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A new multistable jerk chaotic system, its bifurcation
analysis, backstepping control-based synchronization

design and circuit simulation

Sundarapandian VAIDYANATHAN, Khaled BENKOUIDER and Aceng SAMBAS

In this work, we present results for a new dissipative jerk chaotic systemwith three quadratic
terms in its dynamics.We describe the bifurcation analysis for the new jerk system and also show
that the proposed system exhibits multi-stability. Next, we describe a backstepping control-based
synchronization design for a pair of new jerk chaotic systems. MATLAB simulations are put
forth to exhibit the various findings in this work. Furthermore, we exhibit a circuit simulation
for the new jerk system using MultiSim.
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1. Introduction

Chaotic dynamical systems are useful in several domains such as [1,2], neural
networks [3–5], robotics [6,7], power systems [8,9], circuits [10,11], memristors
[12–14], oscillations [15, 16], communications [17, 18], etc.
Jerk differential equations arise in mechanical systems featuring the third

derivative (jerk) of the displacement of a moving particle. Jerk differential equa-
tions can be enlisted as follows:

d3𝑦
d𝑡3

+ 𝐺
(
𝑦,
d𝑦
d𝑡
,
d2𝑦
d𝑡2

)
= 0. (1)
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Using phase variables, the jerk DE (1) can be put in a system form as

¤𝑦1 = 𝑦2 ,
¤𝑦2 = 𝑦3 ,
¤𝑦3 = −𝐺 (𝑦1, 𝑦2, 𝑦3) .

(2)

Applications of jerk systems in chaos theory have been studied in the con-
trol literature [19–24]. Sambas et al. [19] proposed a jerk model which is en-
dowed with chaos, multistability and saddle-foci equilibrium points. Li et al. [20]
proposed a memristic jerk circuit with hidden chaotic oscillation. Braun and
Mereu [21] found zero-Hopf bifurcation in a chaotic jerk system. Kengne et
al. [22] proposed image encryption design using a quintic jerk circuit. Xu et
al. proposed an assymetric diode-bridge-based jerk circuit with multistability.
Lamamra et al. proposed a chaotic jerk system and described circuit simulation
and backstepping synchronization.
In this work, we put forth our results of a new jerk system exhibiting dissipative

chaos and multistability. We carry out an extensive bifurcation analysis on the
new jerk system and detail the results obtained. We also present control results
for the new jerk system by devising backstepping control based synchronization
design. Circuit simulation for the new jerk system is presented at the end of this
work, which aids in practical implementation of the jerk system.

2. A new jerk system with three quadratic nonlinear terms

In this work, we propose a new jerk system modelling by the jerk dynamics

¤𝑦1 = 𝑦2 ,
¤𝑦2 = 𝑦3 ,
¤𝑦3 = −𝑎𝑦1 − 𝑏𝑦2 − 𝑦3 − 𝑦1𝑦2 − 𝑐𝑦21 + 𝑦

2
2 .

(3)

We designate the state of the jerk system (3) by 𝑌 = (𝑦1, 𝑦2, 𝑦3).
It shall be established in this work via Lyapunov exponents that the system

(3) exhibits a chaotic attractor when the parameters undertake the values

𝑎 = 2, 𝑏 = 0.1, 𝑐 = 0.2. (4)

When 𝑌 (0) = (0.4, 0.2, 0.4) and the parameters are as in (4), the Lyapunov
exponents of the jerk system (3) were evaluated for 𝑇 = 1𝐸5 seconds as

𝜓1 = 0.1525, 𝜓2 = 0, 𝜓3 = −1.1525. (5)

This leads us to the deduction that the jerk system (4) has dissipative chaotic
motion for (𝑎, 𝑏, 𝑐) = (2, 0.1, 0.2). Figure 1 displays the signal plots of the 3-D
jerk system (3) for 𝑌 (0) = (0.4, 0.2, 0.4) and (𝑎, 𝑏, 𝑐) = (2, 0.1, 0.2).
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a) b)

c) d)

Figure 1: MATLAB signal plots of the jerk system (3) for 𝑌 (0) = (0.4, 0.2, 0.4 and
(𝑎, 𝑏, 𝑐) = (2, 0.2, 0.2): a) (𝑦1, 𝑦2)-plane, b) (𝑦2, 𝑦3)-plane, c) (𝑦1, 𝑦3)-plane, d) the 3-D
space

