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The obstacle vector field (OVF) method
for collision-free trajectory planning
of free-floating space manipulator
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Abstract. Manipulators mounted on small satellites will be used to perform on-orbit servicing, removal of space debris, and assembly of large
orbital structures. During such operations, the manipulator must avoid collisions with the target object or the elements of the assembled structure.
Planning of the manipulator trajectory is one of the major challenges for the proposed missions because the motion of the manipulator influences
the position and orientation of the satellite. Thus, the dynamic equations of motion must be used during trajectory planning. Methods developed
for fixed-base manipulators working on Earth cannot be directly applied. In this paper, we propose a new obstacle vector field (OVF) method for
collision-free trajectory planning of a manipulator mounted on a free-floating satellite. The OVF method is based on a vector field that surrounds
the obstacles and generates virtual forces that drive the manipulator around the obstacles. The OVF method is compared with the classical
artificial potential field (APF) method and the rapidly exploring random trees (RRT) method. In the presented examples the trajectory planning
problem is solved for a planar case in which the satellite is equipped with a 2 DoF manipulator. It is shown that the OVF method is more efficient
than the APF method, i.e., it allows us to solve the trajectory planning problem in some of the cases, in which the APF method is unsuccessful.

The time required to find the solution with the use of the OVF method is shorter than the time needed by the APF and the RRT method.
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1. INTRODUCTION
In the near future the manipulators mounted on small satellites
will be applied for several purposes: to capture space debris [1],
to perform servicing of commercial satellites [2], and to per-
form assembly of large orbital structures [3]. These operations
could be done by astronauts but using unmanned space robots
will significantly reduce costs and will pose no risk for hu-
mans [4]. The satellite-manipulator system will require a high
level of autonomy to accomplish the aforementioned tasks [5].
In this paper, we focus on the problem of the manipulator tra-
jectory planning during operations performed on-orbit. In many
studies, it is suggested that these operations be conducted with-
out the active control of the servicing satellite (e.g., [6,7]). In
such a case, the satellite is using its thrusters and momentum
wheels during the approach phase, but when the manipulator
begins its motion, the control of the satellite is switched-off [8].
Thus, during the maneuver, the servicing satellite is in the free-
floating state, and the motion of the manipulator affects the po-
sition and orientation of the satellite [9]. The satellite equipped
with the manipulator is a nonholonomic system [10] (various
aspects related to trajectory planning and control of nonholo-
nomic systems were investigated in [11] and [12]). Moreover,
during orbital capture maneuver and assembly operations, the
manipulator is working in proximity to other objects (elements
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of the captured satellite or elements of the assembled structure).
Before the execution of the manipulator motion, a collision-
free trajectory must be planned. Methods developed for Earth-
based manipulators cannot be directly applied in the orbital sce-
nario [13]. The trajectory planning algorithm must consider the
fact that the state of the satellite is influenced by the motion
of the manipulator. Thus, dynamic equations of the satellite-
manipulator system must be used during the trajectory planning
(this is the main difference between the manipulator operating
on an orbit and fixed-base manipulators working on Earth).
Various techniques are proposed for planning collision-free
trajectories. In an approach based on the rapidly exploring ran-
dom trees (RRT) algorithm, the search for the collision-free
trajectory is performed by a random search in the state-space
(a trajectory tree is constructed from the initial state of the sys-
tem). Application of the RRT algorithm for a manipulator that is
attached to a free-floating satellite is presented in [14] and [15].
The approach proposed in [16] is based on the bi-directional
RRT algorithm and allows us to find a collision-free trajectory
that results in the planned change of the satellite orientation
(this change is caused only by the motion of the manipulator).
The collision-free trajectory planning problem for a space robot
could be solved with methods that use the A* algorithm [17]
and with optimization techniques [18-20]. Another possible ap-
proach is based on the artificial potential field (APF) method.
In this method, an artificial force field is constructed, and the
robotic manipulator is treated as a particle that moves in this
field. There are numerous examples of the application of the
APF method for collision-free trajectory planning of mobile
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robots (e.g., [21,22]) and fixed-based manipulators working on
Earth (e.g., [23]). This method is also widely applied in other
tasks, e.g., [24]. Application of the APF method for a manipu-
lator that works in the orbital environment is described in [25].
Mukherjee and Nakamura proposed the application of potential
fields based on the Lyapunov function [26]. In [27] the potential
field is based on the Laplace function that facilitates overcom-
ing the problem of local minima (the existence of local minima
is one of the major drawbacks of the APF method). Several ap-
proaches are based on a combination of different techniques
(e.g., [28,29]). The approach presented in [30] allows prevent-
ing the collision of the manipulator with the tumbling target
object after unsuccessful capture.

In this paper, we propose a new method for planning a col-
lision-free trajectory of a robotic manipulator attached to a free-
floating satellite. This approach is called the obstacle vector
field (OVF) method. In contrast to the classical APF method,
in which obstacles generate a scalar potential field, the OVF
method is based on a vector field that surrounds obstacles. This
vector field determines the direction, in which the link of the
manipulator should move when it is close to an obstacle. The
proposed method considers the fact that the motion of the ma-
nipulator influences the position and orientation of the satellite,
on which the manipulator is mounted.

The OVF method, proposed in this paper for the manipulator
mounted on the free-floating satellite, is to some extent similar
to several concepts known from the literature [31-34]. A har-
monic potential field (HPF) approach for planning the motion
of an unmanned aerial vehicle (UAV) in an environment with
a drift field is proposed in [31]. The drift field is understood
as an external force acting on the UAV. The HPF approach
processes the geometry of the environment (obstacles) and the
given drift field to produce a vector field that guides the mo-
tion of the UAV (treated as a particle). The task of simultaneous
planning and control is achieved by treating the control signal as
an additional fictitious state of the system. Another application
of the HPF approach can be found in [32], where a method for
collision-free trajectory planning of a mobile robot is proposed.
The vector field that guides the robot to the desired position is
produced from the harmonic potential (the field is perturbed by
obstacles present in the environment).

The main difference between the proposed OVF method and
methods presented in [31] and [32] is in the approach used for
the construction of the vector field. In the OVF method, the di-
rection of the vector field that surrounds the given obstacle is
based on the gradient of the potential field generated by this ob-
stacle and is calculated using simple mathematical expressions.
In the approach based on the HPF, the desired trajectory is ob-
tained by solving a gradient dynamical system (this is a neces-
sary step to construct the vector field). Thus, the planer is much
more complicated than the proposed OVF method, as it con-
tains components based on partial differential equations.

