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Iterative learning fault-tolerant control
for the networked control systems

with initial state disturbance
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Abstract. The iterative learning fault-tolerant control strategies with non-strict repetitive initial state disturbances are studied for the linear
discrete networked control systems (NCSs) and the nonlinear discrete NCSs. In order to reduce the influence of the initial state disturbance
in iteration, for the linear NCSs, considering the external disturbance and actuator failure, the iterative learning fault-tolerant control strategy
with impulse function is proposed. For the nonlinear NCSs, the external disturbance, packet loss and actuator failure are considered, the
iterative learning fault-tolerant control strategy with random Bernoulli sequence is provided. Finally, the proposed control strategies are used for
simulation research for the linear NCSs and the nonlinear NCSs. The results show that both strategies can reduce the influence of the initial state
disturbance on the tracking effect, which verifies the effectiveness of the given method.
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1. INTRODUCTION
With the development of control theory, computer technol-
ogy and modern network communication technology, the dis-
ciplines intersect each other, and control systems become more
and more complex. The controlled objects are becoming in-
creasingly diverse. These make the NCSs develop rapidly [1–
3]. The introduction of the NCSs has improved the informa-
tion transmission efficiency and resource utilization rate, and
the control cost has also been reduced. At the same time, the
application of the NCSs breaks the space limitations for the tra-
ditional control system, which enables information exchange
and joint work between links in different locations. Therefore,
the remote control for the sensors, actuators and controllers can
be easily realized. Based on the above advantages, NCSs have
broad application prospects in many fields [4–7]. Therefore, the
research on the NCSs is very meaningful.

Due to the diversity and unpredictability of network condi-
tions, the network will also bring adverse effects and new prob-
lems to the control system. For example, network-induced time-
delays, data packet loss, communication constraints, quantiza-
tion errors and other faults which may be caused by the net-
work [8–11]. These problems can not only destroy the original
stability, but also affect the performance of the system. On the
other hand, some components in the system, such as sensors
and actuators, will also produce certain failures and affect the
stability [12, 12–15]. In addition, the external disturbances will
also affect system stability and performance. These failures will
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have a greater or lesser impact on the stability of the system.
Therefore, the precise mathematical model for the controlled
system is difficult to establish, which makes the research on the
NCSs more challenging.

As a typical model-free control, the data-driven iterative
learning control (ILC) algorithm is the most attractive method
for the control systems with repetitive operation characteris-
tics [16–20]. It does not need to understand the dynamic struc-
ture of the controlled object, and only needs to use the input and
output information to design the controller, which can realize
the tracking for the desired target within a limited operating in-
terval. According to this characteristic, by using the data-driven
iterative learning control to study the problems for the com-
plex NCSs, the establishment of precise mathematical models
is avoided. This simplifies the analysis and research of NCSs.
Therefore, the combination of the data-driven iterative learn-
ing control and networked control systems has strong research
significance.

In the data-driven iterative learning control, the controlled
objects and control tasks need to meet certain strict repeata-
bility assumptions. The strict repeatability means that the ini-
tial state is consistent with the expected initial state in iteration.
But in the actual application system, due to the disturbance of
uncertain factors, this harsh condition is difficult to be met. For
example, the error of the sensor or positioning device will cause
the deviation of the initial state. The noise may also affect the
dynamic performance of the system. This limits the application
for the iterative learning control in actual engineering systems.
Therefore, the non-strictly repetitive systems are more suitable
for actual systems [21–23]. It is an important research direc-
tion for the data-driven iterative learning control for solving the
non-strict repetitive problems.
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The initial states for the iterative learning can be divided into
the following aspects. First, the initial state is exactly equal to
the expected initial state, that is, the initial states are strictly
repeated. Second, although the initial state is not equal to the
expected initial state, the initial states of the system are fixed at
the same value in iteration. Third, the initial state in iteration is
an arbitrary value, and the arbitrary value changes within a cer-
tain range of the ideal value. Fourth, the initial state of the sys-
tem during iteration is arbitrary and does not satisfy the change
within a certain range. The fourth situation is an ideal situation,
and it is also the most realistic in actual system applications.

Many scholars have studied the initial state of iterative learn-
ing [24, 25, 27–29]. In [24], for a class of nonlinear systems
running repeatedly in the study of the convergence of iterative
learning control, a PID fuzzy iterative learning control algo-
rithm has been proposed in the arbitrary initial state. In [25],
the effect of initial state error in the ILC system is studied.
The robustness is investigated against the initial state error of
the generalized ILC algorithm. In [26], a fractional-order ILC
framework with initial state learning for the tracking problems
of linear time-varying systems was presented. [27] presents a
P-type ILC scheme with initial state learning for a class of α

fractional-order nonlinear system. In [28], the paper presents a
second order P-type ILC scheme with initial state learning for
a class of fractional order linear distributed parameter systems.
In [29], the study addresses a robust ILC scheme for non-linear
discrete-time systems in which both the trail lengths and the ini-
tial state shifts could be randomly variant in iteration domain.

