Management and Production Engineering Review

www.czasopisma.pan.pl ?@ www journals.pan.pl

N

Volume 13 @ Number 1 e March 2022 e pp. 5261
DOI: 10.24425/mper.2022.140876

2mper

The Pandemic-Type Demand Shocks in the Mean-Variance

Newsvendor Problem

Milena BIENIEK

Maria Curie-Sklodowska University, Lublin, Poland

Received: 21 December 2020
Accepted: 18 February 2022

Abstract

The paper considers the negative pandemic-type demand shocks in the mean-variance
newsvendor problem. It extends the previous results to investigate the case when the ac-
tual additive demand may attain negative values due to high prices or considerable, negative
demand shocks. The results indicate that the general optimal solution may differ to the so-

lution corresponding exclusively to the non-negative realizations of demand.
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Introduction

Demand shocks constitute surprise events which
cause an increased or decreased demand for goods
or services. The Covid-19 pandemic has stimulated
a wave of negative impacts far beyond any recent
global event. With the pandemic causing a major
global recession, prices and demand for the majority
of industrial commodities, except for the necessities,
have been driven lower (Nikolopoulos et al., 2020).
The coronavirus pandemic exerts a significant impact
upon demand in various sectors including the steel
and iron ore industry, automotive industries, restau-
rants, beauty salon services and numerous others.
The pandemic boosts unemployment and reduces con-
sumers’ capacity to purchase goods and services. As a
consequence it can be considered as a demand shock
(Collie et al., 2020; Cecil, 2020; Guerrieri, 2020).

Various studies in Operations Research (OR) open
with a specific stochastic function for demand. The
random part is referred to as the demand shock.
The price-dependent demand function with uncer-
tainty constitutes a function of the price and demand
shock. It is typically a random variable with a certain
known distribution. Relatively frequently, the uncer-
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tainty is incorporated into deterministic demand func-
tions by the additive demand shock being considered.
In the event the assumption of non-negativity is ab-
sent, negative demand realizations may emerge in ad-
ditive models for high prices or considerably negative
demand shocks which, in this paper, will be referred
as “the negative pandemic-type demand shocks” due to
the recent dramatic economic events. When the set of
possible parameters is restricted, an incomplete char-
acterization of the optimal price occurs. If negative
demand occurs at a given price, the non-negativity
requirement on demand will considerably affect the
price. In the additive case, provided that both the
deterministic demand and demand shock are non-
negative, an increase in the expected revenue may be
anticipated without any upper bound if the company
sets the price arbitrarily high. As a consequence, as far
as the additive shock is concerned, the non-negativity
cannot be imposed on the deterministic demand and
demand shock separately. It must be imposed simul-
taneously. This can be achieved by, e.g. defining the
random demand as the positive part of the demand
function with a shock (Krishnan, 2010).

Obviously, the supply chain models with non-
negative demand are far more finely tuned to actual
conditions including the occurrence of unexpected
events. The presence of negative realized demand in
OR models has been recently investigated in (Krish-
nan, 2010; Kyparisis & Koulamas, 2018), and (Bie-
niek, 2021). Krishnan (2010) points out that the non-
negativity assumption ought to be imposed on de-
mand for the generality of the study to be ensured. If
the non-negativity constraint is not employed, the so-
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lution may be suboptimal and the expected profit can
be underestimated. Kyparisis and Koulamas (2018)
consider a classical price-setting newsvendor problem
with non-negative demand. They show that, in this
case, the newsvendor problem invariably has an opti-
mal solution, even in adverse market conditions. Bi-
eniek (2021) examines a two-stage Vendor Managed
Consignment Inventory contract with a similar con-
straint imposed on demand.

