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Matrix black box algorithms – a survey
Jerzy RESPONDEK∗∗∗

The Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, ul. Akademicka 16, 44-100 Gliwice, Poland

Abstract. The implementations of matrix multiplication on contemporary, vector-oriented, and multicore-oriented computer hardware are
very carefully designed and optimized with respect to their efficiency, due to the essential significance of that operation in other science and
engineering domains. Consequently, the available implementations are very fast and it is a natural desire to take advantage of the efficiency
of those implementations in other problems, both matrix and nonmatrix. Such an approach is often called a black box matrix computation
paradigm in the literature on the subject. In this article, we gathered a broad series of algorithms taking advantage of the efficiency of fast matrix
multiplication algorithms in other mathematical and computer science operations.
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1. INTRODUCTION
The approach of shifting the computational burden of different
problems towards matrix multiplication is called black box al-
gorithms in the literature. A common goal of this paradigm is
to construct an algorithm of the same time complexity as the
involved matrix multiplication algorithm. That is often feasible
but in certain problems we obtain a complexity being a function
of the matrix multiplication complexity, usually with a logarith-
mic or linear factor, which is not a bad achievement, either. In
the whole article, O(M(n)) will stand for the time of the in-
volved matrix multiplication algorithm as the reference point
for the efficiency of the algorithms surveyed in this article.

We gathered algorithms that yield from the efficiency of
fast matrix multiplication algorithms in other mathematical and
computer science operations. Particularly, these are other ma-
trix and linear algebra operations, like matrix inversion, LU
decomposition, calculating the determinant, and solving a set
of linear equations. Efficient matrix multiplication can also be
utilized in the problems of other domains, like graphs proper-
ties analysis, grammar parsing, operating on the polynomials as
well as other problems.

2. THE MATRIX MULTIPLICATION ALGORITHMS
The matrix multiplication plays a key role in this survey since
other matrix operations are built on this basis. Thus the effi-
ciency of the latter depends on the efficiency of the former.

The recursive paradigm offers great possibilities for improv-
ing the matrix multiplication efficiency. Its nonrecursive imple-
mentation achieves the time complexity O(n3), arising directly
from the mathematical definition. The first attempt to improve
the efficiency of the matrix multiplication was made in 1969 by
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V. Strassen in [1], where an algorithm with the O(n2.807) time
complexity was presented.

This article initialized a long series of works with a com-
mon general aim, i.e., to decrease the k exponent in the O(nk) =
O(M(n)) algorithm time complexity. Since 1969 that exponent
has been decreased a number of times, to 2.78041 in 1978 [2],
2.7799 in 1979 [3], 2.548 in 1981 [4], 2.5166 in 1982 [5],
2.495548 in 1982 [6], and to 2.48 in 1986 [7].

Until 2013, the fastest matrix multiplication algorithm had
been algorithm [8], with the coefficient k = 2.376, in the
O(n∧k) complexity. In 2013 [9] improved the bound to 2.37369.
In 2014 [10] presented an algorithm that decreased the k co-
efficient to 2.372873 and the final up-to-date complexity is
2.3728639, proposed also in 2014 in [11]. The progress of de-
creasing the k exponent in the O(nk) complexity we summa-
rized in Fig 1.

Nonetheless, the big “O” notation shows the asymptotic
growth rate but hides the constant. It is well known, not only

Fig. 1. Algorithms improving the efficiency of the matrix
multiplication
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in the matrix field, that the more sophisticated a given algo-
rithm is, with a lower growth rate, the cost for that is just the
raising constant. The Strassen’s version, as well as its modified
Winograd’s version [12], are useful for relatively small matrices
but more sophisticated algorithms, with a smaller k exponent,
can compete with the standard O(n∧3) method only for large
matrices.

Let us show by the example of the classical Strassen algo-
rithm [1] how to improve the efficiency of the matrix multiplica-
tion. Let C denote the matrix product of matrices [A]n×n, [B]n×n
with real entries in the real (number) domain. We divide each
of the matrix factors A,B into four submatrices, each with the
dimensions of (n/2)× (n/2), as in the following formula (1):C11

... C12. . . . . . . . .
C21

... C22


C

=

A11
... A12. . . . . . . . .

