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The thermal characteristics of ACCR lines
as a function of wind speed – an analytical approach
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Abstract. The paper has investigated the effect of wind speed on selected thermal characteristics of the contemporary ACCR line. As wind
speed functions, heating curves, stationary temperature profiles, steady-state current ratings and thermal time constants, have been determined.
The composite core (Al–Al2O3) and the Al–Zr alloy braid were modeled as porous solids. As a result, the physical model is composed of a solid
cylinder and a hollow cylinder with different material parameters of the above-mentioned elements. The mathematical model was formulated
as the boundary-initial problem of the parabolic heat equation. The problem was solved by the state-superposition of and variable-separation
method. On this basis, a computer program was developed in the Mathematica 10.4 environment and the velocity characteristics sought for were
plotted. The results obtained analytically were positively verified by the finite-element method in the NISA v.16 environment. The physical
interpretation of the determined characteristics has been given.
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1. INTRODUCTION
In overhead power lines of the new generation, bearing steel
cores (e.g., in ACSR, ACSS) have been substituted with com-
posite cores (e.g., in ACCR, ACCC). The meaning of the ab-
breviations used is as follows: ACSR – aluminum conductor
steel reinforced, ACSS – aluminum conductor steel supported,
ACCR – aluminum conductor composite reinforced, ACCC –
aluminum conductor composite core. The composite core in
ACCR is formed from aluminum oxide microfibers embed-
ded in high-purity aluminum (Al–Al2O3). It is about 2.4 times
lighter than the steel core. At the same time, the strength to
weight ratio is approx. 2.6 times greater than for steel strands.
Moreover, the coefficient of thermal expansion of the Al–Al2O3
material is about two times smaller than that of steel [1, 2].
These are very much desirable properties which, at the same
time, reduce the sag of the line and increase the resistance to
mechanical load (such as icing or wind).

Contemporary lines also have a different material of the
braid. In the case of conventional aluminum-steel lines, this is
either hard aluminum or an aluminum-magnesium-silicon (Al-
Mg-Si) alloy. These are materials of low thermal resistance
(with a sustained maximum temperature of approx. 80◦C.) In
the ACCR line, the braid is made of an aluminum-zirconium
(Al–Zr) alloy. The latter element eliminates the risk of braid
annealing (softening). As a result, the maximum operating tem-
perature is 210◦C (and under overload conditions, even 240◦C
for 1000 hours in total) [1, 2]. Due to the above factors, the
electrical current carrying capacity (ampacity) of the ACCR

∗∗∗e-mail: m.zareba@pb.edu.pl

© 2022 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Manuscript submitted 2021-10-25, revised 2022-01-11, initially
accepted for publication 2022-02-09, published in June 2022.

is even twice as high as that of the ACSR, with a smaller
sag of a line of the identical diameter [1, 2]. Because of the
similar dimensions of ACCR and ACSR, the same support-
ing structures can be used (thus avoiding the need for con-
structing new towers or increasing the height of existing ones).
For the above-mentioned reasons, the analysis of phenom-
ena occurring in the ACCR line meets both the current and
prospective needs of electrical power engineering. The temper-
ature of the power line is one of its most important operating
parameters.

The distribution of the temperature field in the ACCR line
depends heavily on the speed U of ambient air (wind) [3, 4].
At a high wind speed, the intensity of forced convection (cool-
ing) increases. In such conditions, it is possible to increase the
intensity I of transmitted current without the risk of exceeding
the maximum operating temperature of the line. For increas-
ing I, systems for monitoring the weather (among others wind
speed), conductor temperature, stresses and sags are used [5].
Another method for determining the wind speed is by the sta-
tistical processing of historical data in the geographical region
under consideration [6]. The most endangered segments (i.e.,
those with light wind) are also identified [7]. Papers [3, 5, 7]
are devoted to classic ACSR lines in a steady state. All of the
mentioned articles have a common physical basis. It is the bal-
ance of thermal powers drawn up in conformance to standards
IEEE [8] or CIGRE [9]. In a steady state, the sum of Joule’s
and solar radiation powers is equal to the sum of infrared radi-
ation and convection powers. The effect of air (wind) speed U
reveals itself in the latter of the aforementioned components.
Namely, the convection heat transfer coefficient αc is heav-
ily dependent on U (through the Nusselt number Nu and the
Reynolds number Re [10]). From the balance, the steady-state
current rating (or current carrying capacity) can be determined
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as a function of air speed, I = f1(U). Much more difficult is
to determine the conductor temperature T as a function of U .
This is due to the fourth power of T in the radiation compo-
nent and other nonlinearities. In this situation, it is necessary
to use iteration methods that do not lead to a closed form of
the solution. For this reason, the relationship T = f2(U) has
often been examined experimentally in a steady state. The re-
sults of studies by several authors are presented in [4] and [11]
in the form of experimental characteristics T = f2(U) (for the
transverse and longitudinal wind speeds relative to the conduc-
tor). Using experimental methods, transient states in the ACSR
line [12] were also examined. Study [12] describes two com-
plex measuring stands designed for testing stationary air and
forced convection in a wind tunnel. Solar radiation was omit-
ted. The experiment results made it possible to determine the
effect of current and wind speed on the transient conductor
temperature and the rate of its variation. The same relation-
ships were examined in the ACCC line, though using numer-
ical methods [13]. In [13], commercial software based on the
finite element method (FEM) [14, 15] was used. In addition to
the wind speed U , the effect of conductor surface emissivity ε

