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Abstract. Since electrical drives have become an integral element of any industrial sector, power quality difficulties have been well expected,
and delivering genuine quality of the same has proven to be a difficult challenge. Since power quality relies on load side non-linearity and
high semiconductor technology consumption, it is a serious concern. The efficiency of the drive segment employed in the sector is increasingly
becoming a topic of discussion in today’s market. Numerous reviews of available literature have found problems with the load side as well as
with electrical drive proficiency, as a result of the issues listed above. A high level of power quality vulnerability is simply too much. Even
the most advanced technology has its limits when it comes to drive operation. Research on the grid-side quality issues of electrical drives is the
focus of this article. After field testing of grid power quality, each parametric analysis is performed to identify crucial parameters that can cause
industrial drives to fail. Based on this discovery, a machine learning strategy was developed and an artificial intelligence technique was proposed
to administer the fault deterrent prediction algorithm. An accurate forecast of anomalous behavior on the grid side ensures safe and dependable
grid operation such that shutdown or failure probability is minimized to a greater extent by the results. Additional information gleaned from
historical data will prove useful to equipment manufacturers in the future, providing a solution to this problem.
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1. INTRODUCTION
Industrial production technology is constantly evolving, and ap-
pealing innovation paves the way for continuous improvement
in the prime mover segment. Because its operation is dependent
on load classification, the operating voltage value must also be
considered in this regard. Every industry on the planet that pro-
duces goods and services for society is heavily reliant on elec-
tricity. When looking at electricity in detail, it is frequently as-
sociated with a slew of quality issues due to external load fac-
tors such as real and reactive power issues, harmonics effects,
non-linearity in the load, fundamental frequency disturbances,
and the changing load nature of many large-scale industries.
Among these concerns are industries that operate at varying
voltage levels based on their application and load demand, as
determined by local government for their production.

As set out in the rules and regulations of the governing
body, manufacturers of electrical drive equipment go around the
world to deliver their products in accordance with local needs
and voltage standards that range up to 690 V [1]. Attempts are
also being made in the electricity system to provide network
stability, which is frequently disrupted due to abrupt load de-
mand and its consequences for the interconnected system [2].
Artificial neural network (ANN) power quality management
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approaches are also offered to alleviate and increase the per-
formance of the same [3].While drives are strictly conforming
to standards at the supply end, the specification for the equip-
ment being operated is frequently not met, resulting in poor
power quality. When it comes to safety and performance, the
key question is whether electric drives meet the relevant stan-
dards. There are times when industrial drives do not work even
though they have modern technology systems built into them by
the equipment manufacturers. This is because of factors such
as voltage and voltage aspects that do not meet IEC and IEEE
standards [4, 5].

The required range of grid side voltage values and, of course,
the undesirable power characteristics at any electrical drive in-
put section have been discussed in this article. This has been
accomplished by collecting grid side voltage variations over
indefinite time sequences and analyzing the performance and
available prediction methodology using artificial intelligence.
While well-known neural network and fuzzy techniques can
also be used for this study’s purpose, the current in-demand
technology takes a more direct approach to the prediction
scheme under consideration, which performs better in every as-
pect [6,7]. After merging performance enhancement and safety
issues into the same system, the neuro-fuzzy approach was un-
able to predict, as artificial intelligence does, by means of its
own learning ethos [8–10]. In the age of Industry 4.0, equip-
ment manufacturers are more concerned with safety and pro-
tection than ever before, owing to the changing nature of load,
which results in damage or, in severe situations, failure. Thus,
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artificial intelligence may prove the most effective approach to
be used in this field of research, in conjunction with in-built
fault patterns recorded by the algorithm’s own learning process.