A path planning algorithm based on parametrized vector po-
tential functions is proposed in [33]. In this approach, the com-
plex workspace is split into triangular regions (there are three
different types of regions: regions that contain obstacles, re-
gions that contain no obstacles, and regions that contain the

desired position). The vector potential functions are calculated
using the information on region vertices, the obstacles, and the
desired position of the object. The velocity vector field guides
the object to the desired position and the desired orientation.
The approach presented in [33] is demonstrated in simulations
carried out for a unicycle vehicle. The use of predefined tri-
angular regions differentiates this approach from the proposed
OVF method.

Methods proposed in [31,32] and [33] deal with the problem
of planning the trajectory of a single object (UAV or mobile
robot). Application of a method based on the vector potential
field for planning a trajectory of a fixed-base manipulator is
presented in [34]. As in the proposed OVF method, the guiding
vector field in [34] is composed of two components: the first
component is responsible for driving the end-effector towards
the desired position, while the second is responsible for guiding
the end-effector around obstacles. One part of the second com-
ponent is radial to the obstacle surface, and one is tangential
to this surface. The main difference between the method pre-
sented in [34] and the proposed OVF method is in the approach
used for the construction of the field: the vector field in the OVF
method is constructed from the FIRAS potential function, while
in [34] the field is generated by solving a scalar boundary value
problem. The OVF method gives more freedom in the selec-
tion of the direction of the field near obstacles (this direction
is determined by weight coefficients). Moreover, when the end-
effector is close to the obstacle and this obstacle lies between
the end-effector position and the target position, the motion of
the manipulator in the OVF method results only from the vector
field of the obstacle (the attractive potential of the target is not
considered). This allows us to find the solution in more difficult
scenarios.

The differences between the proposed OVF method and
methods known from the literature, outlined in the above dis-
cussion, are significant. Moreover, to the best of our knowl-
edge, this paper presents the first application of the trajectory-
planning method based on the vector field for the case of the
manipulator mounted on the free-floating satellite.

The paper is organized as follows. The equations of the
satellite-manipulator dynamics are presented in Section 2. The
OVF method is described in Section 3. Section 4 contains the
results of numerical simulations used to verify the proposed ap-
proach. The conclusions are presented in Section 5.

2. DYNAMICS OF THE SATELLITE-MANIPULATOR
SYSTEM

Figure 1 shows a satellite with an attached n-DoF serial ma-
nipulator. The inertial coordinate system is denoted by CS;.
(all vectors will be given in CS;,, unless indicated otherwise),
the coordinate system located at the mass center of the satel-
lite and fixed to its body is denoted by CSg, while the coordi-
nate system located at the i-th joint and fixed to the i-th link
is denoted by CS;. The equations are given for a general three-
dimensional case, but they can be directly applied for a simpli-
fied two-dimensional (planar) case. These equations are taken
from [6] and [35].
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Fig. 1. A schematic view of a satellite with attached manipulator

The state of the satellite-manipulator system is defined as:

X = [qv] . (1)
q,

The vector of generalized coordinates, q, is defined as:

q,= 0|, 2

where r; is the position of the origin of CSg (in CSj, ), ©; is the
orientation (attitude) of the satellite expressed using the Euler
angles, 6 = [91 0, 9,,] T, while 6; is the angular position
of the i-th joint. The vector q,, is defined as:

Vs
q, = |, (3)

where the linear and angular velocity of the satellite is denoted
by v, and @;, respectively, 8 = [6; 6, ... én]T, while 6; is
the angular velocity of the i-th joint.

The end-effector position depends not only on the angular
positions of the joints but also on the satellite position and ori-
entation. On the kinematic level, this is the main difference be-
tween the fixed-base manipulator and manipulator attached to

the satellite. The end-effector position in CSj,, is given by:
n
Pee:rs+Pm+ZLia (4)
i=1

where P, is the position of the manipulator mounting point,
and L; is the position of the i+ 1-th kinematic pair with respect
to the i-th kinematic pair. These vectors are expressed in CSjye,
so they depend on @;.
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The velocity of the end-effector is expressed as:

Vee
mee

where J; is the Jacobian matrix of the satellite:

j= | L P ©)
s 0 I

Vs

+J0, (&)

a;

while J,, is the Jacobian matrix of the manipulator:

Jm:[alx(Pee—Pl) ...a,,x(Pee—P,,)]. -
a| a,

The ~ symbol is used to indicate a matrix that is equivalent
to a vector cross-product, I is the identity matrix, a; and P; de-
notes the unit vector of angular velocity and position of the i-th
kinematic pair, respectively, while P, ; is defined as:

n
Peeﬁs = Pm + Z Li . (8)
i=1

The linear momentum, P, and the angular momentum, L, of
the satellite with attached manipulator can be expressed as:

P| A B vl D ©)
L| |[B'+fA E+iB| | F + D
The matrices A, B, D, E and F are defined as:
n
A= (mg+) m |1 (10)
i=1
n
B=) mf;, (11
i=1
n
D=Y mlr, (12)
i=1
E=L+Y (L+mi 7). (13)
i=1
n
F=Y (LJri+mf_Jr), (14)

I
=

where my is the mass of the satellite, while I is its inertia ma-
trix, m; is the mass of the i-th link, while I; is its inertia matrix,
Jri and Jg; denotes the translational and the rotational compo-
nent of the i-th link Jacobian matrix. Vector r;  is the posi-
tion of the i-th link center of mass with respect to the satellite
center of mass: r; ¢ = r; — Iy, where r; is the position of the
i-th link center of mass (in CS;,). The thrusters and reaction
wheels mounted on the satellite are not used during operations
performed with the manipulator. All external forces acting on
the satellite and the manipulator are neglected. We also assume
that: v;(f = 0) = @,(r = 0) = 0. In this case P=0and L = 0.
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The mass center of the satellite-manipulator system remains
stationary in CSjy.

For the system with zero momentum and angular momentum
equation (9) can be transformed into the following form:

o

We define the dynamic Jacobian matrix of the manipulator
attached to the free-floating satellite as:

—1
A B

B” +f,A E+iB

D

6. 15
F+iD (15)

A B
B +#,A E+iB

D

JD:Jm_Js F+iD .