The balance points of the system (3) are calculated by solving the equations

𝑦2 = 0, (6a)
𝑦3 = 0, (6b)

−𝑎𝑦1 − 𝑏𝑦2 − 𝑦3 − 𝑦1𝑦2 − 𝑐𝑦21 + 𝑦
2
2 = 0. (6c)

It is easy to show that there are two balance points for the jerk system (3)
given by 𝐵0 = (0, 0, 0) and 𝐵1 = (−𝑎/𝑐, 0, 0).
For the chaotic case (𝑎, 𝑏, 𝑐) = (2, 0.1, 0.2), the balance points are found as

𝐵0 = (0, 0, 0) and 𝐵1 = (−10, 0, 0).
UsingLyapunov stability theory by the firstmethod, it can be easily established

that 𝐵0 is a saddle-focus, while 𝐵1 is a saddle point.
The new jerk system (3) exhibits multistability as it possesses two coex-

isting chaotic attractors for (𝑎, 𝑏, 𝑐) = (2, 0.1, 0.2) but two different phases
𝑌0 = (0.4, 0.2, 0.4) (blue orbit) and 𝑍0 = (−0.8, 0.4,−0.8) (red orbit).
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Figure 2 shows that the jerk system (3) has coexistence of two chaotic attractors
for (𝑎, 𝑏, 𝑐) = (2, 0.1, 0.2), where the blue attractor corresponds to the initial
state 𝑌0 = (0.4, 0.2, 0.4) and the red attractor corresponds to the initial state
𝑍0 = (−0.8, 0.8,−0.8) .

a) b)

Figure 2: Multistability of the jerk system (3): Two coexisting chaotic attractors for
(𝑎, 𝑏, 𝑐) = (2, 0.1, 0.2) and two initial phases 𝑌0 = (0.4, 0.2, 0.4) (blue orbit) and 𝑍0 =
(−0.8, 0.8,−0.8) (red orbit): a) (𝑦1, 𝑦2) plane and b) (𝑦1, 𝑦3) plane

3. Bifurcation analysis and multistability of the new jerk system

Nonlinear systems can have different dynamical behaviors according to the
values of their parameters. There may be ranges of parameters for which the sys-
tem moves from one qualitative dynamical behavior to another. This qualitative
change of behaviors is known as a bifurcation and it is obtained either through
the bifurcation diagram or through the Lyapunov exponents spectrum. As it is
known, the Lyapunov exponent is a measure of exponential rates of convergence
and divergence for an uncertainty on the trajectories initial points. When it is
positive the uncertainty increases, which means divergence of trajectories and
appearance of chaos. Therefore, Lyapunov exponents spectrum and bifurcation
diagram represent the two most important tools to analyse the dynamical be-
haviour of a system. In this section, dynamical behaviours and complexity of the
new jerk system (3) are investigated by using numerical calculations with the
positive parameters 𝑎, 𝑏 and 𝑐 varying.

3.1. Parameter 𝑎 varying

To investigate the sensitivity of the jerk system (3) to the variation of parameter
𝑎, we fix 𝑏 = 0.1, 𝑐 = 0.2 and vary 𝑎 between 0.2 and 2.
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Lyapunov exponents spectrum and the corresponding bifurcation diagram of
the jerk system (3) when 𝑎 belongs to the set of values [0.2, 2] and for the initial
state 𝑌 (0) = (0.4, 0.2, 0.4) are depicted in Figure 3.

a)

b)

Figure 3: Dynamic analysis of the new jerk system (3) with parameter 𝑎 varying and
𝑏 = 0.1, 𝑐 = 0.2: a) Bifurcation diagram and b) Lyapunov exponents spectrum

From Figure 3, we can see a good agreement between the bifurcation diagram
and the Lyapunov exponents spectrum. Figure 3 shows that the proposed jerk
system (3) can exhibit periodic behaviour with no positive Lyapunov exponents
indicating no complexity of the dynamics when:

𝑎 ∈
(
[0.10, 0.40], [0.61, 0.94], [1.26, 1.45]

)
. (7)

Also, the new jerk system (3) can involve into a chaotic attractor with one
positive Lyapunov exponents when:

𝑎 ∈
(
[0.41, 0.60], [0.95, 1.25], [1.46, 2]