2. SURVEY ON PARAMETRIC ISSUES IN GRID’S POOR
QUALITY

Having conducted a study on a wide variety of industrial chal-
lenges, the primary factor to be considered is assuming that
nominal voltage and associated parametric concerns are de-
tected, and then moving on to additional system bottlenecks.
The primary factor in this regard is a lengthy debate, which re-
sults in sounding studies, which are critical given that the input
side voltage and other grid characteristics are not in accordance
with IEC and IEEE standards [4, 5]. The restraint imposed by
bad grid signal circumstances on the drive system results in
temporary or permanent breakdowns or degraded scenarios in-
side the drive system. By accounting for the quantity and du-
ration of a particular element on the input source side, one
can gain insight into the drive system’s behavior [4]. Sagging
scenarios can be characterized according to the way the power
transformer is energized, the existence of a large capacity load,
the presence of illumination, the presence of short circuit con-
ditions, or any combination of the above [11]. Thermal consid-
erations also have an effect on the drive system’s performance,
which has an effect on the insulation of AC machines and thus
on their reliability. Thus, a VFD must be selected in line with
the specification, as it is critical for resolving the aforemen-
tioned concerns on both the drive and the AC machine [12].
This article [13] cites the GOST scheme of detection with re-
gard to various power quality issues such as swell, sag and dis-
ruptions using root mean square of that particular signal over
the stipulated time frame. Having the said methods utilized, the
adverse event listed can be minimized and, in turn, it reduces
the damage in terms of financial aspects referring to the GOST
scheme for detecting various power quality concerns such as
swell, sag and disruptions by calculating the root mean square
of the signal throughout the specified time period. By using the
aforementioned approaches, the undesirable events listed can
be minimized, hence minimizing the financial impact [13].

AC induction machines with capacitor banks are particularly
difficult to interpret when defined par voltage levels fall below
par value, i.e. when they are between 10% and 90% of the stan-
dard circumstances, which will last for less than a minute for
even half the cycle in the signal value. Despite the inclusion of
a capacitor bank in the network, it was unable to survive the
transients caused by the triggered poor power quality events.
Capacitor bank’s primary role is to inject reactive power cor-
rection, but they fail to do so since the surge in voltage levels
associated with high reactive power flaws is the same [14]. This
investigation of consumer items leads to either a breakdown,
a reduction in the useful life of the object or to rendering its
use more difficult. When consumer items receive a substandard
signal from the grid, they also incur stress, and manufacturers
must take this into account throughout the design process [15].
This aspect is extremely time-consuming in the major indus-
trial sector, especially when dealing with three phase system

conditions, where it is nearly impossible to maintain compa-
rable phase voltages. According to NEMA regulations, when
phase voltage varies by a significant amount, motor efficiency
falls as well [16]. Recouping procedures were employed to off-
set the drooping impact in these cases, but the payback was only
around 50% [17].

This study article [18, 19] reaffirms torque management of
electrical machines utilizing vector control methods during
fault operation, thus mitigating system failures, and then it pro-
poses a control scheme for magnetic bearings in high-speed ro-
tating machines using predictive algorithms. This work [20] re-
iterates the importance of the sag state and analyzes the numer-
ous energy losses associated with it. Standard root mean square
disturbances are regarded to be the primary cause of sagging
circumstances, which also affect industrial drives, and remedies
to these concerns were presented. This is demonstrated in the
study by controlling voltage variation at the main end or by em-
ploying the DVR method, or by limiting the rise in current value
in the AC induction machine caused by maximum torque reduc-
tion. There has been a noticeable effect on power grid networks
as a result of the increasing use of power electronics, which
introduces significant harmonic effects into the networks. Di-
verse topologies were developed by equipment manufacturers
with the goal of reducing harmonic generation. Despite these
efforts, the same has a disproportionate influence on the grid
network, as defined by IEC [21]. As a result of these network
effects, thermal stress is increased at the drive section, which re-
sults in sparking at the AC machine shaft. Due to the sustained
increase in the heating effect caused by the injected current har-
monics, the motor performance will undoubtedly be put to the
test. The primary variables affecting this issue are voltage and
current distortion, common mode voltage, and the essential de-
sign considerations for production. Thermal and common mode
voltages are regularly checked in this regard to ensure that the
drives function within safe limits [22, 23]. The industry’s pri-
mary parameters for either the drive or motor sector emerge ow-
ing to these voltages being either over or below the par range of
values from the power grid, which proves to be a cause of great
discomfort for drive performance [24, 25].