(16)

The Jacobian Jp considers the fact that the position and ori-
entation of the satellite are influenced by the manipulator mo-
tion. By substituting equation (15) into equation (5) we obtain
the following relation between the end-effector velocity and an-
gular velocities of manipulator joints:

- Vee
6=1) lw] ’

where the symbol # denotes the Moore—Penrose pseudoinverse
of a matrix.

To obtain the dynamic equations of the satellite-manipulator
system we follow the approach described in [35]. We neglect
the potential energy because the satellite is in the state of free
fall. The kinetic energy is given by:

A7)

1 A B D
T=-q' |B" E ¥F|q,, (18)
2
p” FT' N
where: .
NZZ(JgiliJRi+miJ%JTi)- (19)
i=1

By substituting equation (18) into the Lagrange equation we
derive the generalized equations of motion:

Q=M(q,) 4, +C(q,.q,)q,, (20)

where q, is the first derivative of q, with respect to time, M is
the generalized mass matrix, C is the Coriolis matrix, and Q is
the vector of generalized forces. M is given by:

A B D
M= |B” E F Q1
D’ F' N
The vector Q is defined as:
F;
Q= |H,|, (22)
u

where F; is the vector of external forces, Hy is the vector of
external torques (Fy; and Hy act on the satellite), while u =

[ul up unr is the vector of control torques that are
applied at the joints. We assume that: F; = H; = 0.

Finally, we use a definition of the state vector (1) and equa-
tion (20) to obtain the following equation that describes the dy-
namic behavior of the free-floating satellite with the attached

manipulator:

q,

3. THE OBSTACLE VECTOR FIELD (OVF) METHOD

3.1. The problem of collision-free trajectory planning

In order to achieve the task of grasping the target object or to
perform the assembly work the manipulator must move its end-
effector to the selected position, Pr. The manipulator operates
in proximity to the target object or the assembled structure and
must avoid collisions with obstacles. The task of planning ma-
nipulator trajectory can be treated separately from the task of
trajectory following (as explained in [6], each of these tasks can
be realized by a separate module of the control system). The
planning is performed before the execution of the manipulator
motion. At the trajectory planning stage, perfect knowledge of
the satellite-manipulator system parameters is assumed. More-
over, no uncertainties in the satellite or the end-effector position
and orientation are considered. It is the role of the closed-loop
controller to ensure the realization of the selected trajectory de-
spite disturbances and uncertainties. Various methods can be
used for such a purpose (e.g., predictive control [6] or adap-
tive control [36,37]). The problem of tracking of a numerically
defined trajectory by the manipulator mounted on the satellite
is analyzed in [38], while an approach based on input-output
decoupling for a free-floating satellite with manipulator under
state and input disturbances is shown in [39]. The review of
various methods that can be used for control of the satellite-
manipulator system can be found in [40].

In this section, we present the proposed trajectory planning
algorithm for n-DoF manipulator mounted on the free-floating
satellite. For the sake of simplicity we are considering a two-
dimensional (planar) case, in which there are m rectangular ob-
stacles in the manipulator workspace: I'}, I', ..., I',. Each ob-
stacle is defined by the position of its geometrical center, Pr,, its
orientation with respect to CSjy,, ¢, and its dimensions: width,
wi, and height, h;. More complex shapes of obstacles can be ap-
proximated by many rectangles. The goal of the trajectory plan-
ning algorithm is to find a collision-free trajectory of the manip-
ulator from the given initial state of the satellite-manipulator
system to a state in which the manipulator end-effector is in the
desired position. This task can be expressed as:

For q,(t = 0) = 0 and for the given q,( =0) and '}, I, ... .,

T
T, find (1) = [61(1)  6:(1) 6:(1)]  such that:
1. Pge(t th) =Py.
2.Vte(0,1p)Vie{l,2,...,n}Vje{l,2,....,m}: PPN
I'; =0, where P, .| =P,..
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The line segment between the Cartesian position (given in
CSine) of the i-th kinematic pair and i+1-th kinematic pair is
denoted by P;P;; . The collision between this line segment and
Jj-th obstacle occurs if and only if there is a non-empty set of
points that belong to the line segment P;P;, | and to the obsta-
cle I';. To simplify the collision detection we do not consider
the width of the manipulator links (the links are treated as line
segments). This assumption is acceptable if the width of the
links is much smaller than their length. The width of the links
can be considered during the trajectory planning by introduc-
ing a safe zone around the obstacle (in any practical application
such a zone must be introduced anyway to avoid collisions in
the case of disturbances and non-perfect knowledge of parame-
ters of the satellite-manipulator system). One possible approach
to introduce a safe zone is to perform the trajectory planning
with virtual obstacles that are located in the same position as
real obstacles, but have their physical dimensions increased by
a constant zr.

In the classical APF method trajectory, planning is based on
the scalar function (called the potential) [41]. The potential field
can be constructed in the physical (Euclidean) space or the con-
figuration space of the manipulator. This field has two compo-
nents: (i) the attractive potential of the target (a function that has
its minimum in the desired final configuration of the manipula-
tor), and (ii) the repulsive potential of obstacles (a function that
has high values in all configurations in which the links of the
manipulator collide with obstacles). The virtual forces gener-
ated by the potential field act on the manipulator and drive its
motion towards the configuration, in which the end-effector is
in the desired position. The general idea of the APF method
applied for the free-floating satellite manipulator system is pre-
sented in Fig. 2, while the general idea of the proposed OVF
method is presented in Fig. 3.

Fig. 2. A schematic view showing the general idea of one of the
variants of the classical APF method. The attractive potential field
is generated by the target position, while the repulsive potential
field (based on the scalar FIRAS potential field function)
is generated by the obstacle

The OVF method is a variation of the well-known approach
based on the APF method. The main difference is that instead of
a simple scalar potential function the OVF method uses a vec-
tor field. The vector field determines the direction of motion
that allows us to move the links of the manipulator around the

Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 2, p. e140691, 2022

Fig. 3. A schematic view showing the general idea of the OVF

method. The obstacle I' lies between the end-effector and the tar-

get position. This obstacle generates the vector field that drives the
manipulator around the obstacle

obstacles. The idea to use vector field in trajectory planning is
not new [31-34]. However, to the best of our knowledge, such
an approach was never used for the manipulator mounted on the
free-floating satellite.