In the research of iterative learning control algorithm, it is a
very worthy research direction to reduce the influence for ini-
tial state disturbance on the performance of control system. It
has also important practical significance for the application of
iterative learning control. In addition, the factors that affect the
stability of the system are diverse in actual engineering. Among
them, external disturbances and actuator failure are common
factors. At present, although some scholars have studied the
initial state disturbance problem for iterative learning control
in some literature, most of the results obtained are based on
the assumption that the system is not affected by external dis-
turbances or failures, which is not general. The main contri-
butions of this paper are as follows. (1) The initial state prob-
lem considered in this paper is that there are disturbances and
actuator failures in the system. For the linear discrete systems
and the nonlinear discrete systems, the corresponding iterative
learning control algorithms are respectively proposed, the ro-
bust convergence analysis is performed, and the convergence
conditions are given. (2) A new iterative learning control algo-
rithm with the initial state correction item is proposed. In the
linear discrete system, in order to reduce the influence of the
initial state deviation in iteration, the impulse function is intro-
duced into iterative learning control algorithm. It is proved that
under the action of the algorithm controller, the system output
can gradually converge to the desired trajectory. (3) In the non-
linear discrete systems, when there is data packet loss and the
initial state disturbance in NCSs, the problem of the tracking
desired trajectory for the system output is studied. In the data
packet loss network environment, Bernoulli sequence is used to

describe the data loss. The robust convergence conditions are
given. As the number of iterative learning increases, the system
output can gradually converge to the desired trajectory when the
system has actuator failure, initial state deviation and input dis-
turbance. Finally, for the linear systems and the nonlinear sys-
tems, simulation studies are done based on the proposed control
strategy. The simulation results show that the two control strate-
gies can reduce the influence of the initial state deviation on the
tracking effect for the system, which verifies the effectiveness
of the proposed method.

A simplified block diagram of the considered NCSs is shown
in Fig. 1.

Fig. 1. A block diagram of the considered NCSs

2. ITERATIVE LEARNING FAULT-TOLERANT CONTROL
FOR LINEAR DISCRETE NCSS

2.1. Iterative learning controller design
Considering the linear discrete NCSs as follows:{

xk(t +1) = Gxk(t)+Fuk(t)+dk(t),

yk(t) = Hxk(t),
(1)

where, uk+1(t) is the control input of the current iteration. uk(t)
is the control input of the previous iteration. dk(t) is the in-
put disturbance, and the change of two adjacent disturbance is
bounded, and its upper bound is the constant bd . k indicates the
number of iterations. t is the time. xk(t) is the state. yk(t) is the
output. G, F and H are matrices of appropriate dimensions.

Considering the actuator failure model

uM
k+1(t) = Mauk+1(t), (2)

where the matrix Ma is the actuator failure, Ma =
diag(ma1,ma2, · · ·man), and 0≤ mai ≤ 1, (i = 1, · · · ,n). mai = 0
indicates complete failure of the i-th actuator. 0 < mai < 1 is the
partial failure of the i-th actuator. When mai = 1 means the i-th
actuator is working normally.

Then the actuator failure system is{
xk(t +1) = Gxk(t)+FuM

k (t)+dk(t),

yk(t) = Hxk(t).
(3)

For system (1), the traditional D-type iterative learning control
law is

uk+1(t) = uk(t)+P(t)(ek+1(t)− ek(t)) , (4)

where, P(t) is the learning gain matrix. ek(t) = yd(t)− yk(t) is
the system output error.
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The iterative learning control law has good convergence for
the system whose initial state is the expected value. However,
for the arbitrary initial state in iterative learning control, the
convergence speed of this control algorithm is not good. There-
fore, it is necessary to consider reducing the impact of initial
state disturbance during iteration, so that the system can achieve
rapid convergence under any initial state conditions.

Because the system is discrete, considering that the system
can eliminate the interference of different initial state values to
the system at time t = 0, an impulse function r(t) is introduced,
which satisfies

r(t) =

{
1 t = 0,
0 t = 1,2, . . . ,T.

(5)

Combining the excellent characteristics of the traditional D-
type iterative control law, in order to make the system output
quickly converge to the desired output under any initial state
conditions, an iterative learning control algorithm that can re-
duce the influence of different initial state disturbances is pro-
posed.

uk+1(t) = uk(t)+P(t)(ek+1(t)− ek(t))+ r(t)θk , (6)

where r(t)θk is the initial state correction item. θk is a term
related to the initial value and initial error of the iteration, and
θk can be taken as

θk = FT (FFT)−1
G(xk(0)− xk+1(0))+P(t)ek(0). (7)

2.2. Convergence analysis
Theorem 1. For the system (1) and iterative learning control
strategy (6), if FFT is invertible, and

‖I−HFMaP(t)‖< 1. (8)

Then when k→ ∞, in any initial state, the proposed iterative
learning control strategy can make the system converge to the
desired output trajectory.

