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Abstract: Groundwater is a vital resource for domestic, agricultural, and industrial activities, as well as for ecosystem 
services. Despite this, the resource is under significant threat, due to increasing contamination from anthropogenic 
activities. Therefore, to ensure its reliability for present and future use, effective management of groundwater is 
important not only in terms of quantity (i.e. abstraction) but also quality. This can be achieved by identifying areas that 
are more vulnerable to contamination and by implementing protective measures. To identify the risk and delineate 
areas that are more exposed to pollution, various groundwater vulnerability assessment techniques have been 
developed across the globe. This paper presents an overview of some of the commonly used groundwater vulnerability 
assessment models in terms of their unique features and their application. Special emphasis is placed on statistical 
methods and overlay-index techniques. The assessment of the literature shows that statistical methods are limited in 
application to the assessment of groundwater vulnerability to pollution because they rely heavily on the availability of 
sufficient and quality data. However, in areas where extensive monitoring data are available, these methods estimate 
groundwater vulnerability more realistically in quantitative terms. Many works of research indicate that index-overlay 
methods are used extensively and frequently in groundwater vulnerability assessments. Due to the qualitative nature of 
these models, however, they are still subject to modification. This study offers an overview of a selection of relevant 
groundwater vulnerability assessment techniques under a specific set of hydro-climatic and hydrogeological conditions. 

Keywords: aquifer vulnerability, groundwater, intrinsic vulnerability, specific vulnerability, vulnerability assessment 
methods 

INTRODUCTION 

Groundwater (GW) is becoming a vital resource for domestic 
consumption, agricultural and industrial activities, and ecosystem 
services [CHEN et al. 2018; HOWARD 2014]. Its utilisation for these 
services has been increasing significantly in the last couple of 
decades and is also expected to increase in the future, owing to 
the rapid population growth, urbanisation, industrialisation, and 
the high susceptibility of surface water resources to anthropo-
genic activities [KHATRI, TYAGI 2014; PIGA et al. 2017] (Fig. 1), and 
to climate change [FIELD et al. 2014]. Traditionally, GW has been 
considered more resilient to pollution compared with surface 
water sources and is rarely influenced to any great extent by 
drought and climate change [HOWARD 2014]. However, con-
taminants from unregulated industries, urbanisation, and agri-

cultural activities are threatening GW availability and sus- 
tainability [DEVIC et al. 2014; JIANG et al. 2009]. 

GW contamination is a hidden surface-subsurface process, 
which is not directly visible from the surface. It can be noticed 
only once a spring or a well becomes contaminated, or the 
contaminant is released into surface waters [JANG et al. 2017]. 
Thus, it may take several years to notice GW contamination. 
Once GW is polluted, it is expensive to clean it and it takes a long 
time to restore it to its original condition. Also, data constraints, 
variation in geographical locations, and physical inaccessibility 
impede the monitoring of all waters and make remedial actions 
costly and impractical in many areas [BABIKER et al. 2005; 
SHRESTHA et al. 2017; WANG, YANG 2008; YANG, WANG 2010]. 
Therefore, the proverb ‘prevention is better than cure’ applies to 
the proper management of GW resources [BUTLER et al. 2010] 
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because prevention is less expensive and easier than remedial 
measures. 

One of the ways of protecting GW against pollution is 
assessing its vulnerability to contamination. Various types of 
Groundwater Vulnerability (GWV) assessment methods are 
available to protect GW against pollution. These methods are 
commonly classified into statistical methods, quantitative ap-
proaches, and subjective methods [MACHIWAL et al. 2018; NRC 
1993; WANG, YANG 2008; WORRALL, BESIEN 2005]. Not all these 
GWV assessment methods are universally used for vulnerability 
assessment in all hydrogeological conditions. Their application to 
GWV assessment varies from one method to another, depending 
on the availability of sufficient quantitative and qualitative data, 
and their spatial distribution; purpose and scale of mapping; costs 
associated with the formulation of the model, and the specific 

hydrogeological settings of the aquifer being studied [AYDI 2018; 
RIBEIRO et al. 2017]. Besides, some of the GWV methods, such as 
DRASTIC (Depth to water (D), Net Recharge (R), Aquifer media 
(A), Soil media (S), Topography (T), Impact of the vadose zone 
(I), and the hydraulic conductivity (C)), are still subject to 
adjustments by way of using statistical methods to fit the peculiar 
features of the study area, and to obtain better vulnerability 
assessment results. On the other hand, the vulnerability of GW to 
pollution due to anthropogenic activities, such as industrialisa-
tion, urbanisation, and agriculture, is also becoming a growing 
concern across the world. Thus, it is essential to review the 
existing methods and recent developments made in the area of 
GWV assessment techniques. The purpose of the current study is 
to present an overview of different methods used for the 
assessment of GWV to pollution and the recent progress made 
in these methods. 