A21
... A22


A

·

B11
... B12. . . . . . . . .

B21
... B22


B

. (1)

The innovative idea of the Strassen algorithm consists of the
following elements:
• Calculate a certain number of auxiliary expressions from

submatrices, particularly with the use of matrix multiplica-
tion (but on half-sized matrices).

• Construct a linear combination of the obtained subexpres-
sion in a way that ensures that the product C11, . . . ,C22 en-
tries fulfill the mathematical definition formula.

• Apply this paradigm recursively.
Basically, the computational work in all those algorithms

constructed in the general recursive way is shifted from the
time-expensive matrix multiplications towards much less costly
additions/subtractions and – if necessary – to transpositions.

As an auxiliary subexpression, the Strassen algorithm pro-
poses to calculate the following 7 matrix terms M1, . . . ,M7, each
one requiring exactly one matrix multiplication:

M1 = (A11 +A22)(B11 +B22), M2 = (A21 +A22)B11 ,

M3 = A11(B12−B22), M4 = A22(B21−B11),

M5 = (A11 +A12)B22 , M6 = (A21−A11)(B11 +B12).

M7 = (A12−A22)(B21 +B22).

(2)

The formula (3) presents the final solution to the problem,
i.e., the proper linear combinations:C11

... C12. . . . . . .
C21

... C22


C

=

M1+M4−M5+M7
... M3+M5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M2+M4
... M1+M3−M2+M6

. (3)

We leave it as an exercise for an interested reader, who may
check how, with the use of the matrix terms M∗ (2) it is possible
to construct the matrix product, like in the formula (3).

We can see that now we need 7 half-size matrix multipli-
cations and 18 (4.5 times more!) matrix additions/subtractions
and the complexity recursive equation receives the form (4):

T (n) = 7T (n/2)+18(n/2)2. (4)

The general recursion theorem gives the algorithm with time
complexity equal to O(nlog2 7)≈ O(n2.807) ([13] Section 4.3).

There are also some interesting theoretical analyses of the
Strassen algorithm:
• [12] showed how to multiply 2×2 matrix also in 7 multipli-

cations but decreased the number of additions/subtractions
from 18 to 15.

• [14] proposed an optimal implementation of the algo-
rithm [12] with minimal possible constant coefficient hid-
den in the big “O” notation.

• [15] proved that at least 7 multiplications are necessary to
multiply 2×2 matrices.

• [16] showed that at least 15 additions/subtractions are nec-
essary for a 7 multiplications algorithm.

3. RECURSIVE INVERSION OF TRIANGULAR MATRICES
Let us assume that we want to invert the following n× n size
block matrix (5), divided into four sub-matrices, each with the
dimensions of (n/2)×(n/2). Let ∆= A22−A21A−1

11 A12. We use
the following identity ([17] p. 72, 73, [18] p. 231):

A =

A11
... A12. . . . . . . .

A21
... A22

 ,
A−1 =

A−1
11 +A−1

11 A12∆−1A21A−1
11

... −A−1
11 A12∆−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−∆−1A21A−1

11
... ∆−1

 .
(5)

The formula (5) is a recursive tool to invert triangular matri-
ces by the matrix multiplication paradigm. Let us assume that
we have a nonsingular upper triangular matrix, so A21 = 0 and
each of the A· diagonal submatrices is nonsingular. In the block-
triangular case ∆ = A22, so ∆ is invertible. The formula (5) in
the upper triangular case receives quite a compact form:

A =

A11
... A12. . . . . . . .