Proof. According to the error, we get

ek+1(t)− ek(t) = yd(t)− yk+1(t)− (yd(t)− yk(t))

= yk(t)− yk+1(t) = H(xk(t)− xk+1(t)). (9)

because

xk(t) = Gtxk(0)+
t−1

∑
s=0

Gt−s−1(FuM
k (s)+dk(s)),

xk(t +1)− xk(t) = Gtxk+1(0)

+
t−1

∑
s=0

Gt−s−1(FuM
k+1(s)+dk+1(s))−Gtxk(0)

−
t−1

∑
s=0

Gt−s−1(FuM
k (s)+dk(s))

= Gt(xk+1(0)− xk(0))

+
t−1

∑
s=0

Gt−s−1[F(uM
k+1(s)−uM

k (s))+dk+1(s)−dk(s)
]
.

(10)

Substituting (6) into (10), and because of uM
k+1 = Mauk+1, we

can get

xk(t +1)− xk(t) = Gt(xk+1(0)− xk(0))

+
t−1

∑
s=0

Gt−s−1[FMaPek(s+1)

−FMa(Pek(s)+ r(t)θk)
]

+
t−1

∑
s=0

Gt−s−1(dk+1(s)−dk(s)). (11)

From the equation (5), t = {1,2, . . . ,T}, r(t) = 0. So t ≥ 1, (11)
can be simplified to

xk(t +1)− xk(t) = Gt(xk+1(0)− xk(0))

+
t−1

∑
s=0

Gt−s−1FMaPek(s+1)−
t−1

∑
s=0

Gt−s−1FMaPek(s)

+Gt−1FMaθk +
t−1

∑
s=0

Gt−s−1(dk+1(s)−dk(s)). (12)

Substituting (7) into (12):

xk(t +1)− xk(t) = Gt(xk+1(0)− xk(0))

+
t

∑
s=1

Gt−sFMaPek(s)−
t−1

∑
s=0

Gt−s−1FMaPek(s)

+Gt−1FMa
[
FT (FFT)−1G(xk(0)− xk+1(0))+Pek(0)

]
+

t−1

∑
s=0

Gt−s−1(dk+1(s)−dk(s)), (13)

and simplify the equation (13) we can get:

xk(t +1)− xk(t) =
t

∑
s=1

Gt−sFMaPek(s)

−
t−1

∑
s=0

Gt−s−1FMaPek(s)+Gt−1FMaPek(0)

+
t−1

∑
s=0

Gt−s−1(dk+1(s)−dk(s))

=
t−1

∑
s=1

Gt−sFMaPek(s)+FMaPek(t)

−
t−1

∑
s=1

Gt−s−1FMaPek(s)

+
t−1

∑
s=0

Gt−s−1(dk+1(s)−dk(s))

=
t−1

∑
s=1

Gt−s−1(G− I)FMaPek(s)+FMaPek(t)

+
t−1

∑
s=0

Gt−s−1(dk+1(s)−dk(s)). (14)
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Then

ek+1(t) = ek(t)−H
t−1

∑
s=1

Gt−s−1(G− I)FMaPek(s)

−HFMaPek(t)−H
t−1

∑
s=0

Gt−s−1(dk+1(s)−dk(s)). (15)

Simplify the equation (15):

ek+1(t) = (I−HFMaP)ek(t)

−
t−1

∑
s=1

HGt−s−1(G− I)FMaPek(s)

−
t−1

∑
s=0

HGt−s−1(dk+1(s)−dk(s)). (16)

Both ends of the equation (16) are normed:

‖ek+1(t)‖ ≤ ‖I−HFMaP‖‖ek(t)‖

+ hbm f bp

t−1

∑
s=1

Gt−s−1(G− I)‖ek(s)‖

+ h
t−1

∑
s=0

Gt−s−1 ‖dk+1(s)−dk(s)‖ , (17)

where h = ‖H‖, f = ‖F‖, bp = ‖P‖, bm = ‖Ma‖.
Taking the mathematical expectation on both ends of the

equation (17), we have

ε {‖ek+1(t)‖} ≤ ‖I−HFMaP‖ε {‖ek(t)‖}

+hbm f bp

t−1

∑
s=1

Gt−s−1(G− I)ε {‖ek(s)‖}+ηk+1(t), (18)

where ηk+1(t) =
t−1

∑
s=0

Gt−s−1 ‖dk+1(s)−dk(s)‖.

Let L1 = ‖I−HFMaP‖, then

ε {‖ek+1(t)‖} ≤ L1ε {‖ek(t)‖}

+hbm f bp

t−1

∑
s=1

Gt−s−1(G− I)ε {‖ek(s)‖}+ηk+1(t). (19)

Expanding the equation (18) from t = 0 to t = T , we can get

ε {‖ek+1(0)‖} ≤ L1ε {‖ek(0)‖}+ηk+1(0),
ε {‖ek+1(1)‖} ≤ L1ε {‖ek(1)‖}

+hbm f bpGε {‖ek(1)‖}+ηk+1(1),
...