MATERIALS AND METHODS 

GENERAL INFORMATION 

Statistical methods, the physical process-based methods (quanti-
tative approaches), and subjective methods or the overlay – index 
(GIS-based qualitative) methods are the commonly used GWV 
assessment methods (Fig. 2). The first two approaches (statistical 
technique and qualitative methods) focus on evaluating intrinsic 
vulnerability, while process-based models are aimed at assessing 
specific vulnerability [MACHIWAL et al. 2018]. More emphasis is 
placed on statistical methods and overlay-index techniques. 127 
accredited references published between 1987 and 2020 indexed 
in Scopus, Norwegian list, SiELO SA, and WoS were searched 
from various databases using the names of the methods and 
keywords, and used for synthesising the present paper. 
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Fig. 1. Conceptual groundwater pollution model drawn using concept 
draw demo; source: own elaboration 

Fig. 2. Types of commonly applied groundwater vulner-
ability mapping methods, source: own elaboration 
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STATISTICAL METHODS 

Statistical techniques range from basic descriptive statistics of the 
concentration of particular pollutants to more advanced regres-
sion analysis, which includes the effects of many predictor 
parameters [FOCAZIO et al. 2002]. They have been used to define
the concentration of contaminants or probabilistic contamination 
using the relationship between spatial variables or simulated 
results, such as aquifer properties, and observed data in the 
aquifer from monitoring and measured data [BABIKER et al. 2005; 
FOCAZIO et al. 2002; NRC 1993]. Statistical methods have been 

applied to calibrate or verify other methods such as DRASTIC 
[JAVADI et al. 2011] or have been applied to prove or disprove 
a relationship between observed pollutants, or different environ-
mental factors [MASETTI et al. 2009]. They are mainly applied in 
locations with non-point sources of pollution, such as detection 
of nitrate sources over the agricultural area, and produce spatially 
distributed probabilities of exceedance, instead of categorised low, 
medium, and high ranking [LIGGETT, TALWAR et al. 2009]. The 
commonly used statistical approaches applied in GWV assess-
ment are presented in the subsequent subsections. Their 
advantage and disadvantages were summarised in Table 1. 

Table 1. Advantages and disadvatges of selected statistical GWVA models 

Model Advantages Disadvantages References 

MLR 

– concentrations are easily compared with water 
quality standards or guidelines 

– simple and straightforward when initial measured 
data are available 

– requires measured data, which sometimes 
is difficult to find in many places 

BOY-ROURA et al. [2013], 
MACHIWAL et al. [2018] 

LR 

– uses observed data to calculate adequate weights; 
– disregards statistically insignificant parameters, 
– enables the choice of significant parameters, 

and consequently removes subjectivity from the 
analysis 

– sensitive to initial data, like MLR, mainly 
when the size of measured data is small 

FOCAZIO et al. [2002], 
MACHIWAL et al. [2018] 

RF 

– non-parametric nature and high predictive  
accuracy; 

– results of the prediction are unaffected by outliers 
and redundant data 

– can effectively handle small samples 
– can effectively manage missing data and determine 

variable importance 

– harder to interpret when compared with 
single regression 

– cannot extrapolate outside the training 
range 

– the theoretical properties of RF are not 
entirely understood 

TYRALIS et al. [2019] 

ANN 

– does not require prior knowledge of the model, and 
is adaptive (i.e., learning from inputs parameters); 

– non-linear modelling tools and do not require an 
exact formulation of the physical relationship of 
the problem 

– does not need an understanding of the natural 
processes 

- suitable for sensitivity and uncertainty analysis 

– its “black box” nature; 
– immense complexity of network structure, 

and require colossal processing time for 
large neural networks (NN) and the neural 
network (NN) that requires training to 
operate 

SAHOO et al. [2006], 
PAVLIS et al. [2010],  
YESILNACAR et al. [2007] 

MCDA 

– possibility to include views of many decision- 
makers, takes uncertainty into account, and 
incorporates preferences 

– uses individual scores to sufficiently characterise 
complex situations 

– interdependence between criteria and alter-
natives 

– subject to inconsistencies in judgment and 
ranking criteria 

– rank reversal phenomenon and absence of 
threshold values 

VELASQUEZ, HESTER 

[2013], COSTA et al. 
[2019] 

FL 

– can process incomplete data and provide estimated 
answers for problems that are hard to solve by 
other techniques 

– communicates knowledge more effectively than 
other methods because it uses reasoning similar 
to human reasoning 

– tolerant to imprecise data and well adapted to 
coping with uncertainties when there is limited 
information available 

– its inability to generalise or to learn from 
available data and interpretation of results 
requires experts or familiarity 

– involves complicated steps and calculation 
in the process 

DIXON [2005],  
IQBAL et al. [2014b] 

WoE 

– it transforms an independent variable to establish 
a monotonic relationship to the dependent variable 

– many (sparsely populated) discrete values can be 
grouped into categories 

– loss of data (variety) due to binning to a few 
classifications 

– it is a “univariate” measure, so it doesn’t 
consider connection between independent 
factors 

– it is easy to manipulate (overfit) the effect 
of variables 

STRICKLAND [2017]  