The newsvendor model has been under examina-
tion for approximately sixty years and lately, sev-
eral relaxing assumptions concerning the elementary
newsvendor problem have been offered in the OR lit-
erature (Qin, 2011; Khouja, 1999). One of the major
generalizations of the classic newsvendor problem is
the application of price as a decision variable. A very
popular form of the price-setting newsvendor problem
is the mean-variance analysis. It was first applied by
Lau (1980) who studied the mean-standard deviation
payoft criterion. Choi et al. (2008) introduced stock-
out costs in the mean-variance analysis. Subsequently,
Wu et al. (2009) focused on the influence of stockout
costs on the optimal ordering decisions while compar-
ing the classic models with the mean-variance mod-
els. Agrawal & Seshadri (2000) presented the mean-
variance analysis from the expected utility frame-
work perspective. Rubio-Herrero et al. (2015), Rubio-
Herrero & Baykal-Gursoy (2018), and Rubio-Herrero
& Baykal-Gursoy (2019) examined the price-setting
newsvendor problem under the mean-variance crite-
ria as well. Based on the theory developed by (Zabel,
1970) Rubio-Herrero et al., 2015) solved the problem
sequentially as long as the level of risk-aversion is not
overly high. They proved that the price is lower for
a risk-averse newsvendor than for a risk-neutral one.
Rubio-Herrero and Baykal-Gursoy (2018) extended
the findings of (Rubio-Herrero et al., 2015) and proved
the unimodality or quasiconcavity of the objective
function. The authors of the above-cited papers solved
all risk-sensitive instances using the optimality condi-
tions based on the lost sales rate uncertainty (Ko-
cabiyikoglu & Popescu, 2011) and considered the ad-
ditive demand uncertainty. A similar problem for the
iso-elastic demand function was examined by (Rubio-
Herrero & Baykal-Gursoy, 2019).

Based on our previous considerations, there exists
a need for the non-negativity constraint being im-
posed on the demand in the mean-variance newsven-
dor model studied in (Rubio-Herrero et al., 2015;
Rubio-Herrero & Baykal-Gursoy, 2018). Such a trans-
formation enables the results more general and com-
plete. In addition, on the whole, solutions obtained in
this mode will be optimal for the pandemic-type de-
mand shocks as well. Compared with the studies men-
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tioned hereinabove, the present paper aims to com-
plement the non-negative actual demand case solved
in (Rubio-Herrero & Baykal-Gursoy, 2018) with the
prospect of a negative demand realization. To this
end, the paper disregards the assumption that a price
is not higher than a maximal price for which demand
reaches zero value. However, in the event a possibly
negative realized demand emerges, the general solu-
tion is complicated even for uniformly distributed de-
mand. In such a case we solve this problem numer-
ically. We indicate that if the considerations are re-
stricted to the positive actual demand case, it may
lead to the suboptimal solution. This outcome is illus-
trated in figures created with the Mathematica com-
puting software.

Preliminary facts and notation

Let us begin with the examination of the non-
negativity aspect of demand in the mean-variance
newsvendor problem. The price-dependent demand
function with uncertainty in the common form is de-
noted by D(p,e), where p is the price and ¢ is a de-
mand shock, which is a random variable with a certain
known distribution. In general, the additive demand
model has the form D(p,e) = d(p) + ¢, where d(p) is
the deterministic demand, which is frequently used in
the economic sciences. For the deterministic demand,
being a linear function d(p) = a — bp, a,b > 0, the
uncertain additive demand is given by

D(p,e) =a—bp+e. (1)

The following assumptions will be used henceforth:
€ constitutes the demand shock with the expectation
p = 0 and the variance Var(e), the cumulative distri-
bution function F' and the continuously differentiable
probability density function f with the support [A, B],
where A < 0 and B > 0; F(2) = 1 — F(2) is a hazard
rate and h(z) = f(z)/F(z) is a failure rate function;
and finally A+ a — bc > 0. WLOG it is assumed that
@ = 0 since if p # 0, its value can be added to a.
This can be done if a + ¢ > 0. If € is defined on an
open interval, we can take into account an efficient
truncation capturing as much information as possi-
ble.