)
. (8)

There is also a tiny window of periodic behaviour sandwiched in chaotic
bands when:

𝑎 ∈
(
[1.85, 1.88]

)
. (9)
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Different dynamical behaviors of the jerk system (3) for special values of
parameter 𝑎 are shown in Figure 4.

a)

𝑎 = 0.5

b)

𝑎 = 0.3

Figure 4: Phase portraits of the new jerk system (3) for two different values of 𝑎: a) (𝑦1, 𝑦2)
chaotic attractor and b) (𝑦1, 𝑦2) periodic attractor

In addition, it is clear from the bifurcation diagram of Figure 3 that the jerk
system (3) experiences the well-known period-doubling route to chaos and the
interesting scenario of the antimonotonicity.

3.1.1. Period-doubling description

As depicted in the bifurcation diagram of Figure 3, the system experiences
period-doubling cascade for increasing values of the parameter 𝑎. Therefore, we
can observe the well-known period-doubling route to chaos (period-1→ period-2
→ period-4→ period-8→ chaos) for specified values of parameter 𝑎 as shown
in Figure 5.
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a)

b)

c)

Figure 5: Three independents period doubling cascade route to chaos in the jerk system
(3) when parameter 𝑎 varies: a) 𝑎 ∈ [0.2, 0.4], b) 𝑎 ∈ [0.7, 0.95] and c) 𝑎 ∈ [1.36, 1.46]
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When 𝑎 ∈ [0.20, 0.24], the jerk system (3) has period-1 attractor.
When 𝑎 ∈ [0.25, 0.35], the jerk system (3) has period-2 attractor.
When 𝑎 ∈ [0.360, 0.382], the jerk system (3) has period-4 attractor.
When 𝑎 ∈ [0.383, 0.4], the jerk system (3) has period-8 attractor.
When 𝑎 ∈ [0.4, 0.6], the jerk system (3) has chaotic attractor which makes
an end for the first period-doubling cascade.

When 𝑎 ∈ [0.70, 0.85], the jerk system (3) has period-1 attractor.
When 𝑎 ∈ [0.86, 0.94], the jerk system (3) has period-2 attractor.
When 𝑎 ∈ [0.95, 1.25], the jerk system (3) has chaotic attractor which makes
an end for the second period-doubling cascade.

When 𝑎 ∈ [1.36, 1.43], the jerk system (3) has period-1 attractor.
When 𝑎 ∈ ([1.44, 1.45]), the jerk system (3) has period-2 attractor.
When 𝑎 ∈ [1.46, 2], the jerk system (3) has chaotic attractor which makes an
end for the last period-doubling cascade produced by the jerk system (3)
when the parameter 𝑎 varies.

The various attractors (numerical simulations) illustrating the above described
routes to chaos are listed in Table 1 and plotted in Figures 6, 7 and 8.

Table 1: Dynamics, bifurcation diagrams and attractors of the new jerk system (3) with
parameter 𝑎 varying

𝑎 range 𝑎 value Dynamics Bifurcation Diagram Attractor
[0.20, 0.24] 0.2 Period-1 Figure 3a Figure 6a
[0.25, 0.35] 0.32 Period-2 Figure 3a Figure 6b
[0.36, 0.382] 0.37 Period-4 Figure 3a Figure 6c
[0.383, 0.40] 0.386 Period-8 Figure 3a Figure 6d
[0.41, 0.60] 0.5 Chaos Figure 3a Figure 6e

[0.61, 0.69] 0.65 Full Feigenbaum
remerging tree Figure 9a Figure 9c

[0.70, 0.85] 0.75 Period-1 Figure 3a Figure 7a
[0.86, 0.93] 0.9 Period-2 Figure 3a Figure 7b
[0.94, 1.25] 1.2 Chaos Figure 3a Figure 7c
[1.26, 1.35] 1.3 Period-4 bubble Figure 9b Figure 9d
[1.36, 1.43] 1.4 Period-1 Figure 3a Figure 8a
[1.44, 1.45] 1.45 Period-2 Figure 3a Figure 8b
[1.46, 2] 1.7 Chaos Figure 3a Figure 8c



A NEWMULTISTABLE JERK CHAOTIC SYSTEM 131

a) b)

c) d)

e)