3.2. The attractive force generated by the target

The virtual attractive force, Fy4, is generated by the target po-
sition, Pz, and acts on the end-effector. This force is directed
from the current end-effector position, P,., towards the target
position and drives the motion of the end-effector. As in the
classical APF method [42], the amplitude of F4 depends on the
distance between P,, and Pr. However, in the proposed OVF
method, when the manipulator is in proximity to the obstacle
and this obstacle lies between the end-effector position and the
target position, there is no need for the attractive force to act on
the end-effector because the motion of the end-effector will be
driven by the vector field of the obstacle. The virtual attractive
force is given by:

F4 =

Pr—P
8Al (gngZHPT*PeeH +gA3) ”I)Tipeell,
T — Yee

if Vie {1,27...,7}1}3 di>d,VP,.PrNL;i=0

(24)
0, if die {1,2,...,1’)1}: di <dy, AP, PrNI; #0,

where ga1, g42, and g3 denote constant coefficients, while
di = ||(P);i — (Pp);|| denotes the closest distance between the
manipulator and the i-th obstacle, (P,); denotes the point on
the manipulator that is closest to the i-th obstacle, while (Pp);
denotes the point on the i-the obstacle that is closest to the ma-
nipulator (positions of points (P,); and (Pp); are found using
a simple algorithm that calculates distances between line seg-
ments defined by the positions of manipulator kinematic pairs
and sides of rectangular obstacles). A constant parameter that
describes the minimal value of d; is denoted by d,. The Fy
equals zero if for any obstacle I'; the distance d; is smaller than
some defined value d, and if this obstacle intersects with the
line segment P,.P7r (such intersection occurs when there is a
non-empty set of points that belong to the line segment P, Pr
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and to the obstacle I';). The coefficients gai, g2, ga3, and the
distance d, are used to tune the OVF algorithm.

3.3. The repulsive force generated by obstacles

In the OVF method, the virtual repulsive force of obstacles re-
sults from the vector field generated by these obstacles. The
vector field is constructed from the potential field that surrounds
the obstacle. To describe the potential field we choose the FI-
RAS potential function [43]:

2
gp 1 1
2 | [[pD_pm ‘ T dy |
v (ngn) - HPU PD<F> (r) (25)
it 0< [P PR | <o
0, if HPQ-PEPH > do,
where Pg) denotes a point (given in the local coordinate frame

fixed to the obstacle center, CSr), for which the potential is cal-

culated, g, denotes a constant coefficient, Plgr) denotes a point

on the obstacle that is closest to Pg), while dj denotes a con-
stant parameter that describes the effective range of the obstacle
potential field. Although the FIRAS potential function was in-
troduced in the 1980s, it is still used in collision-free trajectory
planning algorithms (e.g., [44]). In the classical APF method,
the potential field constructed with this function can result in
local minima. Therefore, various other approaches were pro-
posed to describe the repulsive potential of obstacles (e.g., su-
perquadrics [45] or harmonic potential functions [46]). How-
ever, in the OVF method, the potential function is only needed
for the construction of the obstacle vector field. Thus, we can
use the simple FIRAS potential function.

Each obstacle is treated separately. The value of the poten-
tial generated by the i-th obstacle is calculated for the point on
the manipulator that is closest to this obstacle. Thus, Pg[) =

Pﬁr")) . The direction from the i-th obstacle is calculated as

a gradielnt of the scalar potential field:

n; = Vu, (26)
where U; denotes the value of the potential field from equation
(25). The direction perpendicular to the gradient of the potential
field is calculated with the following equation:

T\ .
&=y (n3) i )
where the symbol * denotes the unit vector (ﬁ i = ”2’” ), T,
denotes the rotation matrix: l
coso  —sino
Ty(a) = | . (28)
sinoe  coso

while 7; € {—1, 1} denotes the parameter that defines the di-
rection of the vector ;. For the given initial conditions and the

given set of obstacles, the selection of ¥; depends on Pr. To
solve the trajectory planning problem with the OVF method, it
is required to check various combinations of ¥;. For m obsta-
cles there are 2™ possible combinations, e.g., for m = 2 there
are four sets of ¥ coefficients: (i) 1 =1, p =1, (i) y1 =1,
r=—-13G)n=—-1,pnr=—1,and (iv) 1 = —1, »b = 1. Val-
ues of 7; coefficients in the z-th set can be computed from the
following expression:

z+2"f1—1 J

y= (-l 29)

where |-| denotes the floor function.
The resultant direction of the repulsive force is defined by the

A V; Lo
unit vector V; = HT’ where v; is given by:
i
'f,i‘i‘ghcl‘a if P,PrNI;i=0
v, ={ —tan"! (g, (di—dy)) (30)

ﬁi+ghcw
if P PrNT;#£0,

057

where g, and g, denote constant coefficients, while d, denotes
a constant parameter that describes the distance from the obsta-
cle at which v; changes its direction.

If the i-th obstacle does not lie between the current end-
effector position and the target position (the set of points that
belong to the line segment P, Py and to the obstacle I’ is
empty), then the v; vector is calculated as a weighted sum of
unit vectors ); and & ; (the former is defined by the gradient
of the potential field, while the latter is parallel to the lines of
the potential field). The weight coefficient for f; is equal to 1,

while the weight coefficient for §; is equal to a constant param-
eter g;,. For low values of g, the direction of v; is close to the
direction defined by the gradient of the potential field and the
repulsive force is acting away from the obstacle. Higher values
of g, will result in a direction that will be moving the manipula-
tor around the obstacle. If the end-effector is close to the obsta-
cle and this obstacle lies between the end-effector position and
the target position, then the motion of the manipulator should
only result from the vector field of the obstacle. In such a case,
the manipulator should be guided around the obstacle at some
given distance. The first term of equation (30) under the condi-
tion that PPy NI"; # 0 ensures that the manipulator will keep
a constant distance from the obstacle (the arctangent function is
used to obtain a smooth change of the direction from repulsive
to attractive).