0
... A22

 , A−1 =

A−1
11

... −A−1
11 A12A−1

22. . . . . . . . . . . . . . . . . .
0

... A−1
22

 . (6)

On each recursion level, we must perform the following op-
erations: 2 inversions of the (n/2)× (n/2) matrices, 2(n/2)×
(n/2) matrix multiplications, and n∧2/4 negations of the sign in
the right upper quarter. Thus the recursive complexity equation
has the form:

T (n) = 2T (n/2)+2M(n/2)+n2/4, (7)

where T (n) is the unknown time complexity of the triangular
matrix inversion and M(n) is the complexity of the involved
matrix multiplication algorithm (Section 2). Considering that
M(n) = O(n2+ε) for a given ε > 0, we can estimate n2/4 ≤
M(n) and from the equation (7) it follows that:

T (n)≤ 2T (n/2)+3M(n/2). (8)

Since M(n) = O(n2+ε), in the general recursion theorem
([13] Section 4.3) we have the case when the f (n) = 3M(n/2)
decides on the overall algorithm complexity and T (n) =
O(M(n)).
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4. RECURSIVE INVERSION OF MATRICES
The Strassen original inversion algorithm [1] does work on ev-
ery positive-definite matrix. Let us assume that the matrix to
be inverted is symmetric and positively defined, in the block
form (9):

A =

[
B CT

C D

]
. (9)

From positive definiteness of A follows the positive definite-
ness of B in (9), so also its invertibility. We can decompose the
matrix A into the product of three-block triangular and block-
diagonal matrices:

A =

[
B CT

C D

]
=

[
I 0

CB−1 I

][
B 0
0 S

][
I B−1CT

0 I

]
, (10)

where S = D−CB−1CT is the so-called Schur residual of the
matrix A with respect to B. From (10) and the positive defi-

niteness of A follows that

[
B 0
0 S

]
> 0, thus S is also positive

definite so is invertible, because det

[
B 0
0 S

]
> 0 ⇔ det(B) ·

det(S)> 0⇔ det(S)> 0. Now it is easy to verify that the inver-
sion of A has the form (11):

A−1 =

[
I −B−1CT

0 I

][
B−1 0

0 S−1

][
I 0

−CB−1 I

]
. (11)

We can observe that the equation (11) is the equation (5) ap-
plied to the case where A is symmetric.

The question is how to invert each nonsingular matrix by the
formula (11). The universal solution is given in [19]. We invert
an auxiliary matrix AT A, which is symmetric and positive for
any nonsingular matrix. Next, we can obtain the desired inverse
from the following formula:

A−1 =
(
AT A

)−1
AT . (12)

Multiplying both sides of (12) we obtain the identity. The last
issue is the time complexity of the proposed algorithm. From
the formula (11) this recursive equation follows:

I(n)≤ 2I(n/2)+4M(n/2)+O(n2), (13)

where 2I(n/2) is responsible for 2 inversions, 4M(n) is for
4 multiplications and the last term O(n2) encapsulates all the
necessary additions/subtractions and transpositions. Moreover,
O(M(n)) > O(n2) so we can rewrite the equation (13) in the
form:

I(n)≤ 2I(n/2)+O(M(n)). (14)

From the general recursion theorem ( [13] Section 4.3) we
have T (n) = I(M(n)).

Example
Let us calculate the inversion of the 3×3 matrix A0, extended

to 4×4 size in A:

A0 =

 2 1 0
6 3 1
−3 0 2


3×3

, A =

A0
... 0. . . . . .

0
... I1

 . (15)

Observe:

AT A =


49 20

..
..

..
..

..
..

. 0 0
20 10 3 0. . . . . . . . . . . . . . .
0 3 5 0
0 0 0 1


4×4

=

B(1)
... CT

(1). . . . . . . . . . . .
C(1)

... D(1)

 , (16)

B−1
(1) =

[
1/9 −2/9
−2/9 49/90

]
,

S(1) = D(1)−C(1)B
−1
(1)C

T
(1) =

[
1/10 0

0 1

]
=

B(2)
... CT

(2). . . . . . . . . .
C(2)

... D(2)

 .
On the second recursion level, we need to invert two 2×2 ma-
trices B(1) and S(1). The recursive algorithm on this recursion
level goes as follows, by the example of the latter. We calculate
the inverse by the general formula (11). The antidiagonal ele-
ments of S−1

(1) are zero, because C(2) = 0 and it is reduced to the
form:

S−1
(1) =

[
B−1
(2) 0

0 B−1
(2)

]
=

[
10 0
0 1

]
. (17)

And the final inversion of A0 in compliance with the formu-
las (11) and (12) is equal to:

A−1 =


−2 2/3 −1/3

..
..