Source: own elaboration. 
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• Multiple linear regression 
Multiple Linear Regression (MLR) method is an extension 

of linear regression that uses multiple explanatory variables 
[KNOLL et al. 2019]. It determines the relationship between 
a dependent parameter and many independent parameters and is 
used for evaluating the susceptibility of GW to pollution in many 
places. It is applied, for instance, for the purposes of detecting 
pesticide contamination [STEICHEN et al. 1988], detection of 
triazine concentration [CHEN, DRULINER 1988], and detection of 
atrazine in shallow GW [STACKELBERG et al. 2012]. 
• Logistic regression  

The Logistic Regression (LR) is a multivariate statistical 
approach developed to predict the probability of a dependent 
variable from a single parameter or various independent 
continuous parameters [PAVLIS et al. 2010]. Studies in which LR 
is applied include the assessment of GWV to nitrate [GREENE et al. 
2005; GURDAK QI 2012; JANG, CHEN 2015; MAIR, EL-KADI 2013; 
SORICHETTA et al. 2013; TESORIERO, VOSS 1997], and aquifer 
vulnerability to contamination with heavy metals [TWARAKAVI, 
KALUARACHCHI 2005]. 
• Random forest  

Random Forest (RF), developed initially by BREIMAN [2001], 
is an ensemble learning method used for classification and 
regression [FAWAGREH et al. 2014]. It is usually described in 
biological and graphical terms by using a tree structure to predict 
new data from training data [CHEN et al. 2012]. The application of 
the RF method in GWV assessment is recent [TYRALIS et al. 2019]. 
However, it has been successfully employed in various studies, 
carried out, for example, in Spain [RODRIGUEZ-GALIANO et al. 2014] 
and the USA [CANION et al. 2019; MESSIER et al. 2019; TESORIERO 

et al. 2017; WHEELER et al. 2015]. 
• Artificial Neural Networks 

Artificial Neural Networks (ANN) is a statistical method 
designed to imitate the characteristics of the human biological 
neural networks to provide a number of their unique features, 
including the ability to determine data patterns, to learn, and to 
adapt [LI et al. 2016; PAVLIS et al. 2010]. It is a data-driven model 
and contains an input layer, middle (hidden layer), and output 
layers with node activation functions [LI et al. 2016]. The 
ANN has been used in aquifer vulnerability assessment in various 
studies, including prediction of the incidence of pesticide 
contaminants in shallow GW wells [SAHOO et al. 2005; 2006], 
and nitrate concentrations in shallow groundwater [YESILNACAR 

et al. 2007]. In recent years, there has been an increase in the use 
of ANN in combination with other GWV assessment models such 
as DRASTIC [BAGHAPOUR et al. 2016; BARZEGAR et al. 2018; NADIRI 

et al. 2018]. 
• Weights of Evidence  

Weights of Evidence (WoE) is a data-driven statistical 
technique that uses contaminants’ occurrence as a modelling 
training site to produce maps from categorical input data or 
weighted continuous layers based on prior knowledge [SORICHET-

TA et al. 2011]. It is based on the ideas of prior probability 
(probability of the phenomena occurring before) and posterior 
probability (after consideration of any predictor evidence) [UHAN 

et al. 2010]. WoE uses a log-linear form which enables the 
addition of weights from the evidential themes [PAVLIS et al. 
2010]. The model combines the weights of the predictor variables 
from the input data to express a probability that a unit cell will 

contain a training point [ARTHUR et al. 2007]. The WoE 
method has been applied for the GVW assessment in several 
places (such as in Italy, USA) to evaluate the vulnerability of 
shallow aquifers to nitrate contaminant sources [MASETTI et al. 
2007; SORICHETTA et al. 2011; 2013; STEVENAZZI et al. 2017]. It was 
also applied to evaluate the reliability of other methods, such as 
DRASTIC in combination with an analytical element method 
[KHOSRAVI et al. 2018]. Furthermore, a Bayesian WoE technique 
was employed to create a state-wide aquifer vulnerability map of 
Florida [ARTHUR et al. 2007]. 
• Multi-Criteria Decision Analysis 

The Multi-Criteria Decision Analysis (MCDA) is a process 
that integrates and transforms the judgment of a decision-maker 
and geographical data into useful and appropriate information for 
environmental decision-making [COSTA et al. 2019]. It provides 
decision options, i.e. from the most preferred to the least 
preferred option, by using many techniques, such as Analytic 
Hierarchy Process (AHP), and Fuzzy Set Theory approach 
[VELASQUEZ, HESTER 2013]. MCDA techniques have been widely 
used for assessing GWV and are useful in reducing the 
subjectivity of over-lay index methods such as DRASTIC [COSTA 

et al. 2019]. It was used to evaluate the potential pollution of 
groundwater from anthropogenic activities in Brazil [COSTA et al. 
2019], and Southern Tunisia [AYDI 2018]. 
• Fuzzy logic 

Fuzzy logic (FL) is a knowledge-based technique that utilises 
parameters of the linguistic type to generate a decision-support 
system that imitates the features of human experts [PAVLIS et al. 
2010]. The fuzzy logic analysis comprises of three stages: 
fuzzification, fuzzy derivation and defuzzification which are 
outlined in detail by MUHAMMETOGLU and YARDIMCI [2006]. Fuzzy 
logic methods have been widely applied in many GWV 
assessment studies and also for the adjustment of subjectivity in 
overlay-index methods. Examples of studies applying the fuzzy 
model include: IQBAL et al. [2014a; 2014b], JAFARI and NIKOO 

[2019], MUHAMMETOGLU and YARDIMCI [2006], NADIRI et al. [2017], 
REZAEI et al. [2013]. 