has also been discussed, though the solar radiation and the skin
effect have been omitted.

A more comprehensive review of the relevant literature and
the above-cited studies has shown that numerical (including it-
erative) and experimental methods predominate in the studies of
the effect of wind speed on the distribution of the temperature
of overhead power lines. The lack of advanced analytical meth-
ods is conspicuous. The present article partially fills this gap.

The subject of the present study is the determination of
selected characteristics and parameters of the contemporary
ACCR line as a function of wind speed. The system belongs to
a new generation of HTLS (High Temperature Low Sag) con-
ductors. The respective mathematical model was solved by the
variable-separation method [16]. Its main advantage are results
in the form of formulas. They support the engineer’s intuition
and facilitate the physical interpretation and discussion on the
effect of individual parameters. Analytical formulas also enable
the quick estimation of the field at selected points of space-time,
the finding of scaling laws and testing of numerical computa-
tions on asymptotic examples.

The following characteristics of the ACCR line have been
determined as a function of air (wind) speed:
• heating curves,
• steady-state current ratings (or current carrying capacity),
• thermal time constants, and
• stationary temperature profiles.
The second of the above-mentioned parameters is crucial for

the thermal safety of the system. The first and thirds character-
istics are important in the analysis of transient states (e.g., when
switching the line on and off, changing the load, with discon-
tinuous operation, etc.). Stationary temperature profiles, on the
other hand, are used for the assessment of the correctness of
sustained operation. In the authors’ opinion, an original feature
of the paper is the determination of the above-mentioned char-
acteristics by analytic means. The ACCR line was modeled as
a system with distributed parameters (i.e., it was decided not to

assume the isothermal volume). Moreover, solar radiation and
the skin effect were taken into account.

The structure of the paper is made up of the following steps
of the analysis of the ACCR line:
• formulating the physical model (or the set of simplifying

assumptions),
• formulating the mathematical model in the form of

a boundary-initial problem for the heat equation,
• solving the mathematical model (determining the station-

ary field distributions, separating the variables in the heat
equation, constructing the eigenvalues equation, reducing
the number of eigenfunctions coefficients, and using the
condition of the orthogonality of radial coordinate eigen-
functions),
• determining the previously mentioned thermal character-

istics of the ACCR line as a function of wind speed, and
• formulating the final conclusions concerning the thermal

phenomena in the ACCR line and the employed computa-
tion techniques.

2. PHYSICAL MODEL OF THE ACCR LINE
Figure 1 shows the cross-section of an ACCR line. The core
(r ≤ a, index 1) contains aluminum-matrix (Al–Al2O3) com-
posite wires. The outer strands (a ≤ r ≤ b, index 2) are com-
posed of temperature-resistant aluminum-zirconium (Al–Zr) al-
loy. The following designations are adopted above: r is the ra-
dial coordinate, a denotes the core radius, and b is the outer
radius of the conductor. The entire system is helically stranded.
The space between the wires is filled with air. For this rea-
son, the system under examination was considered a porous
body, and its equivalent parameters were determined follow-
ing the rules provided in references [17, 18]. For this purpose,
the knowledge of the active cross-sections of the composite,
S1 < πa2, and of the alloy, S2 < π(b2 − a2), was utilized. It
was assumed that the braid surface area (r = b) was oxidized to
a medium degree (i.e., the emissivity ε = 0.5). 
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Fig. 1. Cross-section of the ACCR conductor
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The thermal field is generated from the moment of switching
on current with a frequency of f and a root-mean-square value
of |I|. The current I separates into components: I1 in the core
and I2 in the braid. The components I1, I2 are determined using
a current divider.

Solar radiation can be included for by using the surface den-
sity of its power (W/m2) [8, 9] or the temperature of the sun
sensor [19, 20]. In this study, the latter method was used. The
simplest sensor is a replica of the conductor [19,20] positioned
next to the actual system. Ts was assumed to represent the tem-
perature of the entire volume of the replica heated up by solar
radiation. So, Ts is also the temperature of the conductor be-
fore the power supply is switched on (that is for t < 0). The
replica is never charged with electricity – there is only the solar
input. For this reason, a constant value of replica temperature,
Ts, is assumed (even when the actual line is on). The increment
Ts−Ta is a measure of the intensity of solar radiation. The Ta is
the constant ambient temperature.

