limit of function f (x) as x converges to 
a if the function’s values are in a close neighborhood 
of g (i.e. with a small radius) for arguments with in 
a sufficiently close neighborhood of a. (For the sake 
of accuracy, all the details concerning the nature of 
element a, which obviously needs to be related to the 
domain of the function, though not necessarily its 
part, are omitted here.)

Fig. 1  
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Such an approach to the idea of a function limit is, 
naturally, presented in very general terms and could 
be elaborated or expanded upon in a variety of ways. 
For instance, when we look at the basic case of func-
tions whose arguments and values are real numbers, 
we can quite easily add a way of defining the limit of 
that function (defined on a certain half-line) as the ar-
guments tend to infinity (by analogy to the definition 
of the limit of a sequence) or to minus infinity, as well 
as one-sided limits, in the definition of which we take 
into account the neighborhood of a given point on one 
side only (which is clear and obvious for arguments 
on the real line). We can also allow divergent rather 
than convergent limits, just as in the case of sequences.

But that is not all. Armed with such a tool, we can 
use it to introduce new concepts which are of cardinal 
importance for both the theory and applications of 
mathematics, such as function continuity and differ-
entiability – notions without which we could hardly 
imagine classical physics or the basic model of the 
world that surrounds us. We can also define various 
types of integrals as limits of certain more complicat-
ed objects, such as the Riemann integral, which are as 
important for the applications of mathematics in basic 
and engineering sciences.

 ● Gaussian functions and Monte Carlo methods
However, the mathematical notion of limit is the 
foundation for even more than just the mathematical 
fields of differential and integral calculus. In fact, the 
concept can be encountered, more or less openly, in 
nearly every sub-field of the “queen of the sciences.” 
Personally, I am fascinated by problems related to the 
laws of large numbers and limit theorems in proba-
bility theory, which studies limits with the probability 
of 1 and limits in distribution of certain sequences of 
random variables which, in the basic version, are par-
tial sums of sequences of independent and identically 
distributed random variables. It has been found that, 
with very general assumptions on the distribution of 
the elements (or, in other words, on the nature of their 
randomness), such sums, having been sufficiently 
normalized, behave in a sense universally at the limit, 
when the number of the elements increases to infinity.

For instance, it is sufficient if there exists an ex-
pected value of the distribution of an element, for the 
sums divided by the number of elements (i.e. arith-
metical means) to be no longer random and converge 
with probability 1 to a constant equal to that expected 
value (as stated in Kolmogorov’s strong law of large 
numbers). This theorem provides the basis for an 
important group of numerical methods in which ap-
proximated deterministic values are obtained through 
random sampling. This concept was first introduced 
by Polish mathematician Stanisław Ulam during the 
work on the atom bomb in Los Alamos and was sub-
sequently dubbed the Monte Carlo method, although 

it had in some specific cases been applied before. One 
well-known example is the eitheenth-century “Buffon’s 
needle problem.” In this particular case, a needle is re-
peatedly dropped randomly on a board marked with 
parallel lines of equal distance from one another (the 
needle being shorter than the distance between the 
lines), and we count how often the needle lands in a po-
sition crossing any of the lines. It can be demonstrated, 
e.g. on the basis of the law of large numbers, that the 
obtained frequency plus knowledge of the length of the 
needle and the distance between the lines is sufficient 
to accurately estimate the value of the number π.

If the distribution of all elements of the sum has 
a finite non-zero variance, then the sums centered to 
have zero mean and scaled to have unit standard de-
viation follow, asymptotically, the same standard nor-
mal (or Gaussian) distribution regardless of the actual 
distribution of the elements. This fact is known as the 
Lindeberg-Levy central limit theorem and explains the 
prevalence of the Gaussian function (bell curve) in 
statistical data analysis, commonly used in such fields 
as finance, medicine, psychology, and social sciences.

In closing, I hope that this handful of examples 
showing how the notion of “boundary” manifests it-
self in mathematics – especially in various uses of the 
term “limit” – well illustrates the key role it plays and 
the extent to which we all benefit from it, even if we 
rarely realize it. ■

Fig. 2
Convergence of the Fourier 
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signal to that signal  
(n is the number of applied 
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