INDEX-OVERLAY METHODS 

Index-overlay methods, commonly referred to as parametric or 
subjective methods, are the most commonly applied GWV 
assessment methods [KUMAR et al. 2015]. They are applied on 
many different spatial scales that range from a catchment level 
(local) to global scales in the form of vulnerability maps [JANG 

et al. 2017; WACHNIEW et al. 2016]. In the index-overlay methods, 
vulnerability parameters are rated commonly as a layer within 
a GIS environment and combined on the basis of subjective 
ratings of the importance of these physical parameters [WACH-

NIEW et al. 2016]. The commonly applied index-overlay methods 
are briefly presented in the subsequent subsections. The 
advantages and disadvantages of these methods, as well as the 
spatial extent, climate, and hydrogeological condition of the 
GWVA models, were summarised in Tables 2 and 3. 
• GOD 

The GOD, developed in Great Britain, is an acronym of 
three factors from which the name of the model has originated. It 
stands for Groundwater occurrence, Overall aquifer class, and 
Depth of groundwater table [FOSTER 1987]. The final vulnerability 
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Table 2. Advantages and disadvatges of selected Overlay index GWVA models 

GWVA Advantages Disadvantages References 

GOD 

– uses fewer parameters than other models 
– appropriate for data scarce areas and simple to use 

in large areas 
– applicable to all types of aquifers except for the 

karst aquifers 

– using limited parameters may tend to ignore 
the necessary process taking place 
in hydrogeological environments 

– ignores heterogeneities in the used  
parameters, and overrates parameter D 

KUMAR et al. [2015],  
OKE [2017] 

SI 
– best suited for areas of vertical agricultural 

pollution caused by nitrate and pesticide con-
taminants 

– subjectivity in rating and weighing RIBEIRO [2000] 

AVI 

– require only few data and fewer resources and 
therefore easily applicable 

– doesn’t consider relative ratings and weights, 
– suitable for land use management 
– suitable for masking sites for land usage excerption 

– since it uses a limited number of parameters, 
it tends to ignore the main processes that 
take place in the soil and bedrock 

– aquifer water quality and aquifers are not 
separately considered in the model 

PAVLIS et al. [2010],  
KUMAR et al. [2015] 

SINTACS 

– more suitable for areas where extensive land-use 
activities are taking place, such as coal fields and 
oil-rich areas 

– more appropriate for the Mediterranean and 
alluvial context, simple and low cost 

– subjective in rating and weighting of 
parameters like DRASTIC 

– neglects other critical hydrological para-
meters 

KUMAR et al. [2015], JAU-

NAT et al. [2019] 

SEEPAGE 

– considers the soil parameter most comprehensively 
– best suited to areas where intensive agricultural 

activities with excessive use of pesticides and 
fertiliser are taking place, affecting soil, thereby 
polluting the GW 

– assigning a larger range for the ratings 
and weights KUMAR et al. [2015] 

EPIK 
– suited for karst (carbonate) aquifers 
– less subjective because it has a more selective choice 

of parameters and lower relative ratings 

– only applicable to karstic aquifers 
– does not consider necessary parameters such 

as recharge and thickness 
– requires more detailed geomorphology 

of the karst which is expensive and time- 
consuming, as it requires detailed geophy-
sical and hydraulic investigation 

KUMAR et al. [2015] 

GLA – can be used for resource protection and land use 
planning for all types of aquifers 

– it only considers the unsaturated zone and 
excludes attenuation processes in the satu-
rated zone 

– it does not sufficiently take into account the 
unique properties of karstic aquifers   

PI 
– more suitable for the assessment of the intrinsic 

vulnerability of karst aquifers 
– considers all types of hydrogeological settings 

– does not consider physical attenuation 
process MACHIWAL et al. [2018] 

COP – variables required for the COP-method are 
relatively simple to obtain, and straight forward 

– due to many calculation processes involved, 
the map compilation is tedious and needs 
the GIS software for processing 

ABDULLAHI [2009], KU-

MAR et al. [2015] 

DRASTIC 

– broadly accepted model 
– simple to use, low application cost 
– requires limited input data and shorter computa-

tion time because it does not require complex 
numerical analysis or simulation process that 
requires many parameters 

– produces a product that is easily interpretable and 
incorporated into the decision-making process 

– selection of hydrological parameters is 
redundant, for instance, the factors A and C 

– more subjectivity in rating and weighting 
that may lead to human error and  
uncertainty 

– difficult to represent leaky and stacked 
aquifers and doesn’t consider recharge 
and discharge areas 

AN and LU [2018], 
KHOSRAVI et al. [2018], 
WU et al. [2018],  
KUMAR et al. [2015]  

Explanation: GWVA = Groundwater Vulnerability Assessment. 
Source: own elaboration.  