The virtual repulsive force generated by the i-th obstacle is
given by the following expression:

(Fr)i = gr1 (*e_gRZHPT_P”” +gR3> Uiv;, (31
where gr1, gr2, and gg3 denote constant coefficients. Potential
U; is calculated for the point (P,);, in which the force (Fg); acts
on the manipulator (point (P,); lies on one of the links of the
manipulator). || (Fg);|| depends on the distance between the tar-
get position and the current end-effector position (if ||Pr — Pe, ||
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decreases, then the value of (Fg); also decreases). Such an ap-
proach allows us to plan a trajectory even if Pr lies very close to
the edge of the obstacle. Without the dependence of ||(Fg);|| on
|IPr — P,|| the attractive force F4 could be at some point bal-
anced by (Fg);. The values of constant coefficients ggri, gr2,
and ggr3 should be selected in such a way that the influence
of ||[Pr — P, on the value of (Fg); is significant only when
|P7 — Pe|| is very small.

3.4. Trajectory planning with the OVF method

The manipulator should move under the influence of the vir-
tual attractive force generated by the target position and the vir-
tual repulsive force generated by m obstacles. The following
equation is used to determine the desired motion of manipula-
tor joints:

O4cs = Jhg Fa+ Y J5.20T () (Fr)i, (32)
=1

1

where g, denotes a constant coefficient, while Jp, denotes the
dynamic Jacobian computed not for the end-effector, but the
point (P,);. Equation (16) is used to calculate Jp,, but only
these joints are considered that are between the manipulator
mounting point and the link, on which the point (P,); is lo-
cated. If the point (P,); lies on the j-th link, then Jp, is com-
puted for j-DoF manipulator, in which the position of the end
of the last link with respect to the last kinematic pair is given
by: L; = (P,); — P;. Matrix Ty in equation (32) is used to trans-
form (Fg); from CSj,, to the local coordinate frame fixed at
the beginning of the link, on which the point (P,); is located.
Orientation of this link is denoted by ¢;.

The control torques that result in the desired motion of the
manipulator joints are calculated from the following equation:

u=gu (Odes_é)a

where g, denotes a constant coefficient, while the vector of con-
trol torques u is the only non-zero component of the vector of
generalized forces Q defined in equation (22). The influence of
the manipulator motion on the state of the servicing satellite
must be considered during the trajectory planning. The 4th or-
der Runge-Kutta (RK IV) method is used to solve equation (23)
in order to determine the state of the satellite-manipulator sys-
tem after the application of the control torque given by equation
(33). The period between the previous state and the new state
is denoted by tgg (it is assumed that the control torque is con-
stant during this period). Steps of the OVF method are repeated
for the new state obtained from the RK IV method. This pro-
cess is continued until the solution is found (the end-effector
reaches the desired target position: |P,, — P7| < €, where € de-
notes the allowable error) or the maximal number of repetitions
is reached (this number is denoted by km,,). When the solu-
tion is found, the algorithm obtains the reference manipulator
trajectory in the joint space from all the states that lie on the
trajectory. At this stage the time of motion, #7, can be arbitrar-
ily selected and the trajectory can be adjusted. The pseudocode
of the OVF trajectory planning method is presented as Algo-
rithm 1.

(33)
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Algorithm 1. Pseudocode of the OVF trajectory planning method

Parameters of the system, the initial state (x(r = 0)),

Input: obstacles (I't, Iy, ..., Tyy,), desired target position (Pr)

The trajectory of the manipulator defined in the joint

Output: space: 0(r)

1. x; + Assign the initial state as the first state on the trajectory;

2. forz«+ 1to2™do

3. 11(2),%(2), - .-, ¥m(z) < Calculate coefficients using
equation (29);
4. for j < 1 to ky.p do

P(,P;,...,Pe < Solve the forward kinematics for x;
to obtain positions of joints and position of the end-
effector;

if |P,. — Pr| < € then

0(r) «+ Obtain the reference trajectory in the joint
space from x1, X, ..., X;;

Solution found, break the loop;

end if

10. F, < Calculate the virtual attractive force using equa-
tion (24);

11. for i < 1 tomdo

12. (Pr);,(Pp); + Find point on the manipulator that

is closest to the i-th obstacle, and point on the i-the
obstacle that is closest to the manipulator;

13. U; < Calculate the value of the FIRAS function in
(P,); using equation (25);

14. N é’i, D; < Build vector field in the point (P,);;
15. (FRr); < Calculate the virtual repulsive force using
equation (31);
16. end for
17. 0 4.5 + Calculate the desired motion of manipulator
joints using equation (32);
18. u < Calculate control torques using equation (33);
19. Xjy1 < Use RK IV method to solve equation (23) in

order to determine the state of the satellite-manipulator
system after the application of u;

20. end for
21. end for

4. RESULTS OF NUMERICAL SIMULATIONS

4.1. Parameters of the satellite-manipulator system
Simulations presented in this section were performed for a pla-
nar satellite equipped with a non-redundant 2 DoF manipulator.
Parameters of the manipulator are shown in Table 1. Parameters
of the satellite are presented in Table 2.

4.2. Comparison with other methods

The proposed method is compared with two other trajectory
planning methods: the APF method and the RRT method. We
use a variant of the APF method presented in [25]. In this ap-
proach, the potential field is based on superquadrics that de-
scribe the obstacles. The direction of the repulsive force gen-
erated by the i-th obstacle is not based on the local gradient
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Table 1
Parameters of the 2 DoF manipulator
Val
Parameter Symbol aue
Link 1 Link 2
Position of CSiy1| 5 (CS) T T
with respect to CS; L [0-6m 0] [0-6m 0]
Position of the center (CSi) 0.3m 0] 03m 0]
of mass !
Mass m; 4.5kg 1.5kg
Mass moment of L | 0.135kem? | 0.045kg-m?
inertia
Range of allowed 0, |(—150°, +150°)|(~170°, +170°)
positions of joint

Table 2
Parameters of the satellite
Parameter Symbol Value
Mass mg 60 kg
Mass moment of inertia I 1.875 kg-m?
Manipulator mounting point PS,lC Ss) [0.4 m0]7

of the potential field but is set halfway between the direction
determined by the points (Pg); and (Pp);, and the direction
determined by the points (P,); and (Pp); (point (Pg); lies in
the geometric center of the i-th link). As demonstrated in [25],
such an approach to the selection of the direction of the repul-
sive force in the APF method reduces the risk of stopping the
algorithm after reaching the local minimum of the field.