The cooling of the system was modeled using the total heat
transfer coefficient, α . It is the sum [10] of the convection,
αc, and radiation, αr, coefficients. The first component con-
siders [21] – Table 3, inter alia, wind speed, U ; conductor
diameter, 2b; and the thermal conductivity and kinematic vis-
cosity of air at the average temperature in the boundary layer.
Air parameters at a given temperature were taken from relevant
tables [10]. The angle Θ between the conductor axis and the
wind direction is also of great importance. Usually, the normal
(cross) direction of flow relative to the line has been assumed
(Θ = 90◦). Besides [21], there are many other αc models [4]. In
the case of forced convection (U > 0), various functions of the
Reynolds number are the αc coefficient. For U = 0 (free con-
vection), the αc coefficient depends on the Rayleigh number.
In the present paper, the references [21]– Table 3 (for U > 0)
and [10] (for U = 0) have been used.

In turn, the αr radiation component [10] depends, among
other things, on the emissivity ε and on the average tempera-
ture of the environment and conductor surface.

The most important elements of the physical model are the
following assumptions:
• the cylindrical coordinate system is adopted. As a result, the

symmetries of the ACCR line and the coordinate system are
the same,

• the length of the line is much greater than its outer diameter.
As a result, the thermal field does not depend on the “z”
coordinate along the line axis. This also means the omission
of edge phenomena for large values of |z|,

• the surface of the line (r = b) uniformly gives up heat to
the environment. In such a case, the thermal field does not
depend on the angular coordinate, ϕ , which means that an
axial symmetry occurs,

• the geometry of the line and the previous assumptions allow
the approximation of the temperature field with the function
of the radial coordinate, r, and time, t,

• all thermo-physical parameters have been averaged in the
temperature variation interval. This means the linearization
of the system, thus enabling the superposition principle to
be used.

3. MATHEMATICAL MODEL OF THE ACCR LINE
THERMAL FIELD

Temperature increments νi(r, t) and Ts−Ta are calculated rela-
tive to temperature Ta and are generated, respectively, by cur-
rent flow and solar radiation (i = 1 for 0 ≤ r ≤ a, i = 2 for
a≤ r ≤ b). According to the Electric Power Research Institute
– USA [20], the above-mentioned increments can be analyzed
separately. After the thermal and material parameters have been
averaged out, the system is linear. The superposition of the in-
crements results in

Ti(r, t) = Ts +νi(r, t), (1)

where Ti(r, t) denotes the space-time distribution of temperature
in the i-th zone. The current-generated temperature increase
vi(r, t) above Ta is defined using the following boundary-initial
problem for the heat equation [17, 22]

∂ 2vi(r, t)
∂ r2 +

1
r

∂vi(r, t)
∂ r

− 1
χi

∂vi(r, t)
∂ t

=−gi

λi
, (2)

where i = 1 for 0≤ r≤ a, i = 2 for a≤ r≤ b. Equation (2) also
follows from the assumptions presented at the end of Section 2.
The following designations of the equivalent material param-
eters of the porous body [17, 18] in the i-th zone are adopted
above: χi = λi/(ciµi) is diffusivity, λi is thermal conductivity,
ci is specific heat, and µi is mass density. Heat source efficien-
cies, gi, are defined as follows (i = 1 for 0 ≤ r ≤ a, i = 2 for
a≤ r ≤ b)

gi =
Pi

Vi
=

Ri |Ii|2

Vi
, where (3a)

Ri = nikiRDCi = niki
ρil
Si

, where (3b)

|I1|= |I|
R2

R1 +R2
, |I2|= |I|

R1

R1 +R2
, (3c)

V1 = πa2l, V2 = π(b2−a2)l. (3d)

In formulas (3a)–(3d), the following designations relating to
the i-th zone of the length l are adopted: Pi is active power re-
leased, respectively, in the composite and in the alloy; Vi de-
notes the volume of the core or braid section; Ri and RDCi
are, respectively, the alternating-current and direct-current re-
sistance of the section; |Ii| is the root-mean-square value of
current, respectively, in the core and in the braid; ρi denote
the resistivity of, respectively, the Al–Al2O3 composite and the
Al–Zr alloy at the average operating temperature; Si is the ac-
tive cross-section of, respectively, the composite and the alloy
(S1 < πa2,S2 < π(b2− a2)); ni are stranding (elongation) fac-
tors [23]; and ki are skin factors [24] for mains frequency in
the cylinder (i = 1) or in the hollow cylinder (i = 2), respec-
tively.