Table 3. Spatial extent, climate and hydrogeological condition of the Groundwater Vulnerability Assessment (GWVA) models 

Model Spatial scale Climate Hydrogeology formations References 

GOD regional semi-arid all formations FOSTER [1987] 

SI medium to regional semi-arid all formations RIBEIRO [2000] 

AVI regional semi-arid areas all formations STEMPVOORT et al. [1993] 
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index is the multiplication result of the three equally weighted 
parameters, as indicated in the equation (1): 

GODindex ¼ Gr Or Dr ð1Þ

where: Gr = rating designated for groundwater occurrence factor, 
Or = rating designated for overlying lithology factor, Dr = assigned 
rate for depth to the water table variable. 

The variables can be rated on a scale of 0 to 1.0. Higher 
index values indicate higher vulnerability of an aquifer to 
pollution, while the lowest values indicate low potential risk to 
pollution. The GOD technique has been used successfully in 
many assessments, such as assessing the vulnerability of alluvial 
aquifer to pollution with GIS platform [GHAZAVI, EBRAHIMI 2015], 
in determining GWV to pollution [OROJI 2018], and in 
combination with longitudinal conductance and Geoelectric 
parameter methods [ONI et al. 2019]. The GOD model provided 
considerably fairer results than the two approaches [ONI et al. 
2019]. This method, in combination with the DRASTIC, was 
applied to evaluate aquifer vulnerability in Zimbabwe [MISI et al. 
2018]; Algeria [BOUFEKANE, SAIGHI 2018]; Nepal [SHRESTHA et al. 
2017], and several other studies. 
• Susceptibility Index 

The Susceptibility Index (SI) method was initially developed 
in Portugal and used to assess aquifer vulnerability in medium to 
large scales (e.g., 1:50,000–1:200,000) [RIBEIRO 2000]. It is mainly 
applied to evaluate the susceptibility of the aquifer to vertical 
agricultural pollution caused, firstly, by nitrate sources and, 
secondly, by pesticide contaminants. This model considers five 
variables, four of them (T: topography; A: aquifer media; R: 
effective recharge; D: depth to the water table) are the same 
parameters that are used in the original DRASTIC but have 
different ratings, and the 5th parameter is the land use (LU) 
intended to consider anthropological influence. The ratings of the 
first four parameters are assigned by multiplying the original 
DRASTIC ratings by 10, and the land use rating is assigned on the 
basis of RIBEIRO [2000]. The rated and weighted parameters are 
summed up to obtain the aquifer vulnerability by using the 
Equation (2): 

SI ¼ 0:186Dr þ 0:212Rr þ 0:259Ar þ 0:121Tr þ 0:222LUr ð2Þ

where: r stands for the ratings for the parameters, and the values 
0.186, 0.212, 0.259, 0.121 and 0.222 are the weights of depth to the 
water table (D), net recharge (R), aquifer media (A), topography 
(T), and land use (U), respectively, and the weights add up to 1. 

SI method has been successfully used in GWV assessments 
in different places as a separate model, for example in Ecuador 

[RIBEIRO et al. 2017], Morocco [EL HIMER et al. 2013] or in 
combination with other models such as original and modified 
DRASTIC and GOD models in Nepal [SHRESTHA et al. 2017], 
India [BRINDHA and ELANGO 2015], Tunisia [AYDI et al. 2012; 
ANANE et al. 2013], Portugal [STIGTER et al. 2005], and the USA 
[vAN BEYNEN et al. 2012]. 
• AVI (Aquifer Vulnerability Index) 

The AVI, is a Canadian model developed to estimate aquifer 
vulnerability to pollution by considering the two physical 
variables: a) the thickness (d) of each sedimentary layer above 
the uppermost saturated aquifer surface; and b) the hydraulic 
conductivity (K) of each of these sedimentary layers [BUSICO et al. 
2017; STEMPVOORT et al. 1993]. Based on the variables K and d, the 
ratio named as hydraulic resistance (c) of the vadose to vertical 
flow can be computed for n layers by applying the following 
Equation (3) [STEMPVOORT et al. 1993]: 

c ¼
Xn

i¼1

di

Ki

ð3Þ

where: di and Ki stand for the thickness and hydraulic 
conductivity of the nth deposit layer, respectively. 

It should be noted that c does not represent the travel time 
of contaminant flow; instead, it indicates the time where water is 
traveling downward through the poriferous media over the 
aquifer surface by a phenomenon called advection, that involves 
temperature change [KUMAR et al. 2015]. 