In our simulations, we use a one-directional variant of the
RRT algorithm described in [14] (with some modifications in-
troduced in [16]). In the approach presented in [14], the RRT
algorithm is used in a different way than it is usually used for
planning trajectories of mobile robots and fixed-base manipu-
lators (usually the construction of the trajectory tree continues
until the desired configuration is reached, e.g., [47]). We follow
the approach, in which a single tree is constructed until a pre-
defined number of vertices is reached (this tree begins from the
initial state of the system and is constructed in the configuration
space). The number of tree vertices is set to 100 000. The posi-
tion of the end-effector is calculated for each vertex of the tree
(vertices are defined in the configuration space). The vertex that
corresponds to the end-effector position that is sufficiently close
to the target position is selected. The trajectory in the configu-
ration space is constructed backwards from this vertex to the
initial vertex of the trajectory tree.

To the best of our knowledge in the case of the free-floating
satellite-manipulator system, no known approach allows us to
determine if for the given conditions the solution of the tra-
jectory planning problem exists. Thus, to compare the OVF
method with other methods we select the following criterion.
We arbitrarily chose part of the manipulator workspace and de-
note this part as Ar. The trajectory planning is performed for
a set of points uniformly distributed in A7. This set is denoted

as Iy = {(PT)17 (PT)Q, . (PT)k}, where (PT),' € Ay, while k
is the number of points. Some of the points that belong to I1r
may lie inside obstacles. Such points belong to the set [T CI1r.
The set of points for which the tested method can find the solu-
tion to the trajectory planning problem is denoted as ITg C IT7.
The effectiveness of the trajectory planning method is measured
by O: |
Ig
T | i e
where |II| denotes the number of elements in the set IT. The
solution to the trajectory planning problem may not exist for
some points that belong to I17. Thus, for the given conditions
the maximal possible effectiveness may be lower than 1.
The OVF, the APF, and the RRT method were implemented
in Matlab (R2014a). Simulations were performed on a PC with
Intel Core 17-3820 CPU (3.60 GHz) with 32 GB RAM.

4.3. Results of numerical simulations

In the considered example there are three rectangular obstacles.
The center of the first obstacle is in Pr, = [0.9 m —0.215m]".
Edges of this obstacle are parallel to the axes of CS;,, and have
the following lengths: wi =0.06 m and #; =0.21 m. The center
of the second obstacle is in Pr, = [1.105 m 0]”. This obstacle is
oriented at an angle of ap = 10° with respect to the axes of CS;y,
and its edges have the following lengths: wy, = hy = 0.13 m.
The center of the third obstacle is in P, = [1.3 m 0.3 m]”.
This obstacle is oriented at an angle of a3 = —45° and its edges
have the following lengths: w3 = 0.21 m and 3 = 0.11 m. The
width of the manipulator links is considered during the trajec-
tory planning by introducing a safe zone around each obstacle.
To create this safe zone the dimensions of each obstacle are in-
creased by zr = 0.04 m. The initial state is defined by q,,(r=0)

— [(ry)x (rs)y W5 61 65]" = [000 1.14rad —2.28 rad]” and
q,(t=0) =0, where (ry), and (r;), denotes the X and ¥ compo-
nents of ry, respectively, while y; is the orientation of the satel-
lite around the Z-axis. For the given q,(t = 0) the initial posi-
tion of the end-effector is: P,.(t =0) = [0.7 m — 0.1 m|”. The
goal of the trajectory planning algorithm is to find the collision-
free trajectory from this initial state to a state in which the end-
effector is in the desired target position: P, (r =17) = Pr.

The parameters used by the OVF method were selected by
a trial-and-error method. Selected values allow successful tra-
jectory planning in a wide range of conditions: g41 = 10, g4 =
70, ga3 = 1, d, = 0.1 m, g, = 0.005, dp = 10 m, g, = 10%,
gn=2,d,=0.02m, gr1 =0.5, gro =50, gr3 =1, g» = 1,
8u = 50, trg = 0.001 s, ky.p = 2000, € = 0.002 m, ¢y = 20 s.
The following desired target position was chosen for the ini-
tial simulations: Py = [I m —0.25 m|”. The OVF and the RRT
method were able to solve the trajectory planning problem. The
APF method was not able to find the trajectory that would bring
the system to a state, in which the end-effector is in the desired
position.

The visualization of the potential field generated by obstacles
using the FIRAS function is shown in Fig. 4. The solution of the
trajectory planning problem was found with the OVF method
for the following set of y coefficients: y; = —1, » = 1, and
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16 04 03 02 01

Y [m]

Fig. 4. Visualization of the artificial potential field generated by
obstacles using the FIRAS potential field function (values above 5
are truncated)

Y3 = 1. The vector field generated by obstacles for this set is pre-
sented in Fig. 5. The end-effector trajectory obtained with the
OVF, the APF, and the RRT method is shown on the XY plane in
Fig. 6. The X and Y components of this trajectory are presented
in Figs. 7 and 8, respectively. The end-effector trajectory ob-
tained with the OVF method and the RRT method leads to the

0.4
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Fig. 5. The vector field generated by obstacles for: yj = —1, b =1,
and y3 = 1. Each obstacle is surrounded by a safe zone
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Fig. 6. The end-effector trajectory on the XY plane
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desired target position, while the trajectory obtained with the
APF method ends at the safe zone that surrounds the obstacle
I';. Figures 9 and 10 show the trajectory in the joint space. The
satellite-manipulator system during realization of the trajectory
planned with the OVF method is depicted in Fig. 11, which
shows the influence of the manipulator motion on the satel-
lite. The mass center of the system remains stationary, while
the mass center of the satellite is moving during realization of
the trajectory.