The model under consideration assumes that the flow of cur-
rent heats the system from the moment t = 0. The current-
generated temperature increase is calculated in relation to Ta
with the conductor being completely shielded against solar ra-
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diation. This results in zero initial conditions in two conductor
zones

vi(r, t = 0) = 0, (4)

where i = 1 for 0≤ r ≤ a and i = 2 for a≤ r ≤ b.
The outer surface of the conductor (r = b) gives up heat

by convection and radiation. This process is described by the
boundary condition of the third kind (Hankel) [17, 22]

∂v2(r, t)
∂ r

∣∣∣∣
r=b

=− α

λ2
v2(r = b, t) for t > 0, (5a)

where α is the total heat transfer coefficient (α = αc +αr):

α =

{
f3(Ra,ε) for U = 0,

f4(Re,Θ,ε) for U > 0.
(5b)

In formula (5b), f3 denotes the function of the Rayleigh num-
ber Ra and emissivity ε , while f4 is the function of the Reynolds
number Re, wind angle Θ and emissivity ε . The dependence of
the total coefficient α on the wind speed U is hidden in the num-
ber Re = (U2b)/η , where η denotes the kinematic viscosity of
the boundary air layer at the average temperature [4,10], [21] –
Table 3.

The equivalent zones of the core and braid are closely adja-
cent to each other. Therefore, the conditions of the continuity
of temperature and heat flux increase on the perimeter of the
boundary circle, r = a, are satisfied

v1(r = a, t) = v2(r = a, t) for t > 0, (6a)

λ1
∂v1(r, t)

∂ r

∣∣∣∣
r=a

= λ2
∂v2(r, t)

∂ r

∣∣∣∣
r=a

for t > 0. (6b)

Relationships (2)–(6) form a boundary-initial problem for the
transient increase of the temperature field generated by current
(with perfect conductor shielding against solar radiation)

4. HEATING CURVES OF THE ACCR LINE
At the first stage of analysis, the method of superposition of the
steady and transient states was employed

vi(r, t) = vis(r)+ vit(r, t) for i = 1,2 (7)

where vis(r) is the steady component of the temperature in-
crease of the i−th conductor zone (limt→∞ vi(r, t) = vis(r)),
vit(r, t) denotes the transient component of the temperature in-
crease of the i-th conductor zone (limt→∞ vit(r, t) = 0).

To formulate the boundary condition for the stationary com-
ponents νis(r), a change to the function vi(r, t)→ vis(r) in (2),
(5a), (6) was made. As a result of this operation, the partial
derivatives will change into normal derivatives with respect to
r, while with respect to time, they will zero. Then, using the
formula for the derivative of the product, the notation of the
left-hand side of (2) was reduced (for i = 1,2). After integrating

thus changed Equation (2) twice, rejecting the singular compo-
nent with r = 0 (for i = 1) and determining the constants from
the modified conditions (5a), (6), the following were obtained:

v1s(r) =
g1

4λ1

(
a2− r2)+ g2

4λ2

(
b2−a2)− (g2−g1)a2

2αb

+
g2b
2α
− (g2−g1)a2

2λ2
ln
(

b
a

)
for 0≤ r ≤ a, (8)

v2s(r) =
g2

4λ2

(
b2− r2)− (g2−g1)a2

2αb
+

g2b
2α

− (g2−g1)a2

2λ2
ln
(

b
r

)
for a≤ r ≤ b, (9)

where g1 and g2 were determined from formulas (3).
On the other hand, the boundary-initial problem for the tran-

sient components results from (7). Relationships (2)–(6) and
the boundary condition for the stationary components were also
used. Finally, it is sufficient to make change in vi(r, t)→ vit(r, t)
and, additionally, to substitute gi = 0 for i = 1,2 in relation-
ships (2), (5a), (6). Only the form of (4) will change

vit(r,0) =−vis(r) for i = 1 with 0≤ r ≤ a and

for i = 2 with a≤ r ≤ b. (10)

So obtained homogeneous partial differential equations were
solved by the (Fourier) variables separation method [16]. Ac-
cordingly, after separating the time and position variables and
rejecting the singular component with r =, the following were
obtained

v1t(r, t) =
∞

∑
n=1

CnJ0 (γnr/a)e−γ2
n

χ1
a2 t

for 0≤ r ≤ a, t > 0, (11)

v2t(r, t) =
∞

∑
n=1

[DnJ0(γnsr/a)+EnY0(γnsr/a)]e−γ2
n

χ1
a2 t

for a≤ r ≤ b, t > 0, (12)

where s =
√

χ1/χ2, γn are the dimensionless eigenvalues
(rescaled separation constants) of the modified boundary-initial
problem (2)–(6); Cn, Dn, En are the coefficients of eigenfunc-
tions, and Jk(. . .), Yk(. . .) are Bessel functions of the first and
second kinds of order k.