The AVI method does not use ratings and weights to 
estimate the vulnerability index; instead, the calculated c, termed 
as hydraulic resistance, qualitatively relates to the AVI index. The 
AVI method has been applied for assessing GW in Brazil [SANTOS, 
PEREIRA 2011], Northeast of Portugal [FRAGA et al. 2013] as 
a separate model, and also alongside with modified SINTACS in 
Italy [BUSICO et al. 2017]; modified SINTACS and GALDIT 
models in southern Finland [LUOMA et al. 2016]. 
• SINTACS 

The SINTACS method, developed in Italy [CIVITA 1994] is 
a version of the DRASTIC model adapted to the Italian 
conditions, characterised by highly diverse and mostly karstic 
hydrogeology. In the SINTACS method, the GWV is estimated by 
using seven parameters as in the case of the DRASTIC method; 
however, having Italian words for each parameter [CIVITA 1994]. 
These parameters are (S – soggiacenza i.e. depth to water table, 
N – non saturo, i.e. unsaturated zone, T – tipologia della 
copertura, i.e. soil type, A – acquifero, i.e. aquifer hydrogeological 
features, C – conducibilità, i.e. aquifer hydraulic conductivity, 
S – superficie topografica, i.e. roughness of land surface) [CIVITA 

1994]. It differs from the DRASTIC model in the way these 

Model Spatial scale Climate Hydrogeology formations References 

SINTACS local and regional Mediterranean climate all formations CIVITA [1994] 

SEEPAGE local aquifers all climates non-karst formations MOORE and JOHN [1990] 

EPIK regional all climates karst DOERFLIGER et al. [1999] 

PI local and regional all climates karstic GOLDSCHEIDER [2002] 

COP local and regional all climates karst VIAS et al. [2002] 

DRASTIC local and regional all climates all formations ALLER et al. [1987]  

Source: own elaboration. 
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parameters are relatively rated and weighed. The rates and 
weights are allocated more comprehensively to consider all the 
environmental situations associated with the seven variables 
utilised in the model [KUMAR et al. 2015], and they also vary 
depending on the hydrogeological conditions of the area. Thus, 
ratings and weighting of parameters are more flexible in 
SINTACS than the DRASTIC model [PAVLIS et al. 2010]. The 
SINTACS vulnerability index (SIv) is computed by multiplying 
the sum of the rating of each of the seven parameters with the 
associated weight using Equation (4): 

SIv ¼
X7

i¼1

Xn

j¼1

Pi Wj

� �
ð4Þ

where: Pi is assigned rating for the ith parameter, Wj is assigned 
weight of the jth weight classification.

The higher the SIv value, the higher the vulnerability. The 
SINTACS model provides six weight classes, namely, seepage/ 
drainage (by streams), karst (aquifers), fissured (aquifers), nitrate 
contaminants, severe impact, and normal impact [CIVITA, DE MAIO 

2004; WACHNIEW et al. 2016]. The SINTACS model was applied to 
determine the vulnerability of the aquifer to pollution [AL- 
AMOUSH et al. 2010]. 
• SEEPAGE  

The SEEPAGE model originated in the U.S.A., and is an 
abbreviation of System for Early Evaluation of Pollution potential 
of Agricultural Groundwater Environments [MOORE, JOHN 1990]. 
In the SEEPAGE model, more details of soil properties are 
considered than in the DRASTIC method [KUMAR et al. 2015]. 
However, the rating and weighting values of parameters in 
SEEPAGE model are relatively higher than in the DRASTIC 
model. For instance, each parameter is given a rating, and weight 
ranges from 1–50, based on its relative significance, with the most 
critical parameter influencing the water quality assigned 50 and 
the least important assigned 1. The weights and ratings of each 
parameter are then multiplied and added to estimate the 
SEEPAGE vulnerability Index ðSindexÞ according to the linear 
Equation (5). 

Sindex ¼ R1AP þR2AM þR3VI þ R4SD þR5ST þ R6Dw ð5Þ

where: Ap is assigned weight for attenuation potential parameter; 
AM is assigned weight for aquifer material; VI is assigned weight 
for the impact of the vadose zone; SD denotes the weight assigned 
to soil depth; ST is the weight assigned to soil topography; Dw is 
assigned weight for the depth of water table; Ri (i = 1–6) is relative 
rating designated to various parameters. 

The formula for the attenuation potential is given below: 

AP ¼
Xn

i¼1

soil parametersi Rið Þ ð6Þ

The higher SEEPAGE vulnerability index implies a relatively 
greater vulnerability of the groundwater to pollution. According 
to the literature review, this model is applied in a few research 
studies. The SEEPAGE model has been applied to estimate the 
vulnerability of GW from diffuse agricultural sources in Kumluca 
Plain, Turkey [MUHAMMETOǦLU  et al. 2002] and nitrate contam-
ination on a regional scale using GIS [NAVULUR, ENGEL 1998]. 

• EPIK 
EPIK is an acronym of the four parameters that the model 

considers: epikarst (E), a protective cover (P), infiltration 
conditions (I), and karstic network (K). It was developed in 
Switzerland to estimate intrinsic aquifer vulnerability, specifically 
for karst (carbonate) aquifers [DOERFLIGER et al. 1999]. The 
particularities of karst aquifers are that they are composed of 
carbonate rocks (usually dolomite and limestone) and charac-
terised by highly soluble rocks which allow for the fast and 
turbulent flow of water [KUMAR et al. 2015]. The EPIK 
vulnerability index is computed using Equation (7): 

V ulnerabilityindex ¼ 3Er þ Pr þ 3Ir þ 2Kr ð7Þ

where: Er, Pr, Ir and Kr are relative rating assigned for the Epikarst 
variable, the protection cover variable, the infiltration parameter, 
and the karst mesh parameter, respectively. The values 3, 1, 3, and 
2 are their respective weight coefficients. The vulnerability index 
values can be between 9 and 34. 