ε {‖ek+1(t)‖} ≤ L1ε {‖ek(t)‖}

+hbm f bp

t

∑
s=0

Gt−s
ε {‖ek(s)‖}+ηk+1(t).

The above equation can be expressed as the following matrix:

εk+1 ≤ Dkεk +Nk+1 , (20)

where

εk+1 =


ε {‖ek+1(0)‖}

ε {‖ek+1(1)‖}
...

ε {‖ek+1(t)‖}

 , εk =


ε {‖ek(0)‖}

ε {‖ek(1)‖}
...

ε {‖ek(t)‖}

 ,

Dk =


L1 0 0 0

Ghbm f bp L1 · · ·
...

... · · ·
. . . 0

Gthbm f bp · · · Ghbm f bp L1

 ,

Nk+1 =


ηk+1(0)

ηk+1(1)
...

ηk+1(t)

 .

With the number of iterations increasing k → ∞,
lim
k→∞

‖dk+1(t)−dk(t)‖ = 0. Therefore, lim
k→∞

Nk+1 = 0. For

matrix Dk, the eigenvalue at the k-th iteration is L1. If
‖I−HFMaP‖< 1 holds for all k and t, then lim

k→∞
ε {ek(t)}= 0

holds when t ∈ [0, T ], that is, lim
1≤t≤T

yk(t) = yd(t).

The Theorem 1 is proved.

Remark 1. From the above analysis, it can be seen that the
system tracking error is not affected by the initial state value in
t ∈ [1, T ]. When the number of iterations gradually increases,
L1 < 1 is satisfied, the system tracking error gradually con-
verges to zero.

Remark 2. In Theorem 1, during iteration, the error generated
by any initial state value can be eliminated at time t = 0, so the
system output will be not affected at a later time.

Remark 3. In Theorem 1, under any initial state value condi-
tions, after iterative learning, the system output trajectory can
converge to the desired trajectory within a limited time.

Although the impulse function r(t) introduced in this section
can better reduce the influence for the initial value deviation
in the iteration on the system performance, it is not suitable
to apply this method to deal with the influence for the nonlin-
ear system. Next, for the nonlinear discrete system, an iterative
learning fault-tolerant control strategy with Bernoulli random
variables is proposed. When the initial state has a deviation, the
system convergence is discussed.
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3. ITERATIVE LEARNING FAULT-TOLERANT CONTROL
FOR NONLINEAR NCSS

3.1. Iterative learning controller design
Considering the following nonlinear discrete NCSs:{

xk(t +1) = g(xk(t), t)+ f (xk(t), t)uk(t)+dk(t),

yk(t) = Bxk(t),
(21)

where t ∈ {0, 1, · · · , T} is the discrete time. xk(t) ∈ Rm is the
state. uk(t) ∈ Rn is the control input. yk(t) ∈ Rn is the output.
dk(t) is the input disturbance and satisfies supt∈[0,T ] ‖dk(t)‖ ≤
b1. g(·) and f (·) are nonlinear functions. The subscript k is the
number of iterations. B is a matrix of appropriate dimensions.

Then the actuator failure system is{
xk(t +1) = g(xk(t), t)+ f (xk(t), t)Mauk(t)+dk(t),

yk(t) = Bxk(t),
(22)

where Ma is the actuator fault matrix, and its definition is the
same as the equation (2).

For the system (22), the control goal is to design an iterative
learning fault-tolerant controller so that the control system out-
put yk(t) converges to the desired output trajectory yd(t), that is

sup
0≤t≤T

|yd(t)− yk(t)|< ε, (23)

where ε is a small positive number.
The output tracking error ek(t) is defined as follows:

ek(t) = yd(t)− yk(t). (24)

Due to network constraints, there are often two cases of data
packet loss in NCSs. One is the loss of the control input sig-
nal between the controller and the actuator, and the other is the
loss of the measurement signal between the controller and the
sensor. In this paper, the control input signal loss is only consid-
ered in NCSs. When there is data packet loss, the Bernoulli ran-
dom matrix γ(t) = diag[α1(t),α2(t), · · · ,αn(t)] is used to repre-
sent the successful probability of the data transmission, where
αi(t)(i = 1,2, · · · ,n) is an independently distributed Bernoulli
random variable. When αi(t) = 0, it means that the data trans-
mission fails, that is, the output data at time t is lost. When
αi(t) = 1, the output signal at time t is transmitted successfully.
αi(t) is a Bernoulli random variable that is independent and
equally distributed, and satisfies

prob {αi(t) = 1}= ε {αi(t)}= α, 0≤ α ≤ 1. (25)

In the equation (25), prob{·} is the probability. ε{·} is mathe-
matical expectation. 0 ≤ α ≤ 1 represents the successful prob-
ability of the channel data transmission. Therefore, combined
with the traditional iterative learning control law, the following
iterative learning control algorithm is proposed:

uk+1(t) = uk(t)+αP(t)ek(t). (26)

For the nonlinear NCSs (22) with actuator failure, the control
strategy (26) will be designed in the event of data packet loss.
The following convergence is analyzed when there is the initial
state disturbance.