Under the assumptions made above, the actual de-
mand realization D(p*,e) = a — bp* + ¢, where p* is

A+a

the optimal price, can be negative for p* > and

the pandemic-type demand shocks. This means that
in these cases there is no demand. Furthermore, for

a
p* > T+ the actual demand realization is always
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negative.This implies that there is no demand regard-
less of the conditions. For that reason, this case is
disregarded from our considerations. Pursuant to all
the previous statements, imposing the non-negativity
forces the use of the following function for demand

D(p,e)=(a—bp+e)t, (2)

where y* = max(0,y), instead of (1). This transfor-
mation various mathematical problems in each sup-
ply chain model. The problems are frequently severely
complicated or even intractable. This paper imposes
the non-negativity constraint in the mean-variance
newsvendor problem by implementing the demand
function defined by (2). In addition, the optimization
process is also conducted as if it is a new task. In
this problem, the retailer aims at maximizing their
expected profit while maintaining the variance of the
profit under control. The decision-maker determines
the quantity of the product to be purchased from
the wholesaler at a given cost and fixes the price at
which the product will be sold. The mean-variance
risk-sensitive performance measure is formulated as

I(p, q) = pE min(q, D(p,€)) — cq
- )\Var(p min(Qv D(pv 5)))7 (3)

where ¢ is the stock quantity. In this model, A con-
stitutes a risk parameter, which is positive for risk-
averse, equal to 0 for risk-neutral, and negative for
risk-seeking cases. The demand D(p,¢), is defined by
(1). Even though (3) lacks economic meaning, the
optimization (3) is understood as profit being max-
imized while either minimizing variance for a risk-
averse newsvendor or maximizing variance for a risk-
seeking one. Furthermore, the risk parameter can be
approached as a scaling factor that balances the ex-
pected profit and the variance of the profit (Rubio-
Herrero et al., 2015).

The performance measure maximization problem
can be presented as

max I1(p, g), (4)

p,q

where II(p, q) is given by (3). When solving (4) the ac-
tual demand realization for the optimal price p* may
turn out to be negative. It implies that there is no
demand. If the non-negativity constraint is imposed
on the total demand, the maximization problem given
by (4) becomes

max I(p, q) = pE(min((a — bp+ €)', q)) — cq

— AVar [pmin((a —bp+€)",q)] . (5)
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~ A
Since € € [A, B] then I(p, q) = II(p, q) for p < Za,

q > 0. It ought to be noted that the demand real-
ization D(p,e) = a — bp + e < B + a — bp, which

. . +a
is always negative for p > ——— thus the expected

profit becomes negative. Therefore, our considerations

B+a
are limited to the case p < ;r .

Let ¢ = a—bp+z > 0, where z € [A, B] is the service
level. In addition, let us define u(z) = E(min(e, 2)) =

B
/ (z — u)f(u)du and o?(z) =

B
Var(e) + / (2% — u?) f(u)du — p?(2). The following

du(z)
dz
w(A) = A <0 and p(B) = p. Furthermore, the func-

tion z — p(z) is also increasing and 0 < z — u(z) < B.

Additionally, 02(.) is non-negative and increasing and
2

d _
02(A) = 0, 0%(B) = Var(e) and d—i = 2F(2)(2 —
u(z)). As a consequence, the decision maker’s prob-
lem (4) can be presented as

Var(min(e, z)) =

statements hold: = F(2), p(.) is increasing,

max l(p, z) = p(u(z) +a — bp) — c(2 + a — bp)
— p?Aa?(2). (6)

Our results complement the findings of Rubio-
Herrero & Baykal-Gursoy (2018), where the assump-

T for any = € [A, B] is made. It holds if

tion p <

2A+a—bc> 0. (7)

Our study disregards the assumption (7) and resolves
the mean-variance newsvendor problem. We supply a
general and complete solution to the research prob-
lem.