In contrast to other models, higher vulnerability index 
values correspond to lower vulnerability and vice versa, as the 
index is converse of the protection factor [VIAS et al. 2004]. 
EPIK has been applied in some studies and also compared with 
the other methods such as AVI, GOD, and DRASTIC [VIAS et al. 
2004]. 
• GLA (The German method) 

The GLA (Geologisches LAndsamt) method was developed 
by the State Geological Surveys of Germany. It considers the 
protective effectiveness of the layers (soil cover, sediment or 
rocks) overlying groundwater [HÖLTING et al. 1995]. The GLA 
method is based on a point count system similar to the generic 
DRASTIC method [MACHIWAL et al. 2018]. The equation (8) 
calculates the final vulnerability index: 

S ¼ ðBþ
Xm

i¼1
MiGiÞW þQþHP ð8Þ

where: S is the protective function, B the effective field capacity of 
the topsoil, Mi the thickness of each subsoil layer, Gi the 
protective effectiveness of each subsoil layer (grain size distribu-
tion), W is the percolation rate, Q are bonus points for perched 
aquifers (500), and HP bonus points for hydraulic (artesian) 
conditions (1500) [PAVLIS et al. 2010]. The advantage of the GLA- 
Method is that it can be used for resource protection and land use 
planning for all types of aquifers. However, it only considers the 
unsaturated zone and excludes attenuation processes in the 
saturated zone in the vulnerability concept. Furthermore, it does 
not sufficiently take into account the unique properties of karstic 
aquifers. 
• PI 

The PI is a modified form of the GLA model developed to 
consider the preferential infiltration paths, which are typical of 
karst aquifer [GOLDSCHEIDER et al. 2000; GOLDSCHEIDER 2002]. It 
integrates the Protective cover (P) and the Infiltration (I) 
conditions of the area and focuses on the assessment of the 
intrinsic vulnerability of karst aquifers; however, it can also be 
applicable to all other types of aquifers. In the PI-Method both 
factors, the protective cover and the infiltration, are separately 
mapped as individual maps and then multiplied to form the final 
groundwater vulnerability index (denoted π). The P factor is 
computed on the basis of a slightly modified version of the 
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German (GLA) method [HÖLTING et al. 1995] and categorised into 
five levels (from P = 1 for a very low degree of protection to P = 5 
for very thick and protective overlaying layers). 

P ¼ ðBþ
Xm

i¼1
MiGiÞ þ

Xn

j¼1
BjMjÞW þQþHP ð9Þ

where: B stands for the effective field capacity; Mi and Mj stand 
for the thickness of each stratum in subsoil and bedrock; Gi 

denotes the protective effectiveness of the subsoil stratum; W 
denotes the recharge (infiltration rate); HP stands for bonus 
points for hydraulic pressure conditions (1500). The protective 
effectiveness of bedrock Bj is measured by multiplying the value 
corresponding to the type of lithology (L) with the value of the 
level of fracturing (F) [PAVLIS et al. 2010]. 

The I factor describes the infiltration conditions and ranges 
from 1.0 for diffuse infiltration in the flat area to 0.0 when 
a swallow hole completely bypasses the protective cover. The final
protection factor p is the product of P and I and is subdivided 
into five classes from 1 with the highest to 5, indicating the lowest 
vulnerability to contamination sources [GOLDSCHEIDER 2002]. The 
PI-Method has been successfully used in groundwater vulner-
ability assessment, particularly in several sites of Europe [GHANEM 

et al. 2017; GOLDSCHEIDER 2005; POLEMIO et al. 2009]. 
• COP-Method (European Approach for Karst Aquifers) 

COP was developed in Spain with the framework of the 
COST 620 program as a standard method for groundwater 
vulnerability mapping in karst aquifers [VIAS et al. 2002]. It 
considers the following factors: concentration of flow (C), 
overlying layers (O) and precipitation (P). 

The COP-vulnerability Index is estimated by Equation (10): 

COP V ulnerabilityindex ¼ CscoreOscorePscore ð10Þ

The COP-Method is like the PI-Method with the exception that 
the COP-Method incorporates the variable precipitation. The 
COP method has been applied for groundwater vulnerability 
mapping in karstic aquifers of Spain [VÍAS et al. 2006]; Greece 
[NANOU, ZAGANA 2018], and Iran [BAGHERZADEH et al. 2018]. 
• DRASTIC Model 

DRASTIC is a standardised model developed in the USA by 
ALLER et al. [1987] for evaluating the pollution potential of 
a specific area, using known hydrogeological properties. It has 
three essential features: hydrogeological parameters, rating 
system, and parameter weights. The seven hydrogeological 
parameters are those that form the name DRASTIC: Depth to 
water (D), Net Recharge (R), Aquifer media (A), Soil media (S), 
Topography (T), Impact of the vadose zone (I), and hydraulic 
conductivity (C) [ALLER et al. 1987; RIBEIRO et al. 2017]. Each of 
these hydrogeological variables is assigned a rating on a 1 to 10 
scale based on a range of values, in which one denotes the least 
vulnerable, while ten stands for the most vulnerable areas. The 
hydrogeological parameters are further assigned relative weights 
from 1 to 5, where the most significant parameters are assigned 
a weight of 5 while the least significant is assigned the weight of 
1 [KIHUMBA et al. 2017]. The ratings and weights of each 
parameter are then multiplied and added to provide the 
vulnerability index values by applying the following linear 
equation [ALLER et al. 1987]: 