Next, the eigenvalues of the modified problem (2)–(6) were
determined. For this purpose, the continuity conditions (6a, 6b)
and the boundary condition (5a) with respect to vit(r, t) were
used. After substituting the distributions (11)–(12) in (6a, 6b)
and (5a) (for vi(r, t)→ vit(r, t)), a homogeneous system of three
equations with respect to unknown coefficients Cn, Dn, En was
obtained

CnJ0(γn)−DnJ0(γns)−EnY0(γns) = 0, (13)

KCnJ1(γn)−DnJ1(γns)−EnY1(γns) = 0, (14)
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Dn

[
ϑJ0(psγn)

γns
− J1(psγn)

]
+En

[
ϑY0(psγn)

γns
−Y1(psγn)

]
= 0, (15)

where K = λ1/(λ2s), ϑ = αa/λ2, p = b/a.
The system of equations shown above has a non-trivial solu-

tion if its main determinant is zero

∆(γn) =
[
J0(γn)Y1(sγn)−KJ1(γn)Y0(sγn)

]
·
[

ϑJ0(psγn)

γns
− J1(psγn)

]
+
[
KJ1(γn)J0(sγn)− J0(γn)J1(sγn)

]
·
[

ϑY0(psγn)

γns
−Y1(psγn)

]
= 0. (16)

Relationship (16) constitutes an eigenvalue equation.
In addition, using the system of equations (13)–(15) given

above, the number of unknown coefficients can be reduced. For
this purpose, the first two equations, (13) and (14), were used.
As a result, the coefficients Dn, En were made dependent on
Cn. So expressed coefficients Dn, En were substituted in (12).
After appropriate shortening of the notation, the following was
obtained

v2t(r, t) =
∞

∑
n=1

CnZ0(γnsr/a)e−γ2
n

χ1
a2 t

for a≤ r ≤ b, t > 0, (17)

where

Zk(γnsr/a) = HnJk(γnsr/a)+QnYk(γnsr/a), (18)

Hn =
J0(γn)Y1(sγn)−KJ1(γn)Y0(sγn)

J0(sγn)Y1(sγn)−Y0(sγn)J1(sγn)
, (19)

Qn =
KJ0(sγn)J1(γn)− J0(γn)J1(sγn)

J0(sγn)Y1(sγn)−Y0(sγn)J1(sγn)
. (20)

The form of equation (11) has not changed. The unknown co-
efficient Cn in (11), (17) still needs to be determined. For its
determination, the initial conditions (10) were used. The sub-
stitution of distributions (11), (17) in (10) yields

∞

∑
n=1

CnJ0(γnr/a) =−v1s(r) for 0≤ r ≤ a, (21)

∞

∑
n=1

CnZ0(γnsr/a) =−v2s(r) for a≤ r ≤ b. (22)

Next, relationship (21) was multiplied by r ·(λ1/χ1) ·J0(γmr/a)
and then integrated by sides in the interval of 〈0,a〉. Similar
operations were made for relationship (22), multiplying it by
r · (λ2/χ2) ·Z0(γmsr/a) and integrating in the interval of 〈a,b〉.
Thus obtained relationships were added together. Subsequently,
the condition of the orthogonality of radial coordinate eigen-
functions in multi-zone cylindrical systems (proved in [25])

was used

λ1

χ1

a∫
0

rJ0(γnr/a)J0(γmr/a)dr

+
λ2

χ2

b∫
a

rZ0(γnsr/a)Z0(γmsr/a)dr

=

{
0 for γn 6= γm ,

‖N(m)‖2 for γn = γm ,
. (23)

where ‖N(m)‖2 is the square of the norm, defined by for-
mula (25). After calculating the relevant integrals obtained as
a result of the above-mentioned operations and after making
appropriate arrangement, abridgment and change m→ n, the
Cn coefficient searched for was ultimately obtained

Cn =
F1(n)+F2(n)

‖N(n)‖2 , (24)

where

‖N(n)‖2 =
λ1

2χ1
a2 [J2

0 (γn)+ J2
1 (γn)

]
+

λ2

2χ2
b2[Z2

0 (psγn)

+Z2
1(psγn)

]
− λ2

2χ2
a2 [Z2

0(sγn)+Z2
1(sγn)

]
, (25)

F1(n) =−
λ1

χ1

{
g1a4

2λ1γ2
n

J2(γn)+
a2

γn
J1(γn)

[
g2(b2−a2)