3. IMBALANCED GRID VOLTAGE IN THE INDUSTRY –
A VITAL HARMONIZING STUDY

Because grid voltage levels are a critical factor in the major-
ity of problems associated with industrial drives, and because
a better understanding of the same needs to be gained and
sparse unknown hidden issues related to grid side power qual-
ity need to be identified, an industrial environment is equipped
with a PQube meter. Different voltage patterns can be explored
using this test setup for the specified testing period, which
is maintained on the input side of the industrial drives. Af-
ter months of observation, it is determined that the input side
source voltage continuously provides the primary emphasis in
various businesses. Any bad event in this regard has a detrimen-
tal effect on the performance of the drive system. According to
the events recorded during the testing phase, the drive section
received power of largely nominal and barely acceptable qual-
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ity, although at times it detected minor grid side power glitches,
which are addressed in the next section. Over the course of
a month of evaluation of this testing phase, voltage frequently
varies between the typical value of 415 V root mean square,
as demonstrated decisively by the following table of drive op-
erating duration vs. rate of voltage recording patterns. Table 1
shows the rate of operation of an electrical drive in terms of in-
dustrial voltage levels, whereas Table 2 shows the same in terms
of fundamental cycle rate in terms of line to line voltage levels.

Table 1
Electrical drives power quality observation-line to line voltage values

Percentage line to line RMS voltage

Percent of time Between

50% 408 V to 416.8 V

95% 403.2 V to 422.4 V

99% 401.6 V to 423.2 V

99.50% 401.6 V to 423.2 V

Table 2
Events occurrence during the testing phase

Channel Min Avg Max

L–L RMS
RMS (10-cyc) 394.0 V 412.4 V 423.9 V

RMS 1/2 (1-cyc) 372.4 V – 424.1 V

L1-L2 RMS 1/2 (1-cyc) 373.1 V 412.7 V 424.1 V

L2-L3 RMS 1/2 (1-cyc) 372.4 V 412.4 V 423.5 V

L3-L1 RMS 1/2 (1-cyc) 373.0 V 412.2 V 423.6 V

The test device normal and abnormal behavior observation
along with sample data is discussed below. The monitoring of
drive operation during the testing phase is depicted in Fig. 1.
As illustrated by the graph with the provided date, it is diffi-
cult to detect any anomalous voltage pattern. Similarly, when no
aberrant behavior occurs, Figure 2 illustrates the instantaneous
power flicker impression on the testing equipment, also known

Fig. 1. Normal range of voltage during drive operation

as harmonic distortion with respect to voltage. In comparison to
Fig. 2, which is a non-committal representation of abnormal be-
havior, Fig. 3a illustrates recorded patterns relating to the same
as in the preceding figure when unwanted events occur in the
drive system. As illustrated in Fig. 3a, the irregular patterns are
denoted by “yellow flag events”. Figure 3a illustrates an ad-
verse event that happened between 10:00 a.m. and 12:00 p.m.
on the stated day (01/11/2017), while Fig. 3b illustrates addi-
tional metrics (voltage distortion and power flicker) observed
on the same date. The harmonic content of the three phases is
depicted in Fig. 4 during the event trigger phase. The test phase

Fig. 2. Pretended voltage side harmonics and flickering effect during
event non-occurrence phase

a)

b)

Fig. 3. Event triggering phase of electrical drives: a) RMS L–L
voltage graph, b) voltage THD & power flickers
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analyzes and visualizes the harmonic content dataset obtained
during the same. As observed in the picture, the H1 content rises
to an extremely high value when compared to the remainder of
the harmonic content. Figure 5 illustrates the same as recorded
by the test instrument, comparing fundamental harmonic con-
tent H1 to other harmonic contents at a voltage of 239 V. Fig-
ure 6 depicts the under-frequency pattern observed during the
same time period, which lasted 131.25 s, and the conclusive
graphs for the references are presented below. Figure 6 illus-
trates an under-frequency occurrence that occurs during drive
operation.