DRi ¼ DwDr þRwRr þArAw þ SrSw þ TrTw þ IwIr þ CwCr ð11Þ

where: DRi = DRASTIC vulnerability index, D, R, A, S, T, I, and 
C are seven parameters of the model; w = assigned weight of 
DRASTIC parameter; r = assigned rate for the respective 
DRASTIC parameter. GIS is used to produce the final vulner-
ability map by combining each of the thematic maps of DRASTIC 
parameters. 

DRASTIC is one of the most widely applied methods of 
GWV mapping used in many areas of the world [BARBULESCU 

2020]. To improve the accuracy of the DRASTIC model and 
better represent the local conditions that consider anthropogenic 
impacts, several researchers have modified the model. This was 
mainly achieved by means of: 1) Introduction of additional 
parameters to original DRASTIC such as Land use/cover 
DRASTICLU [JESIYA, GOPINATH 2019; KOZŁOWSKI, SOJKA 2019; 
MUSEKIWA, MAJOLA 2013; SAHOO et al. 2016b; HUANG et al. 2017]; 
contamination index (Cd) and heavy metal pollution index (HPI) 
DRASTIC-CdHPI [HAQUE et al. 2018], Pesticides, DRASTIC- 
Pesticide [CHANDOUL et al. 2014; GÜLER et al. 2013; SAHA, ALAM 

2014], characteristics of fractured bedrock aquifers (DRASTIC- 
Fm) [DENNY et al. 2006], land use (L) and groundwater 
exploitation (E) DRASTIC-LE [LIANG et al. 2019], and other 
agricultural contaminants [SAHOO et al. 2016b]; 2) Exclusion/ 
substitution of less influential parameters with more significant 
parameters AHP-DRASTLE model [WU et al. 2018], DRAV 
[ZHOU et al. 2009]; and 3) Modification of the rating and weighing 
of the original DRASTIC parameters by using statistical methods 
(Entropy information method (E-DRASTIC), Fuzzy pattern 
recognition method (F-DRASTIC), and (Single parameter 
sensitivity analysis (SA-DRASTIC)) based on local measurement 
data [SAHOO et al. 2016a]. In recent studies, there is an a growing 
tendency to use statistical methods (Fuzzy logic, Weight of 
Evidence [KHOSRAVI et al. 2018], Artificial Neural Network [SAHOO 

et al. 2016a]) in combination with the modified DRASTIC model 
to account for errors and uncertainties. Fuzzy rule-based models 
provide comparable results with fewer input data, as well as 
improved vulnerability prediction when DRASTIC factors are 
used [DIXON 2005]. Incorporation of fuzzy rules and neural 
network (NN) with DRASTIC variables improved vulnerability 
prediction for pesticides [OKE 2015]. 

CONCLUSIONS 

This study has attempted to provide an overview of commonly 
applied statistical and overlay-index methods used for assessing 
GWV to pollution. Each of these methods has its own advantages 
and limitations. Major advantages of the statistical techniques are: 
the most appropriate explanatory variables may be objectively 
selected; they account for uncertainty, try to minimise the error, 
and use parameters coefficient instead of weight. They can also be 
easily updated (except for the artificial neural networks) when 
new information is readily available and testable against new 
groundwater observations. Validation procedures may be per-
formed easily if new and updated groundwater observations are 
available. They can be very useful since they reduce the data 
requirements of the overlay index and process-based methods. 
However, they require extensive and quality monitoring (initial) 
data and some level of contamination in the area to be 
considered. This means that if the required data is limited, the 
vulnerability results will face substantial uncertainties. Moreover, 
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extensive groundwater quality data collection may be costly, and 
time-consuming and therefore make statistical methods expensive 
for GWV assessment. 

In contrast to statistical models, overlay-index techniques 
are used extensively in groundwater vulnerability assessments and 
applied more frequently in research literature. Overlay-index 
techniques are easy to apply, require less data which can be 
available easily such as land use/ cover, topography, hydrogeol-
ogy, soil type, and depth to the water table, and describe GWV in 
an easy to understand manner. They are also capable of assessing 
GWV spatially over large areas. However, index-overlay meth-
ods have drawbacks, due to the subjectivity in assigning the factor 
weighting and assignment of numerical values arbitrarily 
designated based on the researcher’s expertise leading to inherit 
bias. Although various efforts are being made in different places 
to reduce the subjectivity problems of overlay-index methods, 
there are still concerns about obtaining accurate model results. 

Since all the models have their own limitations and 
strengths, care must be taken when selecting the method for 
the assessment of groundwater vulnerability to contamination. 
Also, improving groundwater vulnerability assessment models to 
fit into specific places is necessary to help sustainable manage-
ment of the groundwater. 
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