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Structural and Physical Characterization of New Ti-Based Alloys 

Production of Ti-based alloys with non-toxic elements give the possibility to control the market of medical applications, us-
ing alloys with appropriate properties for human body, contributing to improving the health of the population. Determination of 
parameters of atomic and magnetic structure of functional biomaterials demonstrating interesting physical phenomena and being 
promising for medical applications in a wide range of thermodynamic parameters; exploration of the role of cluster aggregation in the 
formation of physical properties. Paper is about the obtaining of the new titanium system alloys, the determining their characteristics 
and structure, and obtaining information concerning phase transitions and some mechanical properties. Ti15Mo7ZrxTa (5 wt.%, 
10 wt.% and 15 wt.%) alloys developed shows a predominant β phase highlighted by optical microstructure and XRD patterns. A very 
low young modulus of alloys was obtained (43-51 GPa) which recommends them as very good alloys for orthopedic applications. 
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1. Introduction 

Metallic biomaterials is a class of materials used for dif-
ferent medical applications, because they have some good 
mechanical properties, are resistant to corrosion and have an 
acceptable biocompatibility [1]. The most known and used are 
metallic biomaterials are: stainless steels alloys, Co-Cr alloys 
and Ti-based alloys [2,3]. It is also possible to use Fe-based bulk 
amorphous alloys, which are characterized by good mechanical 
properties [4,5].

Stainless steels are a class of metallic materials that largely 
have the properties imposed on the materials used in the human 
body: biocompatibility, chemical, thermal and mechanical sta-
bility in the special conditions of the human environment [6]. 
Used for orthopedic implants have the disadvantage of a high 
modulus of elasticity [7].

Cobalt-based alloys are widespread in medical applica-
tions, such as orthopedics, but especially dentistry. However, 
Co-Cr alloys have problems with poor adhesion to bone tissue 
and allergic reactions caused by cobalt in the body, sometimes 
even 15 months after the removal of implants with high con-

centrations of cobalt in the blood and plasma [8]. Another dis-
advantage for Co-Cr alloys is Young’s modulus of high values 
(210-232GPa), thus negatively influencing bioadhesion. Thus, 
the elastic deformations of the implants and the high pressing 
pressure are transferred to the bone, which is an important short- 
coming [9].

Titanium and titanium-based alloys are the most widely 
used metal materials for implants. The most used titanium alloys 
are the Ti4Al6V alloy and C.P. Ti, which has good physico-me-
chanical, chemical and biocompatibility characteristics [10,11]. 
When many researches were discovered that vanadium is toxic, 
it started to be replaced with various biocompatible elements: 
Nb, Fe, Si, Ta, Mo, etc. [12].

Titanium alloys used as implant materials has the advantage 
that can form on their surface protective, stable passivity films, 
which “close” the metals to the corrosive environment [13,14]. 
The ability to form protective films is called passivation, and 
the state of high corrosion resistance is defined as passivity [15]. 

Aim for the present study is to design a new alloy for future 
medical applications. The paper presents the design and char-
acterization of three original titanium-based alloys, improved 
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with biocompatible elements like molybdenum, zirconium and 
tantalum. The addition of biocompatible elements such as Mo, 
Zr and Ta shows good mechanical properties (a lower modulus 
of elasticity), compared to other classical biomaterials.

We choose elements like Mo, Zr and Ta alloyed with Ti 
because are biocompatible elements, which do not cause side 
effects [8]. Also, molybdenum and tantalum are beta stabilizers 
for titanium alloys, elements that can bring improvements to 
the properties of the alloys [12]. Zirconium is a neutral element, 
but alloyed in the compositions of titanium alloys, refines the 
structure of the alloys [8,9]. 

2. Experimental Procedure 

In order to obtain the experimental titanium alloys, it was 
chosen to use an arc remelting vacuum installation (RAV) MRF 
ABJ 900 type. to obtain alloys with uniform composition, by 
repeated remeltings. For the elaboration of Ti-Mo-Zr-Ta alloys, 
were used high purity elements as raw materials (Ti-99.8%, 
Mo-99.7%, Zr-99.2% and Ta-99.5%) and have been degreased 
and properly prepared for obtaining.

OPTIKA XDS-3 MET optical microscope was used for the 
structure analysis. The metallographic samples were properly 
prepared: cutted to appropriate dimensions, embedding in epoxy 
resin, grinding and polishing at specific speeds, chemical attack 
with reactive (10 ml HF, 5 ml HNO3, 85 ml H2O, for 30 s).

Phase determination was performed by qualitative analy-
sis by X-ray diffraction, using a PanaticalX’Pert Pro MPD 
equipment. Thus, the phases and compounds that make up the 
investigated alloys were highlighted. Parameters used for the 
analysis of samples are: an angle range θ-2θ between 20-80°; 
continuous scan; step size of 0.0131303 (°), time per step: 60 (s); 
scan speed 0.054710 (°/s); number of steps: 6093. An X-ray tube 
with copper anode was used, which emits X-rays in linear mode, 
using a Pixcel type detector. The data obtained were processed 
with the Highscore Plus program, then they were imported and 
processed using an experimental data processing software in 
order to obtain the diffractograms of the experimental alloys.

Universal Micro-Tribometer CETR UMT-2 equipment was 
used for tribological and mechanical determinations.

3. Results and discussions

Elaboration of alloys in (RAV) MRF ABJ 900 type was 
efficiently, losses were minimal (max 1%). The metal load was 
30 g per alloy and all alloys were followed to six remeltings 
to obtain homogeneous alloys. Table 1 presents the chemical 
composition of the alloys obtained. The percentages of the ele-
ments varying with small differences compared to the theoretical 
load calculation. The analysis bulletins regarding the chemical 
composition obtained, highlighted the fact that the main elements 
identified in the elaborated alloys are: Ti, Mo, Zr and Ta, without 
the existence of inclusions in alloys.