The non-negative demand realization

Let us review the optimization problem given by

A
(5), restricted to the feasible set p < %. Then,

II(p, q) = U(p, q). If we let ¢ = a—bp+2z > 0, than this
restricted version of the problem can be presented as

max Ig(p,z) = p(u(z) + a — bp)

A
p<AEe .z

—c(z4a—bp) —p*Aa?(2). (8)

The problem can be solved using the sequential op-
timization method proposed by (Zabel, 1970). The
first step in our optimization is to establish the price
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that maximizes the performance measure for any
given z € [A, B]. Solving the first order condition
S(p, 2)/6p = —2p(Aa?(2) +b) + p(2) + a+be = 0 we
obtain

w(z) +a+be

P(z) = 2(Ao2(z) +b)
Moreover, §2I1(p, 2)/0p* = —2(Aa?(2) + b), and

(9)

<0, A>0o0r (A<0and
§2T1(p, 2) o%(z) < =b/N), (10)
op? =0, o%(z) =-b/A,

>0, A<0ando?(z)>—b/\

The first and the second derivatives of the optimal
price are given by

02(z) + 5
and _2F(2)F
p*”(z) ' (2)=0 2 (Zl;)p (2).
(Z)JFX

The application of these formulas, the lemma with the
shape of p*(.) to be proved.

Lemma 1. [Rubio-Herrero & Baykal-Gursoy (2018)]
If X > 0 then p*(z) is a positive, increasing-decreasing
or strictly increasing and concave function. If A < 0
then p*(z) is first a positive, increasing and convex
function with asymptote 0%(z) = —b/X\ and then a
negative function.

Remark 1. The function p*(z) is increasing for all

z€[ABlIf0< A< Moreover, the nega-

1
4Bp*(A)’
tive values of p*(z) correspond to a minimizer of the
performance measure.

It should be established whether the function p*(z)
A
ra . Let the hedged

is hedged in the interval <c,

optimal price function be constructed as the following
piecewise function:

p*(Z), zZ € [Aazl) U [2272’0);
N A+a
™(2) = ;T z € (21, 22);
c, z € [z, B,

where

zlmin{min{z p(2) = AZ"},B},
zQ:min{maX{z:p*(z):A;ra},B}
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and
ze =min{{z: p*(2) = ¢}, B}.

If any of the equations p*(z) = x has no solution,
we assume that z, = B. It ought to be noted that
the formula for the hedged price is valid for any risk
behaviour. However, for A < 0 it consists of one or two
pieces only. However, for A > 0, it may consist of up
to four pieces, which differs from (Rubio-Herrero &
Baykal-Gursoy, 2018), where the function p*(z) may
include two pieces at most (Figure 1).

~

A Il 2y e B z

Fig. 1. Possible optimal price function in risk-averse cases

Consequently, let us also define the following useful
functions of z € [A, B]:

() = I(p" (), 2) = 29" (=) (=) +a-+bo) —e(z+a),
M) =11 (25 ) (A5 et 40
A—|—a w(z) +a+bec)—c(z+a)

and
5(z) = I(c, 2) = —c2(Ao?(2) +b) + c(u(z) + be — 2).

Then (8) can be transformed into max.¢4, 5 I1*(2),
where

My (2), ze€[A z1]U (22,2
IT*(z) = < Ta(2), 2 € (21,22);
3(z2), z € (2 Bl.

It is noteworthy that for A < 0 the function II*(.)
may consist of two pieces at most, while for A > 0 it
may consist of one, up to a maximum of four pieces. If
our considerations are limited to the set of parameters
satisfying (7) as it was done in (Rubio-Herrero et al.,
2015; Rubio-Herrero & Baykal-Gursoy, 2018), the per-
formance measure will consist of max. two pieces for
A > 0. Therefore, our approach considers the research
problem more broadly.
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The function II*(.) is continuous and its first deriva-
tive is equal to

P (2)F(2)(1=2X(z—p(2))p* (2)) —¢,
z € [A, 1) U (22, 2¢);