4λ2

− (g2−g1)a2

2αb
+

g2b
2α
− (g2−g1)a2

2λ2
ln
(

b
a

)]}
, (26)

F2(n) =
λ2

χ2

[
g2b2a2

4λ2γns
Z1(sγn)−

g2a4

4λ2γns
Z1(sγn)

− g2b2a2

2λ2γ2
n s2 Z2(sγnb/a)+

g2a4

2λ2γ2
n s2 Z2(sγn)

− (g2−g1)a4

2λ2γns
Z1(sγn) ln

(
b
a

)]
+

λ2

χ2

{
(g2−g1)a4

2λ2γ2
n s2 [Z0(sγn)−Z0(sγnb/a)]

+
g2
(
b2−a2

)
+g1a2

2αb

[
a2

γns
Z1(sγn)−

ab
γns

Z1(sγnb/a)
]}

, (27)

where g1 and g2 are expressed with formulas (3).
Finally, after considering (1), (7) and (11), (17), space-time

variable heating curves for the conductor were obtained

T1(r, t) = Ts + v1s(r)+
∞

∑
n=1

CnJ0(γnr/a)e−γ2
n

χ1
a2 t

for 0≤ r ≤ a, t > 0, (28)
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T2(r, t) = Ts + v2s(r)+
∞

∑
n=1

CnZ0(γnsr/a)e−γ2
n

χ1
a2 t

for a≤ r ≤ b, t > 0, (29)

where v1s(r), v2s(r) are given by formulas (8), (9), the coef-
ficient Cn is given by relationship (24), while taking into ac-
count (25)–(27), whereas γn is determined from (16). The influ-
ence of wind speed is hidden in the total heat transfer coefficient
α (5a), (5b).

5. STATIONARY TEMPERATURE PROFILES,
STEADY-STATE CURRENT RATINGS, LOCAL TIME
CONSTANTS OF THE ACCR LINE

Stationary temperature distributions are determined from (28)–
(29) at t → ∞. As a result, this comes down to zeroing the ex-
ponential functions, or omitting the series in (28)–(29)

Ti(r, t→ ∞) = Ts + vis(r). (30)

One of the most important parameters of conductors is the
steady-state current rating (or current rating capacity) |Icr|. The
composite Al–Al2O3 is more thermally stable than the Al–Zr
alloy (the emergency use temperatures are, respectively, 300◦C
and 240◦C, [26]). For this reason, the temperature field gener-
ated by the current |Icr| should be examined in the most poorly
cooled place of the Al–Zr braid (i.e., for r = a). From (30), the
following results for i = 2

Ts + v2s (r = a, |Icr|) = Tmax , (31)

where Tmax denotes the maximum operating temperature (or
the sustained maximum temperature). Then, (3) was substi-
tuted in (9) and, in turn, (9) in (31). Appropriate transformation
yielded the following

|Icr|=
√

Icr1

Icr1
, (32)

where:

Icr1 = 4παλ2b(Tmax−Ts)
(
b2−a2)(k1n1ρ1S2 + k2n2ρ2S1)

2 ,

Icr1 = k1k2n1n2ρ1ρ2

{
k1n1ρ1S2

[(
b2−a2)(αb+2λ2)

− 2a2
αb ln

(b
a

)]
+2k2n2ρ2S1

(
b2−a2)[

λ2+bα ln
(b

a

)]}
,

where, to simplify the notation, it is assumed that α =
α(U) (5b).

Another important parameter of thermal field dynamics is the
time constant of the conductor. To determine it, the local time
constant criterion, τi(r), was used. This is done by approximat-
ing the dynamic of each point using the first order lag. The step
response of such an object is well known and is expressed by
the formula

Ti(r, t) = Ti(r, t→ ∞){1− exp [−t/τi(r)]}

+ Ti(r, t = 0)exp [−t/τi(r)] , (33)

where i = 1,2. Formula (33) results in the relationship be-
low [27, 28]

τi(r) =
∞∫

0

Ti(r, t)−Ti(r, t→ ∞)

Ti(r, t = 0)−Ti(r, t→ ∞)
dt. (34)

After substituting distributions (28), (29) and (30) in (34) and
then performing integration, the following were ultimately ob-
tained

τ1(r) =
a2

χ1

∞

∑
n=1

CnJ0(γnr/a)/γ
2
n

∞

∑
n=1

CnJ0(γnr/a)
, for 0≤ r ≤ a, (35)

τ2(r) =
a2

χ1

∞

∑
n=1

CnZ0(sγnr/a)/γ
2
n

∞

∑
n=1

CnZ0(sγnr/a)
, for a≤ r ≤ b. (36)

Using the local time constant, it is possible, e.g., to estimate
the transient state duration and the temperature change rapidity
at a given point of the system.