..
..

..
..

.

5 −4/3 2/3 03×1

−3 1 0
. . . . . . . . . . . . . . . . . . . . . .

01×3 1


4×4

=

A−1
0

... 0
. . . . . . . .
0

... I1

 .

5. RECURSIVE LU DECOMPOSITION OF MATRICES
In this section, we show how to decompose any square n× n
nonsingular matrix with the efficiency of the used multiplica-
tion algorithm into the LU product form.

In general, mathematically the LU decomposition for a rect-
angular m×n matrix with a full row rank is the product of the
form A = LUP, where L is a m×m lower-triangular matrix with
1’s on the main diagonal, U is an m×n upper-triangular matrix
with leading m columns with the rank m, and P is a n× n per-
mutation matrix, where m≤ n. The algorithm recalls itself twice
by the recursion. Fig. 2 shows the decomposition after the first
recursive call (Steps 5÷9 of the algorithm).

Fig. 3 shows the final decomposition, after the second recur-
sive call (Steps 10÷16 of the algorithm).
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Fig. 2. The LUP decomposition after the first of two recursive calls

Fig. 3. The final LUP decomposition after the second recursive call

To decompose a nonsingular1 n×n matrix, we call the aux-
iliary procedure FACTOR with the actual parameters (A,n,n).
The procedure FACTOR has the form [18]:

procedure FACTOR(A, m, n)

Input: - A: m×n matrix with full row rank

Output:
- L: m×m lower-triangular matrix with 1’s on

the main diagonal

- U: m×n upper-triangular matrix with leading
m columns with the rank m

- P: n×n permutation matrix

Dimensions assumptions: - m and n are

a natural power of 2 and m<=n

if m=1 then

0. L:=I1;

1. c:=< Number of the first non-zero2

single-row A matrix column >

2. P:=< n×n permutation matrix, swapping the

1 and c A’s columns >

3. U:=AP;

4. return (L, U, P);

1The nonsingularity means that the matrix is square.
2We search for the first nonzero column just for the simplicity of the de-

composition formulas in a statistical case; if c = 1 the permutation matrix is the
identity matrix.

else

5. Divide A into (m/2)×n submatrices B and C

(Fig. 2a)

6. call FACTOR(B, m/2, n), output are the

matrices L1, U1, P1

7. D:=CP−1
1

3

; At this point we can represent A as a

product of 3 matrices (Fig. 2b)

8. Let E and F be the matrices built of

the leading m/2 columns of the U1 and D

matrices, respectively (Fig. 2c)

9. G:=D-FE−1U1

; At this point we can represent A as a

matrix product presented in Fig. 2d

10. Let G’ be the matrix built from the

right (n-m/2) G’s matrix columns.

11. call FACTOR (G’, m/2, n-m/2), output are

the matrices L2, U2, P2

12. P3:=diag[Im/2, P2]

13. H:=U1P
−1
3

14. P:=P3P1

15. Let L, U have the form defined by the

decomposition Fig. 3.

16. return (L, U, P);

endif

We verify the crucial part of the algorithm, i.e., zeroing the
left part of the D matrix. Observe:[

F Dres

]
=
[
F FE−1U1res

]
+
[
0m/2×m/2 Dres−FE−1U1res

]
= FE−1

[
E U1res

]
+ Im/2

[
0m/2×m/2 G′

]
.

In Step 7, we are permuting the “lower” C matrix by the in-
verse P1. That step aims to rearrange the C matrix in a way that
allows us to combine it in the common block matrix product af-
ter the triangular decomposition of B. Indeed, DP1 =CP−1

1 P1 =
C. The same idea is applied in Step 13, where the order of the
G′ columns is also changed after its triangular decomposition
in Step 11. To invert a permutation matrix, it is enough to trans-
pose it.