Fig. 4. Three phase harmonic content during event trigger phase

Fig. 5. Total harmonic distortion patterns recorded during drive
operation

Table 3 shows the three-phase voltage minimum and max-
imum values during the flag event occurrence of under-
frequency behavior. Figures 7 and 8 show the recorded sig-
nal patterns when under-frequency and harmonic content period
exists. The x axis of both graph shows the start and end of flag
event in terms of milliseconds and the y axis presents the line-
to-line voltage value during the same instant. From the graph it
is evident that there is absence of signal distortion both during
the under-frequency period, as shown in Fig. 8, and during the
high harmonic content, as shown in Fig. 9.

Fig. 6. Under-frequency event during drive operation

Table 3
Grid parameter vs. under-frequency impact during drive operation

Channel Min Max
Min during
event only

Max during
event only

L1-L2 406.0 V 409.6 V 406.0 V 409.6 V

L2-L3 406.9 V 410.3 V 406.9 V 410.3 V

L3-L1 406.0 V 409.6 V 406.0 V 409.6 V

L1 Amp 67.3 A 72.8 A 67.3 A 72.0 A

L2 Amp 70.3 A 76.0 A 70.3 A 75.5 A

L3 Amp 72.5 A 81.9 A 72.5 A 81.9 A

E Amp 8.2 A 11.4 A 8.4 A 11.4 A

Frequency 49.748 Hz 49.856 Hz 49.748 Hz 49.852 Hz

Power 46.2 kW 49.6 kW 46.2 kW 49.4 kW

Fig. 7. Under-frequency signal patterns during drive operation

Similarly, additional examination of the test data reveals that
at some point in time, unexpected events happen, disrupting sig-
nal characteristics such as voltage and its magnitude values in
a very short period of time. This behavior is readily apparent in
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Fig. 8. High harmonic distortion patterns during drive operation

Fig. 9. Recorded voltage range for continuous cycles (10 cycles)
during drive operation

Fig. 9, which depicts the amount of high-quality power deliv-
ered to the drive system over the course of the 24-hour testing
period. The time frame count is determined by grid voltage. On
the testing apparatus, a continuous count of up to ten funda-
mental cycles is considered a single count. Although voltage
as a critical parameter is rarely observed under or throughout
a range of magnitudes continuously for more than 10 cycles,
but it is frequently observed in such or similar time spans, as
illustrated in Fig. 9.

A large amount of data is collected and it is inferred from
the field data that any particular phase voltage may fall below
par score even for a fractional period of time, say for half of
the cycles, to fewer than ten cycles of signal attributes. The
preceding graphic clearly illustrates how any single-phase volt-
age is degraded in an unpredictable manner for a brief time
of less than ten cycles before resuming its usual magnitude.
As a result of these abrupt degradations, the rate of electrical
drive system problems continues to increase. When only this
trigger defect is evaluated, a different time range for the test-
ing pattern is shown in Fig. 9. On the basis of this data, it is

clear that one phase is subjected to extreme below-voltage con-
ditions and approaches a null value. As a result of these oc-
currences at the drive system’s input section, it frequently ex-
periences above-rated current draw possibilities, affecting the
drive’s performance or even failure. The emergence of these
incidents is undoubtedly an ambiguous issue. A potential sce-
nario for this problem’s resolution will be accessible via arti-
ficial intelligence tools. To obtain a conclusive key parameter
for AI approaches, the other parameters were analyzed as well,
and it was discovered that no abnormal or deviating patterns
were recorded from the drive parametric, such as current, car-
bon monoxide emission or harmonic distortion. Because of its
shortcomings, it does not appear to be adequate for repairing
the drive system. As illustrated in Fig. 7 and 8, it just records at
some point in time and causes a minor power quality problem,
although this has a considerably smaller impact on the system
than voltage interruption does. To maintain a check and balance
in various areas of the electrical drive system, artificial intelli-
gence determines the optimal technique, allowing us to make
modern predictions based on historical data.