—zx(Aj“) (e—p(z)) F(2)
A+a -

+ 2 F(z) -

€ (2.2 1
22\ (2 p(2))F(2) — (1
ze(zc,B]

I (z) = (11)

z

F(2)),

Since IT4(2) < 0 for any z € [z, B], II5(.) is decreasing
and the optimal solution, if it exists, falls into the
interval [A4, z.). We only need the second derivatives
of I1;(.) and II5(.) given by

20 (1- 26 - ) 52

(13)

respectively. The following lemma proves the concav-
ity of II; and II; under the conditions in terms of
mathematical functions. We believe the formulas in a
simple mathematical form are elegant, thus ready to
be used in numerical computations. Let

zy = min{z: p'(z) = 0},
zo =min{z: 1 — 2X\(z — p(2))p(z) =0, 2.} and

zg = min{z: z—pu(z) = 2)\(al)+A)’B}
Lemma 2.
(1) TI4(.) is concave
(a) in [A z.] if A\ > 0 and F(z)p*( )+ (2 —
w(2)p* z > 0, and h(z) > P (z

” )p*(Z)
P in (Za, 2

~

in [A za],

2p* (2)
p*(2)

and h(z) <

(b) in [A, z1] if A < 0 and h(z) >
2AF(2)p*(2).

56

(2) Tla(.) is concave in [A,B] if A > 0 and h(z) <

———— in (28, B], and also if A < 0 and h(z) >

g (2

_oF(z) 2T
(8) I3 is decreasing in (z., B).

Proof. (1) First, let us analyze II; in [A, z.]. Let us
make the assumption

Fap'(2) + (s — p(2)p™ (2) > 0. (14)
For A > 0, the optimal price p(z) is either an in-
creasing or unimodal function and we consider three
subintervals: [A, z,| where p'(z) > 0, (zy, 2o), where
p'(z) < 0and 1 —2X(z — u(2))p(z) > 0, and (24, 2]
where p'(z) < 0 and 1 — 2X\(z — u(2))p(z) < 0 since
by (14) 1 — 2X\(z — u(2))p(2) is a nonincreasing func-
tion. Using (12) we get that II{ < 0 in [A,zy] if

P'(2) : :
h(z) > ) and also in (zy,zq] if (14) hol/ds. In
(Zas 2¢] We get that II; is concave if h(z) < p((zz)) +
2A(F(2)p(2) + (2 = w(2))P'(2)) _ 20/ (2) . F(z)
2A(z — pu(2))p(z) — 1 p(z) —u(z)

The proof of (1) is complete.
(2) The constraints on concavity stem from (13).
If A > 0 then IIy(2) < 0 for z > 2z if h(z) <
2AF(2) 412 F(z)
A+ta
2X(z — p(2) 42 —1 z — p(z)

I A <0, we get

2>\F( )A+a
p(z) A — 1

which completes the proof of (2).

the concavity of Iy if h(z) >

2X(z —
_QAF(Z)H7
(3) is obvious. O

In light of the previous facts we arrive at the unified
and complex mathematical solution to the problem
(8), which is valid for any risk behaviour and any set
of the model parameters. This theorem generalizes (in
the sense that we remove the restriction on the op-
timal price (7)), organizes and simplifies the results
presented in (Rubio-Herrero & Baykal-Gursoy, 2018).

a} z € [A, B],
the equilibrium decisions of the decision maker of the
problem (6) are as follows.

(1) p*

A
Theorem 1. On the set ¢ < p < +

= p*(z*) and z* is the unique solution to

ITy (z) = 0 4f
(a) A >0 and F(z)p*(2) + (2 — w(2))p* (2) > 0,
and h(z) > () in [A, z,], and

p*(2)
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20" (2) Fiz)
h(z) < 1{2*(2) + p—E in (za, 2], and
h(z) < z—(/j()z) in (23, B], and

(i) T} (z1) <0, or
(i) T5(29) > 0,

2p'*
(b) A <0 and h(z) > p*((j) — 20F(z)p*(z) in
p*(z
[A, z1] and T} (21) < 0;
A
(2) p* = ta and z* is the unique solution to
(=) = 0 f

’

(a) X >0 and F(2)p*(2) + (z — u(2))p* (2) > 0,

and h(z) > 1;*((2)) in [A, zo], TT5(21) > 0 and
z
IT5(z2) < 0;

a+ A
b

(b) X < 0 and h(z) > and

H/Q(Zl) > 0.