3.2. Convergence analysis
In the iterative learning algorithms, it is often required that the
initial state and the expected initial state are consistent in the
iterative learning process. However, in the actual system, the
initial state value of the system and the ideal value are often
not equal, that is, the strict repeatability is not satisfied. Be-
low, when there is a deviation between the initial state and the
ideal initial state, that is, when the initial state conditions are
not strictly limited, the sufficient condition for the convergence
of the iterative learning algorithm is given.

Theorem 2. For the nonlinear system (22) with actuator fail-
ure, the initial state value satisfies xk(0) = x0 and x0 6= xd(0). If
the iterative learning controller (26) is used and satisfies

‖I−B fk(t)MaαP(t)‖< 1. (27)

Then as the number of iterations increases, the system output
gradually converges to the desired trajectory. That is, when k→
∞, the system output yk(t) and the desired trajectory yd(t) meet
lim
k→∞

ε {yk(t)}= yd(t).

Proof. The tracking error at the (k+1)-th iteration

ek+1(t +1) = yd(t +1)− yk+1(t +1)

= yd(t +1)− yk(t +1)− (yk+1(t +1)− yk(t +1))

= ek(t +1)−B(xk+1(t +1)− xk(t +1)). (28)

Simplifying the above equation (28), we can get:

ek+1(t +1) = ek(t +1)−B[gk+1(t)+ fk+1(t)Mauk+1(t)

+ dk+1(t)−gk(t)− fk(t)Mauk(t)+dk(t)]. (29)

That is

ek+1(t +1) = ek(t +1)−B[gk+1(t)

− gk(t)+( fk+1(t)− fk(t))Mauk+1(t)

+ fk(t)Ma(uk+1(t)−uk(t))+dk+1(t)−dk(t)]. (30)

The two ends of the equation (30) are normed and the Lip-
schintz condition is used, then there are the constants ξg and
ξ f that make the following equation holds

‖ek+1(t +1)‖ ≤ ‖I−B fk(t)MaαP(t)‖‖ek(t +1)‖

+‖B‖
[(

ξg +ξ f bm ‖uk+1(t)‖
)
‖xk+1(t)− xk(t)‖

+‖dk+1(t)−dk(t)‖
]
. (31)
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From the above equation (31):

‖ek+1(t +1)‖ ≤ ‖I−B fk(t)MaαP(t)‖‖ek(t +1)‖
+(a2ξg +a2ξ f b2bm)‖xk+1(t)− xk(t)‖
+a2 ‖dk+1(t)−dk(t)‖ , (32)

where a2 = ‖B‖.
Next, ‖xk+1(t)− xk(t)‖ is expressed as

‖xk+1(t +1)− xk(t +1)‖
= ‖gk+1(t)+ fk+1(t)Mauk+1(t)+ dk+1(t)

−gk(t)− fk(t)Mauk (t)−dk(t)‖
= ‖gk+1(t)−gk(t)+ ( fk+1(t)− fk(t))Mauk+1(t)

+ fk(t)αP(t)ek(t +1)+dk+1(t)−dk(t)‖
≤ (ξg +ξ f b2bm)‖xk+1(t)− xk(t)‖+‖γ(t)‖‖ fk(t)‖
×‖P(t)‖‖ek(t +1)‖+‖dk+1(t)−dk(t)‖ . (33)

Sorting out the above equation (33), we have

‖xk+1(t +1)− xk(t +1)‖ ≤ c1 ‖xk+1(t)− xk(t)‖
+a1bpbr ‖ek(t +1)‖+‖dk+1(t)−dk(t)‖ , (34)

where
c1 = ξg +ξ f b2bm, bp = sup

t∈[0,T−1]
‖P(t)‖, br = sup

t∈[0,T−1]
‖γ(t)‖.

From the above equation (34), we can get

‖xk+1(t)− xk(t)‖ ≤ ct
1 ‖xk+1(0)− xk(0)‖

+
t−1

∑
q=0

ct−q−1
1

(
a1bpbr ‖ek(q+1)‖

+‖dk+1(q)−dk(q)‖
)
. (35)

Substituting (33) into (30):

‖ek+1(t +1)‖ ≤ ‖I−B fk(t)MaαP(t)‖‖ek(t +1)‖
+a2c1 ‖xk+1(t)− xk(t)‖+a2 ‖dk+1(t)−dk(t)‖
≤ ‖I−B fk(t)MaαP(t)‖‖ek(t +1)‖
+a2c1[ct

1 ‖xk+1(0)− xk(0)‖

+
t−1

∑
q=0

ct−q−1
1 (a1bpbr ‖ek(q+1)‖

+‖dk+1(t)−dk(t)‖)]+a2 ‖dk+1(t)−dk(t)‖ . (36)