Figure 6: Numerical phase space trajectories showing the first classical period doubling
route to chaos in the jerk system (3) when parameter 𝑎 varies: (a) Period-1 for 𝑎 = 0.2,
(b) Period-2 for 𝑎 = 0.32, (c) Period-4 for 𝑎 = 0.37, (d) Period-8 for 𝑎 = 0.386, (e) chaos
for 𝑎 = 0.5
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a)

b)

c)

Figure 7:Numerical phase space trajectories showing the second classical period doubling
route to chaos in the jerk system (3) when parameter 𝑎 varies: a) Period-1 for 𝑎 = 0.75,
b) Period-2 for 𝑎 = 0.9, c) chaos for 𝑎 = 1.2
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a)

b)

c)

Figure 8: Numerical phase space trajectories showing the third classical period doubling
route to chaos in the jerk system (3) when parameter 𝑎 varies: a) Period-1 for 𝑎 = 1.4,
b) Period-2 for 𝑎 = 1.45, c) chaos for 𝑎 = 1.7
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3.1.2. Antimonotonicity

As the route to chaos is the classical period doubling bifurcation, it is obvious
that the jerk system (3) experiences the antimonotonicity. This phenomenon is
described by the creation of periodic orbits followed by their destruction via a
reverse period-doubling scenario as a bifurcation parameter is varied. It is easily
be noticed that in Figure 9(a) which is derived from the bifurcation diagram
of Figure 3. When 𝑎 ∈ [1.26, 1.35], period-4 bubble is obtained, while, a full
Feigenbaum remerging tree is observed in Figure 9(b) when 𝑎 ∈ [0.6, 0.7].

a) b)

c) d)

Figure 9: Bifurcation diagrams of the jerk system (3) and their corresponding attractors
showing a) Full Feigenbaum remerging tree when 𝑎 ∈ [0.60, 0.69], b) Period-4 bubble
when 𝑎 ∈ [1.26, 1.35], c) 𝑦1 − 𝑦2 attractor when 𝑎 = 0.65 and d) 𝑦1 − 𝑦2 attractor when
𝑎 = 1.3

4. Parameter 𝑏 varying

To investigate the sensitivity of the jerk system (3) to the variation of the
parameter 𝑏 values, we fix 𝑎 = 2, 𝑐 = 0.2 and vary 𝑏 between 0.1 and 2.
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Lyapunov exponents spectrum and the corresponding bifurcation diagram of
the jerk system (3) when 𝑏 ∈ [0.1, 2] and for the initial state𝑌 (0) = (0.4, 0.2, 0.4)
are depicted in Figure 10 where we can see a good agreement between the
bifurcation diagram and the Lyapunov exponents spectrum.

a)

b)

Figure 10: Dynamic analysis of the new jerk system (3) with parameter 𝑏 varying and
𝑎 = 2, 𝑐 = 0.2: a) Bifurcation diagram and b) Lyapunov exponents spectrum

Figure 10 shows that the proposed jerk system (3) can exhibit chaotic be-
haviour with one positive Lyapunov exponent when 𝑏 ∈ [0.10, 0.44]. Also, the
new jerk system (3) can exhibit periodic behaviour with no positive Lyapunov
exponent when 𝑏 ∈ [0.45, 2], which indicates no complexity of the dynamics.
There is also a tiny window of periodic behaviour sandwiched in chaotic

bands when 𝑏 ∈ [0.32, 0.34].
Different dynamical behaviour of the jerk system (3) for special values of

parameter 𝑏 are shown in Figure 11.
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a)

𝑏 = 0.3

a)

𝑏 = 1.5

Figure 11: Phase portraits of the new jerk system (3) for two different values of 𝑏 in the
(𝑦1, 𝑦3) plane: a) Chaotic attractor for 𝑏 = 0.3 and b) Periodic attractor for 𝑏 = 1.5

In addition, it is clear from the bifurcation diagram of Figure 10 that the jerk
system (3) experiences the well-known reversal period-doubling route.