—2)\F(z)

Proof. Let us note that II is smooth. Moreover, II;
is continuous, smooth and concave in [A4,z.] with
IT{ (A) > 0 and IT5(2.) < 0. Therefore, by Lemma 2
under similar conditions there exists a unique max-
imum z* in [A4,z] if ITj(z1) < 0, or in [zo,z] if
IT5(z2) > 0, and we arrive at the solution of the theo-
rem. Moreover, Il is continuous, smooth and concave
in [A, B] with II5(A4) > 0 and II5(B) < 0. By Lemma
2 under the similar conditions there exists a unique
maximum z* in [z1, 29] if II5(21) > 0 and IT5(z2) < 0.
The proof of the theorem is complete. O

The negative actual demand realization

Let us examine the optimization problem given by

A+a B+a
(5) limited to the feasible set p € { ;r , ;r ]
The restricted version of the mean-variance newsven-
dor problem can be presented as

%rgr;agxw (p, z)

Bzzsz—ba ’
=pE(min((a —bp+€e)t,a—bp+ 2)) — c(z +a — bp)

— Ap?Var[min((a — bp +€)*,a — bp + 2)]. (15)

The application of the standard algebraic arguments
leads to the next lemma.

Volume 13 @ Number 1 e March 2022

a B+a
<p<

Lemma 3. For and B > z >

bp — a we have

E(min((a —bp + €)%, a — bp + 2)) = pu(z) — p(bp — a),
Var [min((a —bp+ €)™, a — bp + 2)] = 0*(2)

—o*(bp — a)

—2(u(z) — pbp — a)) (bp — a — p(bp — a)).

By Lemma 3 we can write the performance measure
(15) as

ma. ﬁ ,2) = z) — b —a
a1, (p,2) = p(p(2) — p(bp — a))

BZZpr—ba )
—c(z+a—bp) — \p? [0%(2) — o*(bp — a)
—2(p(2) = pl(bp — @) (bp — a — p(bp — a))] .

Theorem 2. The problem defined by (16) has a pos-
sibly non-unique optimal solution.

(16)

Proof. By the Extreme Value Theorem, the continu-
ous function II(p, z) in (16) attains at least one max-
imum value on the convex set

{(pvz): ?SPS Bz—a, B>z>bp—a}.

The proof is complete. O

The considered problem is mathematically complex
even for a uniform distribution. As a consequence, we
solve it numerically. If the demand shock is uniformly
distributed on the interval [A, —A] then the perfor-
mance measure is a polynomial of sixth degree of p.

oIl
By solving the first-order condition ¥ =0 we

p
come up with the fifth degree polynomial equation.

Then the optimal solution can be derived numerically
for any given parameters satisfying the general as-
sumptions.

The total solution to the mean-
variance newsvendor problem

Based on the results obtained in the previous sec-
tions, it can be concluded that the problem given by
(5) can be presented as

max p;n%,ﬂ(p, 2), %gagXBja,H(n z) (17)
B>z>A B>z>bp—a

The following examples vividly illustrate the ob-
tained results. First, let us consider the risk-seeking
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newsvendor problem with ¢ ~ U[-20,20], A =
—0.001, a = 35, b = 1 and ¢ = 1. Then, the as-
sumptions of the Theorem 1 and 2 are satisfied and,
consequently, we infer that the subproblem given by
(17) has a unique optimal solution p* = 21.43 and
2* = 18.96 with II*(5*) = 322.48. The results are
specified in Table 1 and illustrated in Figure 2. We
can state that, in this case, the optimal values cor-
respond to the problem with the possibly negative
actual demand.