To prove the correctness of the FACTOR procedure, we have
to prove that all the assumptions enumerated in the procedure
code are fulfilled both for its output parameters and for the two
input matrices (B,G′) which the FACTOR procedure invokes
recursively. The proof goes by the induction.
• For m = 1 by the above stressed necessary assumption of

the input parameter, the input matrix must have a full row
rank equal to 1. Thus Step 1 is always correctly executed,
because the A matrix must contain the nonzero element.
The matrix L = I1 (Step 0) is a lower-triangular matrix of

3For the permutation matrix P−1 = PT .
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the size 1× 1 with 1’s on the main diagonal. In Step 3, the
U matrix, after the permutation of A, has its first column
of the rank m = 1, so all the assumptions to the output ma-
trices L,U, P are fulfilled.

• Let us assume that output variables of the FACTOR pro-
cedure fulfill the conditions enumerated in the header of
the procedure code, for an input matrix size of a certain
m = 2k,k ≥ 0.

• It is to be proven that those conditions still hold true for the
input matrix size for 2m = 2k+1.

We call the FACTOR procedure with the input matrix A of the
row rank equal to 2m. It means that each subset of the 2m A’s
matrix rows is linearly independent, so each of the matrices B
and C has the rank m. It ensures that the first call of the FACTOR
procedure in line 6 has a correct input parameter.

By the base induction step, the first m columns of the matrix
U1 have the rank m as well, so the E matrix is invertible.

From the inequality rank [AB] ≤ min(rankA, rankB), we can
conclude that the rank of each matrix in the product in Fig. 2d
is at least 2m. Thus, the row rank of G′ is m (see previous but
one paragraph) and the second call of the FACTOR procedure
in line 11 is ensured to work correctly.

By the inductive assumption, both the L1, L2 matrices are
lower-triangular matrices with 1’s on the main diagonal. Thus,
the L matrix, defined on the diagram in Fig. 3, preserves these
properties.

Now it remains to prove that the U matrix, defined on the
same diagram in Fig. 3, is an upper-triangular matrix with lead-
ing 2m columns with the rank 2m. Those leading 2m columns
of the U matrix form a triangular matrix, built block-diagonally
by the leading m columns of two matrices: H and U2. The lat-
ter is the result of the FACTOR call for G′, which we proved
above, that works correctly, thus produces the U2 matrix with
the leading columns rank equal to m.

The case of the H matrix is a bit more complicated. Accord-
ing to Step 13, it consists of the permuted columns of the U1
matrix, returned by calling the FACTOR procedure for the B
parameter. That permutation is defined by the matrix P3. The
U1 matrix by the inductive assumption has a full row rank for
its leading columns. The construction of P3, defined on the dia-
gram in Fig. 3, reveals that those leading columns of the matrix
U1 are not affected by this permutation, since the first m×m
diagonal P3 block is just an identity matrix.

The leading m columns of the matrices H and U2 are triangu-
lar, so all their diagonal entries are nonzero. Thus the determi-
nant of the leading 2m columns of the U matrix is also nonzero,
so the U matrix has a full row rank. Q.E.D.

Let T (m,n) be the execution time of the call
FACTOR(∗,m,n). Again we assume that M(n) is the com-
plexity of the involved matrix multiplication algorithm, i.e.,
M(n) = O(n2+ε) for certain 0 < ε ≤ 1.
• The base step for m = 1 is executed in time T (1,n) = bn for

a certain constant b, since we have to search for the nonzero
column in the 1× n matrix A in Step 1. In the worst case,
it takes exactly n scalar iterations.