4.1. Reverse period-doubling description

As depicted in the bifurcation diagramof Figure 10, the system (3) experiences
period-doubling cascade for increasing values of the parameter 𝑏.
Therefore, we can observe the well know period-doubling exiting from chaos

(chaos→ period-8→ period-4→ period-2→ period-1) for specified values of
parameter 𝑏 as shown in Figure 12.
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Figure 12: Reversal period doubling cascade in the jerk system (3) when parameter 𝑏
varies in the interval [0.4, 0.9]

When 𝑏 ∈ ([0.10, 0.44]), the jerk system (3) has chaotic attractor.
When 𝑏 ∈ ([0.45, 0.47]), the jerk system (3) has reverse period-8 attractor.
When 𝑏 ∈ ([0.48, 0.53]), the jerk system (3) has reverse period-4 attractor.
When 𝑏 ∈ ([0.54, 0.85]), the jerk system (3) has reverse period-2 attractor.
When 𝑏 ∈ ([0.86, 2]), the jerk system (3) has reverse period-1 attractor, which

makes an end for the reverse period-doubling cascade.

The various attractors (numerical simulations) illustrating the above described
route to exiting from chaos are listed in Table 2 and plotted in Figure 13.

Table 2: Dynamics, bifurcation diagrams and attractors of the new jerk system (3) with
parameter 𝑏 varying

𝑏 range 𝑏 value Dynamics Bifurcation Diagram Attractor

[0.10, 0.45] 0.4 Chaos Figure 12 Figure 13a

[0.45, 0.47] 0.46 Period-8 Figure 12 Figure 13b

[0.48, 0.53] 0.49 Period-4 Figure 12 Figure 13c

[0.54, 0.85] 0.65 Period-2 Figure 12 Figure 13d

[0.86, 2] 1 Period-1 Figure 12 Figure 13e
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a) b)

c) d)

e)

Figure 13: Numerical phase space trajectories showing the classical reverse period dou-
bling in the jerk system (3) when the parameter 𝑏 varies: a) chaos for𝑏 = 0.4, b) Reverse
period-8 for 𝑏 = 0.46, c) Reverse period-4 for 𝑏 = 0.49, d) Reverse period-2 for 𝑏 = 0.65
and e) Reverse period-1 for 𝑏 = 1
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5. Parameter 𝑐 varying

To investigate the sensitivity of the jerk system (3) to the variation of parameter
𝑐 value, we fix 𝑎 = 2, 𝑏 = 0.1 and vary 𝑐 between 0 and 0.6.
Lyapunov exponents spectrum and the corresponding bifurcation diagram of

the jerk system (3) when 𝑐 varies in the interval [0, 0.6] and for the initial state
𝑌 (0) = (0.4, 0.2, 0.4) are depicted in Figure 14, where we can see a good agree-
ment between the bifurcation diagram and the Lyapunov exponents spectrum.

a) b)

Figure 14: Dynamic analysis of the new jerk system (3) with parameter 𝑐 varying and
𝑎 = 2, 𝑏 = 0.1: a) Bifurcation diagram and b) Lyapunov exponents spectrum

a) b)

𝑐 = 0.1 𝑐 = 0.5

Figure 15: Dynamic analysis of the new jerk system (3) with parameter 𝑐 varying and
𝑎 = 2, 𝑏 = 0.1: a) Bifurcation diagram and b) Lyapunov exponents spectrum
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Figure 14 shows that the proposed jerk system (3) can exhibit chaotic be-
haviour with one positive Lyapunov exponents when 𝑐 ∈ [0, 0.3].
Also, the new system (3) can exhibit periodic behaviour with no positive

Lyapunov exponent when 𝑐 ∈ [0.3, 0.6], which indicates no complexity of the
dynamics. There are also a tiny windows of periodic behaviour sandwiched in
chaotic bands when: 𝑐 = 0.015, 0.15 and 0.175.
Different dynamical behaviors of the jerk system (3) for special values of

parameter 𝑐 are shown in Figure 15. In addition, It is clear from the bifurcation
diagram of Figure 14 that the jerk system (3) experiences the well-known reversal
period-doubling route.

5.1. Reverse period-doubling description

As depicted in the bifurcation diagram of Figure 14 the jerk system (3)
experiences period-doubling cascade for increasing values of the parameter 𝑐.
Therefore, we can observe the well-known reverse period-doubling exiting

from chaos (chaos→ period-8→ period-4→ period-2→period-1) for specified
values of parameter 𝑐 as shown in Figure 16.