Table 1
The risk-seeking newsvendor
A+a A+a B+a
<p< <p<
c=P=m b SP=T%
p* =15 p* =21.43
z* =18.28 2* = 18.96

II(z*) = 290.85 II(2*) = 322.48

e ~ U[—20, 20], A= —0.001,
a=350b=1, c=1
Table 2
The risk-averse newsvendor
SpSAJra A+asp§B+a
b b b

p* = 20.925 pr =21
2zt =-9.131 2* = —9.065

II(z*) = 0.4735 II(2*) = 0.4702

e ~ U[-10,10],
a=31,b=1,

A =0.001,
c=20

Fig. 2. Performance measure, U[—20, 20], A = —0.001,
a=35b=1c=1

At this point, let us examine the risk-averse
newsvendor problem with e ~ U[-10,10], A = 0.001,

58

Fig. 3. Performance measure, U[—10, 10], A = 0.001,
a=31,b=1,¢c=20

a =31, b =1 and ¢ = 20. In this case, the assump-
tions of the Theorem 1 and 2 are satisfied. It can be
concluded that the problem given by (17) has an op-
timal solution p* = 20.925 and z* = —9.131 with
IT*(2*) = 0.4735 specified in Table 2 and shown in
Figure 3. It ought to be noted the optimal values cor-
respond to the problem with the non-negative realiza-
tions of demand.

Discussion and conclusions

The investigation of additive uncertainty is espe-
cially interesting due to a special feature, i.e. the fact
that models with such uncertainty allow negative de-
mand realizations. These realizations may emerge, in
particular, due to considerably negative pandemic-
type demand shocks. The negativity of the demand
has often been neglected in numerous current OR
problems, including the newsvendor problem, which
implies the loss of generality, and incompleteness of
results. In its elementary formulation, the newsven-
dor problem aims at finding an optimal replenishment
policy for a perishable product in the face of uncertain
demand. One major modification of the newsvendor
problem is the extension of decision variables to in-
clude a price as well as an order quantity. In further
modifications of this problem, the objective function
includes not only the expectation but also the vari-
ance of the profit. The present article supplements
the mean-variance newsvendor problem with the non-
negativity constraint. The investigation is designed to
assess the hypothesis that the non-negativity assump-
tion may substantially change the optimal solution.
The present article proves that restricting the model
parameters to those assuring the non-negativity of the
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demand violates the generality of considerations. The
hypothesis is illustrated with the example in which
the optimal solution corresponds to the pandemic-
type demand shock. In the newsvendor model, in-
stead of the risk-neutral or mean-variance approach,
researchers frequently adopt the conditional value-
at-risk (CVaR) ((Rockafellar & Uryasev, 2000; Jam-
mernegg & Kischka, 2007) and references therein),
which is a risk measure commonly used in finance.
One of the early works with the CVaR adopted to the
newsvendor problem is (Chen et al., 2009). In that ar-
ticle, the CVaR risk measure constituted the decision
criterion in a risk-averse newsvendor with the stochas-
tic price-dependent demand. The aim of the study was
to investigate optimal pricing and ordering decisions
in such a setting for both the additive and multiplica-
tive demand. The results were compared with those
of the newsvendor with a risk-neutral attitude and a
general utility function.