• Recursive calls of the procedure in Steps 6 and 11 take
T (m/2,n) and T (m/2,n−m/2) steps, respectively.
• In lines 7 and 13, we are permuting the m× n matrices C

and U1 thus the complexity of those steps is O(mn).
• Calculation of E−1 can be performed by the inverting algo-

rithm specialized in triangular matrices, presented in Sec-
tion 3, in time M(m/2)Calculation of the term FE−1 takes
also M(m/2) time.
• In the calculation of the term (FE−1) ·U1, we should take

into account that both m and n are the natural powers of 2
and m ≤ n 4. Thus, to obtain the product (FE−1) ·U1, we
can use the block matrix algebra. Observe:

[
FE−1]︸ ︷︷ ︸

m/2

. . .
[
U (1)

1 U (2)
1 . . . U (n/(m/2))

1

]
︸ ︷︷ ︸

(n/(m/2)) times

=
[
FE−1U (1)

1 FE−1U (2)
1 . . . FE−1U (n/(m/2))

1

]
︸ ︷︷ ︸

n

.

According to the above scheme, we can calculate the term
(FE−1) ·U1 in n/(m/2) multiplications of (m/2) × (m/2)
size submatrices and the overall time of that operation is
O((n/m)M(m/2)).

We can construct the recursive inequality of the complex-
ity for the LU decomposition algorithm with respect to vari-
ables m, n:

T (m,n)≤


T
(m

2
,n
)
+T

(m
2
,n− m

2

)
+ c

n
m

M
(m

2

)
+dmn, m > 1,

bn, m = 1.

(18)

The second recursive call of the procedure in Step 11 is in-
voked for the submatrix of the (m/2)× (n−m/2) size, which
is smaller than the recursive call in Step 6, being the submatrix
of the (m/2)× n dimensions. Importantly, the FACTOR algo-
rithm uses no conditional instructions. Thus the execution time
of the algorithm is shorter in the case of smaller dimensionality
of the problem to be solved, so T (m/2,n−m/2)< T (m/2,n).

The fourth factor in (18) can be rewritten as 4dn/m ·
(m/2)∧2. For the matrix multiplication we have M(m/2) >
(m/2)∧2, thus we can merge the third and the fourth factor in
(18) obtaining for a certain e constant the recursive inequality:

T (m,n)≤

{
2T
(m

2
,n
)
+ e

n
m

M
(m

2

)
, m > 1,

bn, m = 1.
(19)

From the general recursion theorem ([13] Section 4.3) the
complexity of the FACTOR procedure is equal to (20):

T (m,n) = O
( n

m
M(m)

)
. (20)

4That is assured by the first call of the FACTOR procedure, with nonsingu-
lar, thus square, matrix as an argument.
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Example
Let us calculate the LU decomposition of the 4× 7 matrix

A0, extended to the 4×8 size in A:

A0 =


0 0 3 6 2 2 3
1 7 2 −9 3 4 −5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 −2 0 4 −3 2 2
2 3 −1 −6 6 7 2


4×7

,

A = [A0 | 04×1]4×8 =

[B(1÷4)
]

2×8. . . . . . . . . .[
C(1÷4)

]
2×8

 . (21)

Step 6 of the algorithm 6 calls itself recursively to decompose
the 2× 8 matrix B(1÷4). Since for B(1÷2) we have m = 1, here
Steps 0÷5 of the algorithm 5 apply. The first nonzero column
of B(1÷2), which is a single-row matrix, is at the position c = 3,
so its LU decomposition has the following form:

B(1÷2) =
[

˜
0 0

˜
3 6 2 2 3 0

]
1×8

= L(1÷2)U(1÷2)P(1÷2)

= [1]
[

˜
3 0

˜
0 6 2 2 3 0

]
0 0

˜
1

0 1 0 03×1

˜
1 0 0

01×3 I5

 . (22)

Now we decompose that “down” D(1÷2) matrix. Observe
how the algorithm Steps 7÷13 work in a single row case:

E(1÷2) = 3, F(1÷2) = 2, F(1÷2)E
−1
(1÷2) = 2/3,

G(1÷2) = D(1÷2)−F(1÷2)E
−1
(1÷2)U1(1÷2)

= [2 7 1 −9 3 4 −5 0]−2/3 · [3 0 0 6 2 2 3 0]

= [0
...7 1 −13 5/3 8/3 −7 0]

=
[
0

...G′(1÷2)
]

1×8 .