Figure 16: Reversal period doubling cascade in the jerk system (3) when parameter 𝑐
varies in the interval [0.3, 0.4]

When 𝑐 ∈ [0, 0.3], the jerk system (3) has chaotic attractor.
When 𝑐 ∈ [0.30, 0.31], the jerk system (3) has reverse period-8 attractor.
When 𝑐 ∈ [0.32, 0.33], the jerk system (3) has reverse period-4 attractor.
When 𝑐 ∈ [0.34, 0.38], the jerk system (3) has reverse period-2 attractor.
When 𝑐 ∈ [0.39, 0.6], the jerk system (3) has reverse period-1 attractor, which

makes an end for the reverse period-doubling cascade.
The various attractors (numerical simulations) illustrating the above described

route to exiting from chaos are listed in Table 3 and plotted in Figure 17.
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a) b)

c) d)

e)

Figure 17: Numerical phase space trajectories showing the classical reverse period dou-
bling in the jerk system (3) when the parameter 𝑐 varies: a) chaos for𝑐 = 0.2, b) Reverse
period-8 for 𝑐 = 0.308, c) Reverse period-4 for 𝑐 = 0.32, d) Reverse period-2 for 𝑐 = 0.36
and e) Reverse period-1 for 𝑐 = 0.5
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Table 3: Dynamics, bifurcation diagrams and attractors of the new jerk system (3) with
parameter 𝑐 varying

𝑐 range 𝑐 value Dynamics Bifurcation Diagram Attractor

[0, 0.3] 0.2 Chaos Figure 14a Figure 17a

[0.30, 0.31] 0.308 Period-8 Figure 16 Figure 17b

[0.32, 0.33] 0.32 Period-4 Figure 16 Figure 17c

[0.34, 0.38] 0.36 Period-2 Figure 16 Figure 17d

[0.39, 0.60] 0.5 Period-1 Figure 16 Figure 17e

6. Backstepping Control Based Synchronization of the New Jerk Systems

As the drive system, we take the new jerk system

¤𝑦1 = 𝑦2 ,
¤𝑦2 = 𝑦3 ,

¤𝑦3 = −𝑎𝑦1 − 𝑏𝑦2 − 𝑦3 − 𝑦1𝑦2 − 𝑐𝑦21 + 𝑦
2
2 .

(10)

As the response system, we take the new jerk system equipped with a control
given by

¤𝑧1 = 𝑧2 ,
¤𝑧2 = 𝑧3 ,

¤𝑧3 = −𝑎𝑧1 − 𝑏𝑧2 − 𝑧3 − 𝑧1𝑧2 − 𝑐𝑧21 + 𝑧
2
2 + 𝑣 .

(11)

We define the synchronization error between the systems (10) and (11) as

𝜖1 = 𝑧1 − 𝑦1 ,
𝜖2 = 𝑧2 − 𝑦2 ,
𝜖3 = 𝑧3 − 𝑦3 .

(12)

The error dynamics is calculated as the following:

¤𝜖1 = 𝜖2 ,
¤𝜖2 = 𝜖3 ,

¤𝜖3 = −𝑎𝜖1 − 𝑏𝜖2 − 𝜖3 − 𝑧1𝑧2 + 𝑦1𝑦2 − 𝑐(𝑧21 − 𝑦
2
1) + 𝑧

2
2 − 𝑦

2
2 + 𝑣.

(13)

First, we define the control 𝑣 as

𝑣 = 𝑎𝜖1 + 𝑏𝜖2 + 𝜖3 + 𝑧1𝑧2 − 𝑦1𝑦2 + 𝑐(𝑧21 − 𝑦
2
1) − 𝑧

2
2 + 𝑦

2
2 + 𝑤 (14)
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Substituting (14) into (13), we get the linear control system

¤𝜖1 = 𝜖2 , (15a)
¤𝜖2 = 𝜖3 , (15b)
¤𝜖3 = 𝑤 . (15c)

In (15a), 𝜖2 is regarded as a virtual controller. Thus, we may rewrite (15a) as

¤𝜖1 = 𝜇1 , (16)

where 𝜇1 is a control input.
We work with the quadratic positive-definite Lyapunov function

𝑃1(𝜖1) =
1
2
𝜖21 . (17)

We find that
¤𝑃1 = 𝜖1 ¤𝜖1 = 𝜖1𝜇1 . (18)

We pick the virtual controller as

𝜇1 = −𝜖1 . (19)