It should be noted that there exists a correspon-
dence between CVaR and uncertainty sets in robust
optimization, which can be used to generalize the con-
cepts of risk measures. Using properly defined uncer-
tainty sets in robust optimization models, one can
construct coherent risk measures (Natarajan et al.,
2009). If the exact distribution of the uncertain de-
mand in the newsvendor problem is unknown, it is
necessary for the decision maker to find robust so-
lutions. Scarf (1958) and Gallego and Moon (1993)
introduced robust optimization as a practical exten-
sion of the classical newsvendor problem. The robust
approach allows the optimal order quantity for the
worst case scenario to be determined only if he mean
and variance of demand are known. In Scarf (1958),
a closed form formula for the optimal ordering rule
was obtained. The formula maximizes the expected
profit against the worst possible distribution of the
demand. In (Gallego & Moon, 1993), a simpler proof
than in (Scarf, 1958) was given and Scarf’s ideas were
extended. Since then, numerous articles related to
Scarf’s theory have been published, i.e. (Jiang et al.,
2011; Zhu et al., 2013; Xiao & Chen, 2017; Carrizosa
et al., 2016). In (Jiang et al., 2011), the authors gener-
alized the analysis of competition among newsvendors
to a setting in which competitors possess asymmetric
information about future demand realizations. In that
case, traditional expectations based upon optimiza-
tion criteria were not adequate. Additionally, they fo-
cused on the alternative criterion used in the robust
optimization literature, namely the absolute regret
minimization. In Zhu et al. (2013), the newsvendor
problem in which the distribution of the random de-
mand is specified by its mean and standard deviation
or support was considered. A robust model which min-
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imizes the regret was created where the regret was de-
fined as the ratio of the expected cost based on limited
information to that based on complete information. In
Xiao and Chen (2017), the newsvendor problem with
uncertain market demand with unknown probability
distribution was investigated. The robust optimal de-
cision was based on minimizing the expected legacy
loss and CVaR concerning the legacy loss. Three ro-
bust mean-CVaR models were built when the distri-
bution varies in a box uncertainty set. Moreover, the
equivalent forms of the robust models were derived.
In (Carrizosa et al., 2016), the newsvendor problem
under a setting which combines temporal dependence
and tractable robust optimization was explored. The
demand was modeled as a time series which follows
an autoregressive process. Additionally, a robust ap-
proach was introduced to maximize the worst case
revenue.

Uncertainties due to unexpected events such as the
coronavirus outbreak can be modeled in a different
way than in this article. To this aim, the regime
switching (Savku & AU Weber, 2018) was applied re-
cently in (Ahmed & Sarkodie, 2021). In that work, the
switching effect of the Covid-19 pandemic, and the
impact of economic policy uncertainty on commodity
prices were considered. The Markov regime switching
dynamic model was employed to explore price regime
dynamics of a few widely traded commodities. Two
Markov switching regimes were fitted to allow param-
eters to respond to low and high volatilities. It was
shown that most commodities were responsive to the
historical price in terms of demand and supply in both
volatility regimes. Moreover, there was a high proba-
bility that commodity prices will remain in low volatil-
ity regime rather than in high volatility regime owing
to market uncertainties caused by Covid-19. Finan-
cial markets with high uncertainties were the subject
of (Kara et al., 2019) which highlights that the trade-
off between maximizing the expected return and min-
imizing the risk is one of the main challenges in mod-
eling and decision making. In their study, they consid-
ered uncertainty in parameters based on uncertainty
in prices, and a risk-return analysis. They modelled a
robust optimization problem based on data and found
a robust optimal solution to the portfolio optimization
problem by using robust CVaR under parallelepiped
uncertainty.

In view of the foregoing, the following issues may
become a hot topic and an interesting avenue for
prospective research. First of all, one can investigate
the CVaR criterion instead of the mean-variance one
in the newsvendor problem with the non-negative de-
mand. Secondly, it should be noted that the additive
uncertainty investigated in this article is frequently
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encountered in the electricity industry where the pres-
ence of the negative demand is possible. It may oc-
cur in relation to the energy prosumer defined as a
customer who both produces and consumes energy.
When the prosumer sells excess electricity to the elec-
tric energy provider, in a sense, their demand may be
regarded as the negative demand. Intensive work on
the electric energy prosumer law is underway in sev-
eral countries and by numerous institutions including
the Polish Ministry of Entrepreneurship and Technol-
ogy (Chojnowski; 2020).
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