In Step 11, we have the second recursive call of the FACTOR
procedure for the rows 1÷2, but now the matrix G′(1÷2) is the in-
put parameter. It is a row vector with nonzero first left element
thus the LU decomposition is trivial: G′(1÷2) = [1] ·G′(1÷2) · I7.
Now we can construct the decomposition of the B(1÷4) ma-
trix (21):

B(1÷4) =

1 0
2
3

1

[˜
3 0

..
..

..
.

˜
0 6 2 2 3

..
..

..
.

02×1

˜
0 7

˜
1 −13 5/3 8/3 −7

]

·


0 0

˜
1

..
..

..
..

..
..

..

0 1 0 03×1

˜
1 0 0. . . . . . . . . . . . . . .

01×3 I5

 .

Let us return to the decomposition of the matrix A.

D(1÷4) =C(1÷4)P
−1
(1÷4) =

[
˜
0 −2

˜
0 4 −3 2 2 0

˜
1 3

˜
2 −6 6 7 2 0

]
,

E(1÷4) =

[
3 0
0 7

]
, F(1÷4) =

[
0 −2
−1 3

]
,

F(1÷4)E
−1
(1÷4) =

[
3 0
0 7

][
0 −2
−1 3

]−1

=

[
0 −2/7
−1/3 3/7

]
.

The algorithm in Step 9, zeroing the D(1÷4) matrix left part,
goes as follows:

G(1÷4) = D(1÷4)−F(1÷4)E
−1
(1÷4)U1(1÷4)

=

0 0

..
..

..
..

.. 2
7

2
7
−53

21
58
21

0 0

0 0
11
7

11
7

125
21

137
21

6 0

=
[
02×2 ..

.. G′(1÷4)

]
.

From the LU decomposition of the G′(1÷4) matrix, we can
obtain the following:

G′(1÷4) =

 1 0
11
2

1




2
7
−

�

53
21

�

2
7

58
21

0

..
..

..
..

..
..

.

02×1

0
119

6
0 −26

3
6


·diag

[
I1,

[
0 1
1 0

]
, I3

]
.

In compliance with Fig. 3, we can obtain the LU decomposi-
tion of the matrix A = L1(1÷8)U1(1÷8)P1(1÷8):



1

..
..

..
..

..
..

..
..

..
.

0
2
3

1
. . . . . . . . . . . . .

0 −2
7

1

−1
3

3
7

11
2

1


·



→
3 0

..
..

..
..

..
..

..
..

..
.. ←0

↓
2

↑
6 2 3

..
..

..
..

..
..

..
..

..
..

7 1
5
3
−13

8
3
−7

04×1. . . . . . . . . . . . . . . . . . . . . . . . . .
2
7
−53

21
2
7

58
21

0

0
119

6
0 −26

3
6



·diag


0 0 1

0 1 0
1 0 0

 , [0 1
1 0

]
, I3

 . (23)

6. OTHER MATRIX BLACK BOX OPERATIONS
6.1. Solving the system of linear equations
We can solve a system of linear equations Ax = b by two meth-
ods:
•Matrix inversion recursive algorithm
We invert the system matrix A by the algorithm presented in

Section 4. The solution is straightforward: x = A−1b.
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•Matrix LU decomposition
Firstly we decompose the system matrix by the algorithm

presented in Section 5, obtaining A = LUP. Next, we solve the
system LUPx = b in two well-known steps.

6.2. The determinant of a matrix
We can find the determinant of a square matrix by two methods:
•Matrix LU decomposition
Again, we decompose a given system matrix by the algo-

rithm from Section 5. Next, we use the well-known equality
expressing the determinant of the product:

det
[
A
]
= det

[
L
]
·det

[
U
]
·det

[
P
]
. (24)

Since the matrices L, U are triangular, their determinants are
equal to the product of the main diagonal elements. The matrix
L contains on its main diagonal 1’s, thus det[L] = 1.