Then (18) reduces to
¤𝑃1 = −𝜖21 (20)

which is negative definite.
As 𝜖2 and 𝜇1 start from different initial values, we plan our control design

to force 𝜖2 to track the virtual controller 𝜇1. Hence, the integrator backstepping
control is designed to regulate the following output:

𝜉1 = 𝜖2 − 𝜇1 = 𝜖2 + 𝜖1 . (21)

We note that
𝜖2 = 𝜉1 − 𝜖1 . (22)

Thus, we can write (15a) as
¤𝜖1 = 𝜉1 − 𝜖1 . (23)

Furthermore, we observe that

¤𝜉1 = 𝜉1 − 𝜖1 + 𝜖3 . (24)

In the (𝜖1, 𝜉1, 𝜖3) coordinates, the linear control system (15) can be expressed as

¤𝜖1 = 𝜉1 − 𝜖1 , (25a)
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¤𝜉1 = 𝜉1 − 𝜖1 + 𝜖3 , (25b)
¤𝜖3 = 𝑤. (25c)

In (25b), 𝜖3 is regarded as a virtual controller. Thus, we may rewrite (25b) as

¤𝜉1 = 𝜉1 − 𝜖1 + 𝜇2 , (26)

where 𝜇2 is a control input.
We work with the quadratic positive-definite Lyapunov function

𝑃2(𝜖1, 𝜉1) =
1
2

(
𝜖21 + 𝜉

2
1

)
. (27)

We find that
¤𝑃2 = −𝜖21 + (𝜉1 + 𝜇2)𝜉1 . (28)

We pick the virtual controller as

𝜇2 = −2𝜉1 , (29)

Then (28) reduces to
¤𝑃1 = −𝜖21 − 𝜉

2
1 (30)

which is negative definite.
As 𝜖3 and 𝜇2 start from different initial values, we plan our control design

to force 𝜖3 to track the virtual controller 𝜇2. Hence, the integrator backstepping
control is designed to regulate the following output:

𝜉2 = 𝜖3 − 𝜇2 = 𝜖3 + 2𝜉1 . (31)

We note that
𝜖3 = 𝜉2 − 2𝜉1 = 𝜉2 − 2(𝜖1 + 𝜖2). (32)

Hence, we have
𝜉2 = 2𝜖1 + 2𝜖2 + 𝜖3 . (33)

Hence, it follows that
𝜖3 = 𝜉2 − 2𝜖1 − 2𝜖2 . (34)

Thus, we can write (25b) as

¤𝜉1 = −𝜉1 + 𝜉2 − 𝜖1 (35)

In the (𝜖1, 𝜉1, 𝜉2) coordinates, the linear system (25) can be represented as

¤𝜖1 = 𝜉1 − 𝜖1 (36a)
¤𝜉1 = −𝜉1 + 𝜉2 − 𝜖1 (36b)
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¤𝜉2 = −2𝜉1 + 2𝜉2 − 2𝜖1 + 𝑤 (36c)

Finally, we consider the quadratic Lyapunov function

𝑃(𝜖1, 𝜉1, 𝜉2) =
1
2

(
𝜖21 + 𝜉

2
1 + 𝜉

2
2

)
. (37)

A simple calculation gives
¤𝑃 = −𝜖21 − 𝜉

2
1 − 𝜉

2
2 + 𝜉2(−𝜉1 + 3𝜉2 − 2𝜖1 + 𝑤). (38)

Thus, we take
𝑤 = 𝜉1 − 3𝜉2 + 2𝜖1 − 𝐾𝜉2 (𝐾 > 0). (39)

Substituting the value of 𝑤 from (39) into (38), we get
¤𝑃 = −𝜖21 − 𝜉

2
1 − (1 + 𝐾)𝜉22 (40)

which is quadratic and negative definite on R3.
Hence, byLyapunov stability theory, the system (15) is globally asymptotically

stable.
Simplifying (39), we can write 𝑤 as

𝑤 = −3𝜖1 − 5𝜖2 − 3𝜖3 − 𝐾𝜉2 (𝐾 > 0). (41)

Substituting from (41) into (14) and simplifying, we get the required backstepping
control law as

𝑣 = (𝑎 − 3)𝜖1 + (𝑏 − 5)𝜖2 − 2𝜖3 + 𝑧1𝑧2 − 𝑦1𝑦2 + 𝑐(𝑧21 − 𝑦
2
1)

− 𝑧22 + 𝑦
2
2 − 𝐾𝜉2 , (42)

where 𝐾 > 0 and 𝜉2 = 2𝜖1 + 2𝜖2 + 𝜖3.
Thus, we have established the following result.