1.1 T T T

End-effector position X [m]

0 5 10 15 20
Time [s]

Fig. 7. The X-component of the end-effector position
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Fig. 8. The Y-component of the end-effector position
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Fig. 9. The angular position of the first joint of the manipulator

The OVF method and the RRT method were able to solve
the trajectory planning problem for the specific desired target
position Pz = [1 m —0.25 m|”. During the trajectory planning
performed with the APF method, the manipulator has reached
a position in which the control torques that arise from the vir-
tual attractive force generated by the target are compensated
by torques that arise from the virtual repulsive force gener-
ated by the obstacle I'j. As a result, the APF method is not
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Fig. 10. The angular position of the second joint of the manipulator
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Fig. 11. The satellite-manipulator system during the realization
of the trajectory planned with the OVF method

able to solve the trajectory planning problem. The final end-
effector position obtained with the APF method is: P,.(t =
t7) = [0.846 m —0.141 m]”. A comparison between the so-
lutions obtained with the OVF method and the RRT method
shows that the trajectory obtained with the OVF method has
higher smoothness. The final end-effector position obtained af-
ter the realization of the trajectory is the same for the OVF and
the RRT method (the difference between the obtained and the
desired position is in both cases below 0.0016 m. However, the
final positions of joints are different: 6, (r =15) = 0.133 rad and
6>(t =t7) = —1.85 rad for the trajectory obtained with the OVF
method, 0;(r =1) =0.114 rad and 6,(r = t7) = —1.84 rad for
the trajectory obtained with the RRT method. The final orienta-
tion of the satellite is also different: y;(r = t¢) = 0.268 rad for
the OVF method, y;(r =t#7) = 0.281 rad for the RRT method.
These differences arise from the fact that the satellite equipped
with the manipulator is a nonholonomic system and its final
configuration depends on the trajectory. The change of the ori-
entation and position of the satellite is caused by the reaction
forces and reaction torques induced by the motion of the manip-
ulator. Due to the free-floating nature of the considered system
the equations that describe the dynamics of this system (equa-
tion (23)) are used during the trajectory planning.

4.4. Effectiveness of the trajectory planning methods

In order to compare the OVF, APF, and RRT methods using
the criterion defined in equation (34), trajectory planning is
performed for a set of points [Ty = {(Pr), (Pr)2,..., (Pr)c}-

10

We select k = 4096 points that are uniformly distributed
on a grid and cover rectangular area defined by vertices:
(Py); =[0.7m —0.4m]", (Py), =[1.6m —0.4m]”, (Py)3; =
[1.6 m 0.5 m]?, and (Py)s = [0.7 m 0.5 m]?. In the case of
the OVF and APF methods, the trajectory planning algorithm
is used to find the solution to the trajectory planning problem
for every point in the set IIr (each point is passed to the al-
gorithm as a target position). In the case of the RRT method,
one trajectory tree is constructed for the given scenario. It is
checked which points that belong to Iy are sufficiently close
to the end-effector positions obtained for tree vertices.

The OVF, APF, and RRT methods are compared in three dif-
ferent scenarios. The first scenario, considered in Section 4.3,
is named ’case 1’. We introduce two other cases. In the sec-
ond case, there are two rectangular obstacles in the manipu-
lator workspace. The center of the first obstacle is in Pr, =

[0.95m 0.15 m]” . This obstacle is oriented at an angle of a; =
—45° with respect to the axes of CSj,. and its edges have the
following lengths: w; = 0.16 m and #; = 0.06 m. The center of
the second obstacle is in Pr, = [0.95 m —0.15 m]” . This obsta-
cle is oriented at an angle of op = 45° with respect to the axes
of CS;y. and its edges have the following lengths: w, = 0.16 m
and h, = 0.06 m. As in ‘case 1°, to create a safe zone around
obstacles the dimensions of each obstacle are increased by
zr = 0.04 m. The initial state of the satellite-manipulator sys-
tem is defined by q,(r = 0) = [0 0 0 0.982 rad — 2.608 rad]"
and q,(t = 0) = 0. For the given q,(t = 0) the initial position
of the end-effector is: P, (t = 0) = [0.9 m 0]”. Although in this
case, the number of obstacles is smaller than in ‘case 1°, their
arrangement with respect to the initial configuration of the ma-
nipulator makes the trajectory planning problem very difficult.
It is not possible to use the free space between the two obstacles
to access the area of the workspace that is located to the right of
the obstacles. The end-effector must move around the obstacles
in order to access this area.

In the third case, there are six rectangular obstacles. The
centers of the obstacles are located in the following po-
sitions: Pr, = [0.8m —0.215m]", Pr, = [Im —0.215m]",
Pr, = [1.2m —0215m])", Pr, = [1.35m0.4m]", Pr, =
[1.35m0.2m]”, and Pr, = [1.35 m 0]”. These obstacles are
oriented at the following angles: o = —30°, op = 30°, o3 =
—30°, a4 = o5 = ag = 90°. All obstacles have the same size:
W1=W2=W3=W4=W5=W6=0.06m andh1:h2:
hy = hy = hs = h¢ = 0.21 m. As in ‘case 1’, to create a safe
zone around obstacles the dimensions of each obstacle are in-
creased by zr = 0.04 m. We select exactly the same initial
state as in ‘case 1’: q,(t =0) =[000 1.14rad —2.28 rad]”
and q,(r = 0) = 0. The initial position of the end-effector is:
P..(t =0) =[0.7m —0.1 m]”. Although in ‘case 3’ there are
twice as many obstacles as in ‘case 1°, the accessible area of
the workspace hidden behind obstacles is small. Thus, from the
perspective of the collision-free trajectory planning algorithm,
this last case is an easy one. The main difficulty, especially for
the OVF method, arises from the number of obstacles, not from
their configuration with respect to the initial configuration of
the manipulator.
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The area covered by a set of points, for which the trajec-
tory planning method can find the solution of the trajectory
planning problem, is presented in Fig. 12 for each of the con-
sidered methods. Table 3 presents the summary of the results
obtained for all three cases. The RRT method has the highest
effectiveness, while the APF method has the lowest effective-
ness. In ‘case 1’ the effectiveness of the proposed OVF method
is higher than the effectiveness of the APF method by 18.1%,
while the effectiveness of the RRT method is higher than the
effectiveness of the OVF method by 8.2%. In ‘case 2’ the effec-
tiveness of the proposed OVF method is higher than the effec-
tiveness of the APF method by 38.5%, while the effectiveness
of the RRT method is higher than the effectiveness of the OVF
method by 8.1%. In these two cases, there exists a subset of de-
sired positions, for which the OVF and RRT methods can find