To obtain the determinant of the permutation matrix P, it is
enough to decompose it into cycles, and next to count those cy-
cles, which are of even length. A linear-time algorithm to find
a parity of a permutation by that method is presented in Lip-
ski [20] pp. 20–21.
• Recursive matrix inversion
We can apply the recursive matrix inversion algorithm, de-

scribed in Section 4, to the recursive calculation of the determi-
nant of the inverted matrix, but with the accuracy to the sign.
Indeed, from the equality (10) it follows:

det
[
A
]
= det

[
B
]
·det

[
D−CB−1CT ] .

Since det[AT ] = det[A] and the known property of the block
triangular matrices is that their determinant is equal to the prod-
uct of the determinants of the diagonal matrix blocks (which
here are the identity matrices), from (10) we can obtain the
square of the matrix determinant:

det
[
A
]
·det

[
AT ]= det2

[
A
]
= det

[
B
]
·det

[
D−CB−1CT ]. (25)

6.3. Other applications
• Matrix inversion: we can invert any nonsingular matrix in

another way than it was showed in Section 4. Namely, we
can use the LU decomposition by the following matrix cal-
culations:

A−1 = (LUP)−1 = P−1U−1L−1 = PTU−1L−1.

The inversions U−1 and L−1 we can obtain by the inversion
algorithm 3, specialized just to triangular matrices.

• Polynomial calculations: [21] in Section 2.6 proposes how
to evaluate a polynomial at a large number of points at once
by matrix multiplication in O(M(n)) time.

• Rank of the matrix and related problems: [22] proposed
a generalized LUP decomposition, here called the SQP de-
composition, applicable also to matrices without the full
row rank. The results of the article can be also used to cal-
culate the rank of a matrix together with the respective non-
singular minor in O(M(n)) time.

• The characteristic polynomial of a matrix: [23] proposed
three algorithms to calculate the matrix characteristic poly-
nomial coefficients, with different generality and efficiency.
Algorithm 1 works in O(logn ·M(n)) time but is applicable
only in special cases of the input matrix. Algorithm 3 is the
fastest, achieving O(M(n)) time, i.e., the same as the used
matrix multiplication algorithm, but is not fully general ei-
ther. Algorithm 3 works in O(logn ·M(n)) time but works
for any square input matrix.

• Graph paths problems: [24] computes the shortest dis-
tances between all pairs of vertices of an undirected, un-
weighted graph in O(logn ·M(n)) time. [25] generalizes
these results to the case when the weights are between 0
and B with O(B2 · logn ·M(n)) time.

• Formal grammar problems: [26] achieved O(M(n)) time
in the problem of context-free recognition.

• Compiler construction: [27] shows how to find a transitive
closure of a graph in O(M(n)) time algorithm. [28] solves
an inverse problem, i.e., how to multiply matrices with the
use of the available transitive closure algorithm.

7. SUMMARY
In this article, we surveyed a series of algorithms on efficient
matrix multiplication algorithms and their applications. The de-
pendencies of all the procedures are summarized in Fig. 4.

Fig. 4. Dependency graph of the black box algorithms

As an example of applications of matrices one can men-
tion [29] exploiting the structure of the matrix and [30] based
on the matrix block decomposition.

The quite recent work [31] from 2016 on the Strassen al-
gorithm proved that those algorithms can be efficiently imple-
mented even for small matrices, not quite square and for multi-
core architecture.

The pursue for the fastest matrix multiplication is still going
on. These questions remain open:
• [32] in 2003 proved that the theoretical lower multiplica-

tion bound for 3×3 matrices algorithm is 19, but the so-far
best result is 23 [33].

• [34] from 2017 multiplies 5x5 matrices by 99 multiplica-
tions, with k = 2.8551, being also worse than the oryginal
2×2 Strassen algorithm.
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• In the scientific community working with the matrix multi-
plication algorithm, there is a popular hypothesis that it is
possible to multiply the matrices in O(n2+ε) time, for any
(!) positive ε .

• The analysis on the numerical stability issue of inversion
methods, i.e., direct (11) and its Schönhage modification
(12), is presented in Higham [19], Section 26.3.2.

• Work [22] presents, how to obtain Moore-Penrose pseu-
doinverse in O(M(n)) time. An open question is how to ob-
tain a Drazin pseudoinverse, used in control problems [35].
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