Table 1

Chemical compositions of elaborated alloys,  
expressed in mass percentages

Alloy Ti [%] Mo [%] Zr [%] Ta [%]
Ti20Mo7Zr5Ta 69.94 18.95 6.53 4.58

Ti20Mo7Zr10Ta 63.02 20.13 7.10 9.75
Ti20Mo7Zr15Ta 59.39 19.25 6.84 14.52

Figure 1 present optical microstructure of the elaborated 
alloys. As seen in all three images the structure is uniform. For 

Fig. 1. Optical microstructure of the elaborated alloys at a mag-
nification power of 50×: a) Ti20Mo7Zr5Ta; b) Ti20Mo7Zr10Ta;  
c) Ti20Mo7Zr15Ta
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titanium alloys, percentage of beta or alpha stabilizing elements, 
contributes on the microstructures and mechanical properties. 
For Ti-Mo-Zr-Ta alloys, the formation of a β type structure 
is due the high percentage of β stabilizing elements (Mo, Ta) 
[16,17]. Zirconium is a neutral element in titanium alloys and 
contributes to the refining of the microstructure. Figure 2 shows 
a characteristic EDX spectrum for the alloys analyzed.

Thus, elements with tantalum percentages (5-15%), corrob-
orated with the molybdenum concentration of 15-20%, contribute 
to the formation of the β phase. With the help of optical micros-
copy, a biphasic, uniform structure is highlighted, consisting of a 
high proportion of solid solution β, in which intergranular lamel-
lar structures of dendritic type specific to orthorombicmartensite 
α'' appear. Orthorombicmartensite α'' frequently occurs in the 
case of titanium-based alloys in which there are β-stabilizers 
in the category of transition metals, which include the elements 
molybdenum and tantalum. In this case the presence of the α'' 
phase is due to the decomposition of the β phase during cooling.

From Figure 3, the presented diffractograms confirm the 
β-type structures identified by optical microscopy, taking into 
account the fact that titanium is an allotropic element, presenting 
in different forms: up to temperature 882°C, having a compact 
hexagonal structure α-Ti and above 882°C, β-Ti, having a cube 

structure with centered volume [18-20]. In the composition of 
the investigated alloys there is a majority phase β with a cube 
structure with centered volume and a secondary phase α'' with 
an orthorhombic structure [21,22].

a)

b)

c)

Fig. 3. Diffractograms of elaborated alloys: a) Ti20Mo7Zr5Ta, 
b) Ti20Mo7Zr10Ta, c) Ti20Mo7Zr15Ta

The predominant β phase (Fig. 2) for the investigated 
samples: Ti20Mo7Zr5Ta, Ti20Mo7Zr10Ta, Ti20Mo7Zr15Ta, 
was identified with the main maximum at angle 2θ = 58.7960°; 
37.2459°; 38.9277°.

The parameters of the compounds, such as the crystallo-
graphic system, the network parameters or the cell volume are 
highlighted in Table 2. From Table 2 it can be seen that following 
the volume analysis of elaborated alloys, two solid solutions with 
the cubic crystallization system were identified.

Fig. 2. EDX spectrum for investigated alloys: a) Ti20Mo7Zr5Ta; 
b) Ti20Mo7Zr10Ta; c) Ti20Mo7Zr15Ta
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Table 3

Elastic modulus values for Ti-Mo-Zr-Ta alloys measured  
by indentation test

Alloy Ti20Mo7Zr5Ta Ti20Mo7Zr10Ta Ti20Mo7Zr15Ta
Young 

modulus 
(GPa)

51.68 45.41 43.57

Table 3 shows the values of the investigated Ti-Mo-Zr-Ta 
alloys measured by indentation tests, young modulus values 
between 51.68-43.57 GPa for the modulus of elasticity. It can 
be observed that with the increase of the Ta content from 5% 
to 15%, it leads to the decrease of the modulus of elasticity by 
about 8 GPa. 

Figure 4 illustrates a graphical comparison of elaborate 
alloys versus classical alloys and the modulus of elasticity of 
human bone. The alloys elaborated from the Ti-Mo-Zr-Ta sys-
tem have a 50% reduced modulus of elasticity compared to the 
classic alloy based on Ti6Al4V. The values of the modulus of 
elasticity are significantly reduced compared to other alloys due 
to the alloying elements, especially Mo and Ta which reduced 
the modulus of elasticity. Compared to human bone, the alloys 
obtained are ideal candidates for orthopedic applications, because 
the modulus of elasticity is close to that of human bone and thus 
avoids the phenomenon of stress shielding. 

Fig. 4. Comparison of the modulus of elasticity between the classic 
alloys and the elaborated alloys

4. Conclusions

In the aim to design new alloys for future medical applica-
tions, three alloys from the Ti15Mo7ZrxTa (5wt.%, 10 wt.% 
and 15 wt.%) system were developed in an electric vacuum 

arc furnace (RAV) MRF ABJ 900 type. This type of equipment 
develops homogeneous alloys under to the special protection 
conditions required. 

Due to the presence of beta stabilizing elements like Mo 
and Ta, observed both in diffractograms and in the microstruc-
ture of samples, alloys contain β phase (as matrix) and second 
phases α'' (minor).

Indentation testing on the tested alloys showed low values 
of the elastic modulus between 51.68 - 43.57 GPa, close to the 
human bone (27GPa).
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