6. COMPUTATION EXAMPLES
The heating curves (28), (29) and other parameters of the
ACCR line were computed using a software program devel-
oped in the Mathematica 10.4 environment [29]. The material
parameters were averaged in the temperature variation interval.
The following data were adopted [2, 10, 18, 21, 23, 26]:

a = 0.006 m, b = 0.01795 m,

c1 = 906.6 J/(kgK), c2 = 984.2 J/(kgK),

µ1 = 2502.9 kg/m3, µ2 = 2030.2 kg/m3,

λ1 = 68.7 W/(mK), λ2 = 160.15 W/(mK),

S1 = 85 ·10−6 m2, S2 = 676 ·10−6 m2,

ε = 0.5, n1 = n2 = 1.02,
f = 50 Hz, k1 = 1.0001, k2 = 1.026,

Ta = 40◦C, Ts = 55◦C,Tmax = 210◦C,

ρ1 = 11.8 ·10−8
Ωm, ρ2 = 3.89029 ·10−8

Ωm.

(37)

The f3, f4 functions (5b) were determined based on formulas
presented in [10], [21] – Table 3, respectively.

The graph of the relationship of the steady-state current rat-
ing |Icr| as a function of wind speed has been plotted based on
formula (32), assuming that Tmax = 210◦C = const, and it is
shown in Fig. 2. This results in the value of |Icr| = 2359.8 A
for the mains frequency f = 50 Hz, U = 0.6 m/s, Θ = 90◦C
(manufacturer’s conditions [2]).

Figure 3 represents the effect of variation in wind speed
{U =0 m/s, 0.6 m/s, 1 m/s, 2 m/s, 4 m/s, 10 m/s} on the heating
curves at the point r = a (with the identical root-mean-square
value of |Icr| = 2359.8 A and wing angle Θ = 90◦C in each

6 Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 2, p. e141006, 2022



The thermal characteristics of ACCR lines as a function of wind speed – an analytical approach
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wind speed V (m/s) 

S
te

ad
y
-s

ta
te

 c
u
rr

en
t 

ra
ti

n
g
 (

A
) 

 

Θ=90o 

Θ=0o 

Θ=45o 

Θ=60o 

 
Tmax=210oC 

Fig. 2. Steady-state current rating as a function of wind speed for
varying angles of attack Θ (assuming Tmax = 210◦C = const))
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Fig. 3. Heating curves for r = a at a current of |Icr| = 2359.8 A for
selected wind speeds (with an angle of attack of Θ = 90◦)
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Fig. 4. Variation in stationary temperature Ts2(r = a) as a function of
wind speed for varying angles of attack Θ

case). It can be noticed that only for U = 0.6 m/s is the accu-
rate maximum operating temperature value of Tmax = 210◦C
attained. The upper curve illustrates the heating of the line with
free convection (U = 0 m/s). Figure 4, in turn, shows variation
in stationary temperature (i.e., (29) at t → ∞) as function of
wind speed and at point r = a (with a constant root-mean-square
value of |Icr|= 2359.8 A). Figure 5 shows the difference in the
heating curves in the center and on the surface of the system, re-
spectively, T1(r = 0, t)−T2(r = b, t), for selected wind speeds
(with constant parameters |Icr|= 2359.8 A and Θ = 90◦C). The
last determined parameter is the thermal time constant of the
conductor, calculated from relationships (35), (36). Its diagram
as a function of wind speed for varying angles of attack is
shown in Fig. 6.
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Fig. 5. Differences in the heating curves in the center and on the sur-
face of the system, respectively, T1(r = 0, t)−T2(r = b, t), for selected
wind speeds (with an angle of attack of Θ = 90◦ and a current of

|Icr|= 2359.8 A)
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Fig. 6. Dependence of the time constant on the wind speed for varying
angles of attack
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7. NUMERICAL VERIFICATION OF CALCULATIONS
To verify the correctness of formulas (28), (29), the boundary-
initial problem (2)–(6) was solved again, but this time using
a finite-element (FE) method [14,15,30]. The same simplifying
assumptions as in the analytical method were adopted. The FE
method forms the basis of the professional NISA v.16 software
program [31], which was used for numerical analysis. Next, the
relative differences in temperature increments were calculated
from the formula

δTi = 100%
vi(r, t)− v(FE)

i (r, t)
vi(r, t)