Theorem 1 The backstepping control law defined by (42) achieves global asymp-
totic synchronization between the jerk systems (10) and (11) for all initial states
𝑦(0), 𝑧(0) ∈ R3. 2

For MATLAB simulations of the backstepping control system, we take the pa-
rameter values of the jerk systems (10) and (11) as in the chaotic case, viz.
(𝑎, 𝑏, 𝑐) = (2, 0.1, 0.2). We take the control gain as 𝐾 = 20.
The initial state of the jerk system (10) is taken as

𝑦1(0) = 2.3, 𝑦2(0) = 5.8, 𝑦3(0) = 4.9. (43)

The initial state of the response system (11) is taken as

𝑧1(0) = 7.6, 𝑧2(0) = 0.4, 𝑧3(0) = 2.7. (44)

Figure 18 shows that the proposed backstepping control achieves asymptotic
synchronization between the chaotic jerk systems (10) and (11).
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Figure 18: Time-history for the synchronization errors 𝜖1, 𝜖2 and 𝜖3

7. Circuit Simulation of the New Jerk Chaotic System

This section describes the circuit simulation in MultiSim for the new jerk
chaotic system (3) proposed in this work. Thewhole circuit presented in Figure 19
consists of three channels to implement the integration of the three variables
𝑦1, 𝑦2, 𝑦3, respectively. Applying the Kirchhoff laws, the circuit presented in
Figure 19 is described by the following equations:

¤𝑦1 =
1

𝐶1𝑅1
𝑦2 ,

¤𝑦2 =
1

𝐶2𝑅2
𝑦3 ,

¤𝑦3 = − 1
𝐶3𝑅3

𝑦1 −
1

𝐶3𝑅4
𝑦2 −

1
𝐶3𝑅5

𝑦3

− 1
10𝐶3𝑅6

𝑦1𝑦2 −
1

10𝐶3𝑅7
𝑦21 +

1
10𝐶3𝑅8

𝑦22 .

(45)

Here, 𝑦1, 𝑦2, 𝑦3 correspond to the voltages on the integrators U1A, U2A,
and U3A, respectively. The values of components in the circuit are selected as:
𝑅3 = 𝑅7 = 50 kΩ, 𝑅6 = 𝑅8 = 10 kΩ, 𝑅4 = 1 MΩ, 𝑅1 = 𝑅2 = 𝑅5 = 𝑅9 = 𝑅10 =
𝑅11 = 𝑅12 = 100 kΩ, 𝐶1 = 𝐶2 = 𝐶3 = 1 nF. MultiSIM outputs of the circuit (45)
are presented in Figure 20. A good qualitative agreement between the MATLAB
simulations of the jerk system (3) and circuit implementation is observed.
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Figure 19: Circuit design of the new chaotic system (45)

Figure 21 demonstrates spectral Fourier analysis for chaotic signals. The
frequency range is 5 kHz. For 𝑦1 and 𝑦2 coordinates spectral harmonics are at the
level of “–20 dB”. For 𝑦3 coordinate spectral harmonics are at the level of “–15
dB”. It corresponds to a prevailing frequency of the implementing oscillating
loop. The power spectra of the produced signals are broadband, typical of chaotic
signals.
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a)

b)

c)

Figure 20: Chaotic attractors of new chaotic system (45) using MultiSim circuit simula-
tion: a) 𝑦1 − 𝑦2 plane, b) 𝑦2 − 𝑦3 plane and c) 𝑦1 − 𝑦3 plane
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a)

b)

c)

Figure 21: The spectral distribution of new chaotic system (45): a) 𝑦1 signal, b) 𝑦2 signal
and c) 𝑦3 signal
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8. Conclusions

Anew dissipative jerk chaotic systemwith three quadratic termswas proposed
in this research paper. A detailed bifurcation analysis with respect to the variation
of the three parameters for the new jerk system was exhibited. We also showed
that the proposed system exhibits multistability with coexisting attractors. We
also described a backstepping control-based synchronization design for a pair of
new jerk chaotic systems. Finally, we used MultiSim to build a circuit simulation
model for the new jerk system.
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