From the above equation (36), then

‖ek+1(t +1)‖ ≤ ‖I−B fk(t)MaαP(t)‖‖ek(t +1)‖
+a2ct+1

1 ‖xk+1(0)− xk(0)‖

+
t−1

∑
q=0

ct−q−1
1 (a2bpbr ‖ek(q+1)‖

+
t−1

∑
q=0

ct−q−1
1 ‖dk+1(q)−dk(q)‖+a2 ‖dk+1(t)−dk(t)‖ . (37)

Taking expectations on both sides of equation (37), we have

ε {‖ek+1(t +1)‖} ≤ ‖I−B fk(t)MaαP(t)‖ε {‖ek(t +1)‖}

+
t−1

∑
q=0

ct−q
1 a2a4bpbrε {‖ek(q+1)‖}+Γk+1(t), (38)

where

Γk+1(t) = a2ct+1
1 ‖xk+1(0)− xk(0)‖

+
t−1

∑
q=0

ct−q
1 a4 ‖dk+1(q)−dk(q)‖+a2 ‖dk+1(t)−dk(t)‖ ,

a4 = c−1
1 .

Let L = ‖I−B fk(t)MaαP(t)‖. Then the equation (38) can be
written as

ε {‖ek+1(t +1)‖} ≤ Lε {‖ek(t +1)‖}

+
t−1

∑
q=0

ct−q
1 a2a4bpbrε {‖ek(q+1)‖}+Γk+1(t). (39)

Expanding the equation (39) from t = 0 to t = T , we have

ε {‖ek+1(1)‖} ≤ Lε {‖ek(1)‖}+Γk+1(0),
ε {‖ek+1(2)‖} ≤ Lε {‖ek(2)‖}

+ c1a2a4bpbrek(1)+Γk+1(1)
...

ε {‖ek+1(t)‖} ≤ Lε {‖ek(t)‖}

+
t−1

∑
q=0

ct−q−1
1 a2a4bpbrε {‖ek(q+1)‖}+Γk+1(t−1).

The expanded items can be expressed as the following matrix:

εk+1 ≤Ckεk +Mk+1 , (40)

where

εk+1 =


ε {‖ek+1(1)‖}
ε {‖ek+1(2)‖}

...

ε {‖ek+1(t)‖}

 , εk =


ε {‖ek(1)‖}
ε {‖ek(2)‖}

...

ε {‖ek(t)‖}

 ,

Ck =


L 0 0 0

c1a2bpbr L · · ·
...

... · · ·
. . . 0

ct−1
1 a2bpbr · · · c1a2bpbr L

 ,
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Mk+1 =


Γk+1(0)
Γk+1(1)

...
Γk+1(t)

 .

With the number of iterations increasing k → ∞,
lim
k→∞

‖xk+1(0)− xk(0)‖ = 0 and lim
k→∞

‖dk+1(0)−dk(0)‖ = 0.

Therefore, lim
k→∞

Mk+1 = 0. For the matrix Ck, the eigenvalue at

the k-th iteration is L. If L = ‖I−B fk(t)MaαP(t)‖ < 1 holds
for all and t, then lim

k→∞
ε {ek(t)} = 0 holds when t ∈ [0,T]. The

proof is completed.

According to Theorem 2, for a nonlinear system with initial
state disturbance, when there is a deviation between the initial
state and the ideal state during iterations, the system output can
still converge to the expected output.

4. SIMULATION STUDY
4.1. Numerical simulation for the linear NCSS
In order to verify the effectiveness of the proposed control strat-
egy, let us consider the following discrete linear NCSs

x(t) =

(
x1(t)
x2(t)

)
, y(t) =

(
y1(t)
y2(t)

)
, u(t) =

u1(t)
u2(t)
u3(t)

 .

The system parameters are selected as

G =

(
1 0
−1 1

)
, F =

(
1 0 1
0 1 1

)
, H =

(
2 0
0 2

)
.

The learning gain matrix P =

0.2 0
0 0.1
0 0

.

The fault matrix is Ma = diag
{

0.9, 0.9, 0.9
}

. The condition∥∥I−HFMaP
∥∥ < 1 is satisfied. The matrix FFT is invertible,

FFT =

(
2 1
1 2

)
, (FFT)−1 =


2
3

−1
3

−1
3

2
3

. Suppose the de-

sired tracking trajectory yd(t) =

(
y1d(t)
y2d(t)

)
=

(
0.01t(1+ t)
5sin(0.2πt)

)
and the initial control input u0(t) =

(
0 0 0

)T
. Input dis-

turbance dk =
[
0.2sin(πt/100) 0.2cos(πt/100)

]T. The initial
states value in iteration for the system are generated by the ran-
dom function rand().

By using the iterative learning control (4) without correction
terms, the output results are shown in Fig. 2 and Fig. 3 when
the initial state value in iteration is random.

The tracking curve for the iterative output y1(t) to the de-
sired trajectory y1d(t) is shown in Fig. 2. When k = 300, the

Fig. 2. y1 tracking curves

Fig. 3. y2 tracking curves

system output can better track the desired trajectory. The track-
ing curve for the iterative output y2(t) to the desired trajectory
y2d(t) is shown in Fig. 3. When k = 300, there is still a large
error between the system output and the expected output, but
when k = 600, the system output can track the desired trajec-
tory y2d(t).