, for i = 1,2, (38)

where vi(r, t) is the temperature increase distribution obtained
by the variables separation method in the i-th zone, while
v(FE)

i (r, t) represents the temperature increase distribution cal-
culated by the finite-element method in the i-th zone. Figure 7
illustrates relationship (38) at the point r = a of the conduc-
tor. At the remaining points of the line, the differences (38) for
a given wind speed take on values almost identical to those at
point r = a. For the sake of the legibility of the graph, the analy-
sis is limited to the case U = 0.6 m/s. It should be added that the
integrals in formula (23) were also calculated both analytically
and numerically. A full consistency of the results was obtained.
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Fig. 7. Relative difference (38) in the temperature increments at point
r = a, determined by the variable-separation and finite-element meth-

ods for |Icr|= 2359.8 A, Θ = 90◦C, U = 0.6 m/s

8. CONCLUSIONS
The study modeled influence of the wind speed on thermal char-
acteristics of the ACCR line. Heating curves, steady-state cur-
rent ratings, time constants and stationary temperature profiles
were discussed. The following conclusions can be drawn from
the analysis:
• The increase in wind speed causes an increase in the amount

of heat given up by the line. Therefore, maintaining the
same operating temperature Tmax requires increasing the
current |Icr| (Fig. 2). In turn, increasing the angle Θ (be-
tween the conductor axis and the wind direction) from 0◦

to 90◦ results in an increase in the Nusselt number [21] –
Table 3, and thus an increase in the convection heat transfer
coefficient, αc. Therefore, with the cross-air flow (Θ= 90◦),

the condition of Tmax = const forces the flow of the largest
current |Icr| for a given wind speed (Fig. 2).

• The increase in wind speed at a constant value of steady-
state current rating (|Icr| = const) causes a drop in steady-
state temperature (Fig. 3). This is fully confirmed by Fig. 4.
The increase in wind speed also shortens the duration of the
transient state (Fig. 3). This correlates well with Fig. 6 (the
duration of the transient state is estimated to be five times
the time constant value). It follows from the previous bul-
let point that the heat transfer coefficient attains the great-
est value for Θ = 90◦. So, for Θ = 90◦, the most intensive
heat exchange occurs between the conductor and the en-
vironment at a given wind speed. This explains the lowest
position of the Θ = 90◦ curves in Fig. 4 and Fig. 6.

• It is assumed that t1 represents the moment of time, for
which T1(r = 0, t1) = T2(r = b, t1) occurs. Figure 5 shows
that in the range < 0, t1) the temperature of the line surface
(r = b) is slightly higher than the line center (r = 0). This
results from two causes: a) the large value of current flow-
ing through the braid |I2| ≈ 0.96|Icr|, b) the thermal inertia
of the braid which, within the short time t1, “will not be
able to give up the heat” (for 0 ≤ t < t1 the surface r = b
behaves like an adiabate). For t > t1, the direction of the
phenomenon changes and there occurs T1(r = 0, t)> T2(r =
b, t) (Fig. 5) (the braid gives up the heat to the environment
and, while restraining its outflow from the core). Lowering
the wind speed will impair the cooling of the brain, thus in-
creasing the time t1 (Fig. 5). It can be noted that the isother-
mal model [4] precludes the investigation of the described
phenomenon.

• In a transient state, the relative difference (38) changes from
–0.15% to 0.09% and after passing on to a steady state, it
decreases to 0.03% (Fig. 7). Such small values are achieved
in the most unfavorable position of r = a (i.e., on the border
between different materials, where the accuracy of numeri-
cal computations is the lowest). This means that the finite-
element method has confirmed the result obtained by the
variables separation method.

• The use of the analytical model was advantageous for the
following reasons:
– the discretization of the area and time is unnecessary,
– summing the finite number of the terms of series (28),

(29) is very simple. At the same time, no limitations on
the computer memory are relevant. Numerical methods
are much more complex (e.g., numerical integration with
respect to time, assembling a matrix, solving large-scale
matrix equations, etc., are required). In FEM, the size of
the system’s matrix is critically limited by the computer
memory,

– in the adopted criterion of truncation series (28), (29), the
solution provides a comparable level of error at all points
of the region (in FEM, a non-uniform distribution of error
occurs, which is dependent on the grid construction and
material structure),

– solutions of (28), (29) provide a minimum error value.
It is limited either by the precision of the floating point
arithmetic or by the arbitrarily adopted criterion of trun-
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cation series (28), (29) (in FEM, the error is greater by
several orders of magnitude than the level of precision of
floating point arithmetic).

According to the authors’ best knowledge, the effect of wind
speed on the thermal characteristics of the ACCR line has not
been studied so far. The earlier bullet points show that the de-
termined analytically characteristics have a very good physical
interpretation. The correctness of the paper’s results is proved
also by the positive verification of the analytical considerations
using numerical means.

The presented methodology enables additionally the analysis
of the effect of other factors on the thermal characteristics of
the ACCR line (such as infrared emissivity, ε , or ambient air
temperature, Ta). The analytical method will be also effective
in mathematical modelling of modern lines of a different type
(such as, e.g., ACCC, ACSS, TACIR and TACSR).
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