the solution to the trajectory planning problem, while the APF
method is not able to find the solution. In ‘case 3’ all methods
have similar effectiveness. The effectiveness of the proposed
OVF method is lower than the effectiveness of the APF method
by 0.9%, while the effectiveness of the RRT method is higher
than the effectiveness of the OVF method by 3.3%. This is the
only case, in which the advantage of the OVF method over
the APF method is not visible. This is because the trajectory
planning problem is less challenging for the configuration of
the obstacles defined in ‘case 3’ than in ‘case 1’ and ‘case 2’.
Thus, the higher effectiveness of the OVF method over the APF
method becomes apparent in difficult scenarios. In many cases,
the APF method is not able to find the solution because the al-
gorithm is stopped in local minima. This problem is limited in
the OVF method because in the proposed approach the poten-

case 1: OVF

0.7

Y [m]

case 1: APF

case 1: RRT
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case 3: OVF case 3: APF case 3: RRT
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Fig. 12. Map showing the final end-effector positions that can be reached with the OVF method (left column), the APF method (middle column)
and the RRT method (right column) in ‘case 1’ (the first row), in ‘case 2’ (the second row), and in ‘case 3’ (the third row)
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tial function is only used for construction of the vector field.
As a result, there are no points where the algorithm would
stop due to the equilibrium of attractive and repulsive poten-
tial (the vector field drives the manipulator around the obsta-
cles). However, there are some configurations of obstacles for
which the resulting vector field does not allow the algorithm to
find a solution, even though this solution exists (and is found
with the RRT method). The effectiveness of the RRT method
is highest in all three cases, but the differences between the ef-
fectiveness of the OVF and RRT methods are relatively small.
If the solution to a given problem exists, it is not guaranteed
that the OVF method will be able to find this solution. This
is a disadvantage of the proposed method, but to the best of
our knowledge none of the methods proposed for the collision-
free trajectory planning of manipulator mounted on the free-
floating satellite (including the RRT method) ensures that the
solution of the trajectory planning problem will be found if it
exists [13].

Table 3
Effectiveness of the trajectory planning methods
Planning method Casel | Case2 | Case3
Obstacle vector field (OVF) 0.5403 | 0.5260 | 0.5283
Artificial potential field (APF) 0.4575 | 0.3797 | 0.5331
Rapidly exploring random trees
(RRT) 0.5846 | 0.5686 | 0.5459

The computational time required to find the solution with the
proposed OVF trajectory planning method depends on the num-
ber of obstacles. As explained in Section 3.3, each obstacle gen-
erates its own vector field, and the direction of this field is deter-
mined by 7;. For m obstacles, there are 2™ sets of possible com-
binations of 7; coefficients. However, the OVF algorithm works
sequentially, trying different combinations until the solution is
found or until all combinations are checked. If there are no ob-
stacles between the initial end-effector position and the target
position, then the trajectory planning problem can be solved
for any combination of ¥; coefficients. Detailed analysis of the
results obtained for all three cases shows that for many target
positions from the set 17 the solution with the OVF method is
found for the first combination of ¥; coefficients.

The average computational time required to find the solution
of the trajectory planning problem using the OVF, the APF, and
the RRT method is presented in Table 4 (cases in which the tra-
jectory planning was not successful are not considered in this
calculation). Comparison between the OVF and APF methods
shows that in every case the average computational time re-
quired to find the solution of the trajectory planning problem
is lower for the OVF method. In the OVF method, the increase
in the number of obstacles does not significantly affect the re-
quired time, but it should be noted that the scenario consid-
ered in ‘case 3’ is less demanding for the trajectory planning
algorithm. The increase in the number of obstacles also slowed
down the APF method. The time required by the RRT method
is three orders of magnitude higher than the time required by
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the OVF method and APF methods (the construction of the tra-
jectory tree for the free-floating satellite-manipulator system is
time-consuming). However, in a given scenario one tree could
be used to solve the trajectory planning problem for all points
in the set IT7. In the classical approach based on the RRT al-
gorithm, a solution could be found very quickly for some de-
sired positions (without the need to construct the tree that has
100 000 vertices). The values presented in Table 4 should be
treated with caution because the Matlab implementations of the
considered algorithms were not optimized.

Table 4
Average computational time required to solve the trajectory planning
problem
Planning method Case 1 Case 2 Case 3
Obstacle vector field (OVF) 16.31s 14.22s 18.57 s
Artificial potential field (APF) 32.47s 26.66s 53.71s
Rapidly exploring random trees
(RRT)* 43000 s | ~41000 s | ~44700 s

* Values presented for the RRT method include the time required for the
construction of the trajectory tree (100 000 vertices). One tree can be used
for all points in the set Ir.

5. CONCLUSIONS

In this paper, we presented a new approach to the collision-
free trajectory planning of the manipulator mounted on the
free-floating satellite. The proposed OVF method is based on
a vector field that surrounds the obstacles and generates vir-
tual forces that drive the manipulator around the obstacles.
This method considers the fact that the motion of the ma-
nipulator influences the position and orientation of the satel-
lite (the equations that describe the dynamics of the satellite-
manipulator system are used during the trajectory planning).
The OVF method was compared with two other methods: the
APF and RRT. The comparison was performed for the planar
satellite equipped with the 2 DoF manipulator. Three different
scenarios were analyzed. It was shown that the OVF method is
more efficient than the APF method in two cases (in ‘case 1’
the effectiveness of the OVF method is higher by 18.1%, while
in ‘case 2’ the effectiveness of the OVF method is higher by
38.5%). In ‘case 3’ the effectiveness of the OVF method is
very similar to the effectiveness of the APF method (the effi-
ciency of the OVF method is lower by 0.9%). The OVF and
APF methods are less efficient than the RRT method. The aver-
age computational time required to solve the trajectory planning
problem with the OVF method is lower than the time required
by the APF and RRT methods. The practical applicability of
the RRT method is limited due to the time-consuming process
of trajectory tree construction. Moreover, the RRT method is
based on a random search and every run of the trajectory plan-
ning algorithm will result in a different solution obtained for
the same scenario. The OVF method is fully deterministic and
will always produce the same result. Thus, the proposed OVF
method may be an interesting alternative for the RRT method.
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The obstacle vector field (OVF) method for collision-free trajectory planning of free-floating space manipulator

In the proposed approach perfect knowledge of the satellite-
manipulator parameters is assumed in the trajectory planning
stage and no uncertainties are considered. A closed-loop con-
troller is required to ensure the realization of the trajectory
planned with the OVF method. The OVF method could be
applied for collision-free trajectory planning in the proposed
on-orbit servicing missions and during the assembly of orbital
structures.
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