When the proposed iterative learning control (6) with correc-
tion terms is used, the output results are shown in Fig. 4 and
Fig. 5.

Fig. 4. y1 tracking curves

The tracking curve of the system iterative output y1(t) and
y2(t) to the desired trajectories y1d(t) and y2d(t) are shown in
Fig. 4 and Fig. 5, respectively. The curves in Fig. 4 are the track-
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Fig. 5. y2 tracking curves

ing results at k = 10 and k = 20. When k = 10, the system out-
put can better track the desired trajectory. The tracking curves
of k = 15 and k = 25 are shown in Fig. 5. When k = 15, the sys-
tem output still has a large error, but when k = 25, the system
output can better track the desired trajectory y2d(t). It can be
seen from the simulation results that although the initial state is
different in iteration, the system output can quickly converge to
the expected output by adopting the proposed iterative learning
control.

When the control strategy (6) is applied, the system output
error curves in the iteration process are shown in Fig. 6 and
Fig. 7. It can be seen from the figures that as the number of it-

Fig. 6. The error curve of y1 to desired y1d

Fig. 7. The error curve of y2 to desired y2d

erations increases, the system output error gradually decreases,
and finally converges to zero.

For the system with actuator failures, in the presence of input
disturbances and initial state deviations, the iterative learning
control strategy proposed can make the output converge to the
desired trajectory faster. The correction item has a good effect
on the controlled system with any initial state value. Compared
with the traditional control algorithm (4), the system converges
faster when the control algorithm (6) is applied, which proves
the effectiveness of the proposed control strategy.

4.2. Numerical simulation for the nonlinear NCSS
Considering the following nonlinear discrete NCSs:[

x1(t +1)
x2(t +1)

]
=

[
a1(x)+a2(x)u(t)+d(t)

x1(t)

]
,

y(t) =
[
1 0

][
x1(t), x2(t)

]T
,

where

a1(x) = 0.1x1(t)x2(t),

a2(x) = [1+0.1cos(x1(t))]−1.

The desired tracking trajectory is yd(t) = sin(πt/200) where
t ∈ [0, 450]. The learning gain P = 0.7. The failure Ma = 0.7+
0.3sin(πt). The disturbance is dk(t) = 0.2sin(πt/100).

The following is to verify the effectiveness of the algorithm
by numerical simulation for the data packet loss of 0%, 10%,
and 20% respectively.

Under the condition that the initial state value is not equal to
the expected initial value, that is, when xd(0) = [0,0]T , xk(0) =
[1,1]T , the numerical simulation is studied.

For the nonlinear NCSs with actuator failures, when there is
output data packet loss, input disturbance and iteration initial
value deviation, after applying the control strategy (24), it can
be seen from Fig. 8 to Fig. 10 that the system output can track
the expectation trajectory.

Fig. 8. The output curves without data loss

The output error curves in the system iteration are shown in
Figs. 11 to 13. When there is no data packet loss, as the number
of iterations increases, the system output gradually approaches
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Fig. 9. The output curves with data loss 10%

Fig. 10. The output curves with data loss 20%

Fig. 11. Tracking error curve without data loss

Fig. 12. Tracking error curve with data loss 10%

the expected value. When the number of iterations is k = 11, the
system output can track the desired trajectory, and the system
output error is close to zero. When the data packet loss rate is
10% and the number of iterations is k = 15, the system output
error converges to zero. When the data packet loss rate is 20%
and the number of iterations is k = 19, the system output can
track the desired trajectory, and the output error can converge to
zero. Through simulation, it can be known that as the data loss
rate increases, the convergence speed of the tracking error also
slows down. However, as the number of iterations increases, the
error can still be gradually reduced, and finally it can converge
to zero.

Fig. 13. Tracking error curve with data loss 20%

4.3. Application simulation for the nonlinear NCSS
For the two-degree-of-freedom motion robot considered in this
section [30], the front wheels are driven wheels, and the rear
wheels are driving wheels. When the motion robot model is
constructed, the friction between the tire and the ground is ig-
nored. The motion model isẋa(t)

ẏa(t)
θ̇a(t)

=

cosθa(t) 0
sinθa(t) 0

0 1

[va(t)
ωa(t)

]
, (41)

where, xa(t) is the abscissa. ya(t) is the ordinate. θa(t) is the
attitude angle. va(t) is the linear velocity. ωa(t) is the angular
velocity.

The above model (41) is changed as follows:
x(t) =

[
xa(t) ya(t) θa(t)

]T
,

u(t) =
[
va(t) ωa(t)

]T
(42)

The motion model can be written as

ẋ(t) = f (x(t))u(t), (43)

where

f (x(t)) =

cosθa(t) 0
sinθa(t) 0

0 1

 . (44)
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Because the movement of the robot system is repetitive, we
can get

ẋk(t) = f (xk(t))uk(t). (45)

Since f (xk(t)) satisfies the Lipschintz condition and is also
bounded. The motion model meets the convergence require-
ments of iterative learning control.

Discretization of the motion model, thenx(k+1)
y(k+1)
θ(k+1)

=

x(k)
y(k)
θ(k)

+Ts

cosθ(k) 0
sinθ(k) 0

0 1

[ v(k)
ω(k)

]
, (46)

where Ts is the sampling time.
In this section, the proposed iterative learning control strat-

egy is applied to the control for the two-degree-of-freedom mo-
tion robot. The mobile robot is divided into linear motion and
curved motion for the simulation research.

1. Linear motion of the robot
The expected linear trajectory equation is selected as follows:

xd(t) = t,

yd(t) = 2t,

θd(t) = arctan2.
(47)

The initial expected value is[
xk(0) yk(0) θk(t)

]T
=
[
0 0 arctan2

]T
. (48)

The initial control input is u0(t) = 0.
When there is no data loss, the linear path tracking simula-

tions for the robot are shown in Figs. 14 to 16. It can be seen
from the simulation that as the number of iterations increases,
the system output trajectory gradually tracks the desired trajec-
tory.

Fig. 14. Tracking curves of x

The root mean square error curve for the motion robot track-
ing during the iteration process is shown in Fig. 17. When the
number of iterations is k = 40, the path tracking error tends to
zero.

Fig. 15. Tracking curves of y

Fig. 16. Tracking curves of θ

Fig. 17. Root mean square error curve

When the data packet loss rate is 40%, the simulation is
shown in Figs. 18 to 20. As the number of iterations increases,
the system output trajectory gradually follows the desired tra-
jectory.

The root mean square error curve for the motion robot track-
ing is shown in Fig. 21. When the number of iterations is k = 80,
the path tracking error tends to zero. This proves that the control
strategy is feasible and effective.

Through the above simulation, it can be known that the data
loss has an impact on the system control performance. The
higher the data loss rate, the slower the convergence speed of
the algorithm. However, under the action of the given controller,
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Fig. 18. Tracking curves of x

Fig. 19. Tracking curves of y

Fig. 20. Tracking curves of θ

Fig. 21. Root mean square error curve

as the number of iterations increases, trajectory tracking can fi-
nally be realized, that is, the motion robot can run according to
the desired linear trajectory.

2. Curve motion of the robot
The desired curve trajectory equation is selected as follows:

xd(t) = 2cos(πt)−2,

yd(t) = sin(πt),

θd(t) = πt +
π

2
.

(49)

The initial expectation is[
xk(0) yk(0) θk(t)

]T
=
[
0 0

π

2

]T
. (50)

The initial control input u0(t) = 0.
When the data packet loss rate is 10%, the path tracking

curves of the motion robot are shown in Figs. 22 to 24. As
the number of iterations increases, the system output trajectory
gradually follows the desired trajectory.

Fig. 22. Tracking curves of x

Fig. 23. Tracking curves of y

The root mean square error curve during the iteration for the
motion robot tracking is shown in Fig. 25. When the number of
iterations is k = 70, the path tracking error tends to zero. The
control strategy is verified to be effective.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 3, p. e140934, 2022 11



Fu Xingjian and Zhao Qianjun

Fig. 24. Tracking curves of θ

Fig. 25. Root mean square error curve

When the data packet loss rate is 40%, the simulation curves
are shown in Figs. 26 to 28. As the number of iterations in-
creases, the system output trajectory gradually follows the de-
sired trajectory.

Fig. 26. Tracking curves of x

The root mean square error curve in the iteration for the mo-
tion robot tracking is shown in Fig. 29. When the number of
iterations is k = 90, the path tracking error approaches to zero.
It can be seen from the simulation results that under the action
of the designed control strategy, as the number of iterations in-
creases, the robot can achieve the task of trajectory tracking,
that is, it can follow the desired curve trajectory.

Fig. 27. Tracking curves of y

Fig. 28. Tracking curves of θ

Fig. 29. Root mean square error curve

Based on the above simulation research, in the NCSs, as the
data packet loss rate increases, the convergence speed of the
tracking error becomes slower. However, as the number of it-
erations increases, the system tracking error can gradually de-
crease until it converges to zero.

5. CONCLUSIONS
In this paper, for the NCSs with the external disturbances and
actuator failures, the initial state deviation influences for the
linear discrete systems and the nonlinear discrete systems are
studied respectively. The corresponding iterative learning fault-
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tolerant control is proposed. Finally, by using the proposed con-
trol strategy, the linear system and the nonlinear system are sim-
ulated respectively to verify the effectiveness of the proposed
method.

The discrete linear network system and discrete nonlinear
network system are considered in this paper, and the impact
of sample time on the performance of the control system is not
studied. In the considered discrete system, only the impact of
initial state disturbance, external disturbances, actuator failures,
and data packet loss failures on system performance are con-
sidered, and the network time-delay problem is not considered.
Certainly, in NCSs, the sample time and delays will definitely
affect system performance and need to be studied next.
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