4. A CASE STUDY OF FAULT DETERRENT INTELLIGENT
PREDICTION ALGORITHM (FDIPA)

Through field testing data, it is possible to observe and train
a machine learning model for fault prediction in the grid net-
work, as depicted in the graphs above. Data will be analyzed
with real-time data once the training phase is completed, uti-
lizing various machine algorithms. Using this method, the pro-
jected outcome can be discussed and used to improve the arti-
ficial intelligence strategy for incorporation in electrical drives.
Figure 10 shows that the machine learning algorithm can iden-
tify anomalous behavior in the grid network and drive sys-
tem based on the outcomes of its training, as evidenced by the
anomalous behavior.

Fig. 10. Probability of flag occurrence during the testing phase
using FDIPA

In Figure 10, we see that during drive operation, par voltage
values predominate, yet there are periods when they dip below
par value. The graph shows the time-varying incidence of un-
usual occurrences. Figure 11 depicts the potential training out-
put of prediction systems in addition to what has already been
mentioned.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 3, p. e141180, 2022 5



Vishnu Murthy K. and Ashok Kumar L.

Fig. 11. FDIPA training outcome with respect to past data analysis

The severe dip in signal characteristics shown in Fig. 12 in-
dicates the presence of a defect, and this is corroborated by the
results of the field test. Prediction patterns are discovered by an
artificial intelligence algorithm based on previously recorded
data. The chart presents a dig in their spike wave; a sag condi-
tion prevails in the network which might affect the performance
of the drive or even cause a breakdown. From the comparison,
it is clear that when sag occurs, the other parameter shows no
abnormal response to the sag in the grid structure. Also, other
parametric comparison with voltage as a critical parameter is
discussed in further slides for the purposes of analysis.

Fig. 12. Prediction analysis of FDIPA with regard to parametric
patterns

Furthermore, closer examination of the other metrics, such
as total harmonic distortion, current and frequency, reveals no
anomalous behavior when the sag or swell event happens. Fig-
ure 13 denotes comparison between voltage and frequency be-
havior during the test phase. Based on the graph inference, it is
clear that during the nominal value of the voltage, frequency
remains undisturbed. Meanwhile during sag conditions, fre-
quency remains within its nominal range. Since frequency is
scattered both during normal and flag times, it is conclusive to
consider only the voltage dataset.

Figure 14 depicts a comparison between voltage and voltage
distortion (THD) behavior during the test phase. Inferring from
the graph, it is observed that during the nominal value of the
voltage and also at abnormal times, the distorted values remain
scattered in the same range. Distinguishing behavior is not ob-
served in this outcome, either. Thus it must be concluded that
voltage distortion cannot be the critical parameter as compared
with voltage, either.

Fig. 13. FDIPA prediction sequence behavior with respect to fre-
quency

Fig. 14. Fault prediction phase vs. THD voltage behavior in IDPMA

Figure 15 depicts a comparison between voltage and current
behavior during the test phase. Taking a look at the graph, here,
too, the Y axis (i.e. current) is scattered depending on the load.
During the nominal range of voltage, current varied from min-
imum to maximum. During abnormal times, current turns out
to be in the very minimum range of values. From the graph, it
is concluded that under the voltage sag conditions, the current
goes to bare, safer values but this cannot be considered as part
of prediction analysis as during normal times, too, the current
finds itself within the minimal range.

Fig. 15. Fault prediction phase vs. current behavior in IDPMA

On the basis of the training dataset, which is depicted in
Figure 16, a comparative analysis of machine learning algo-
rithms was performed. AdaBoost, random forest, nearest neigh-
bors, and naive Bayes are the training algorithms used in this
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Fig. 16. Comparative analysis of different machine learning algorithm in IDPMA

work for case study reasons. Although the former three algo-
rithms are capable of detecting fault occurrences, AdaBoost
and random forest algorithm training achieve lower accuracy
than nearest neighbors due to the fact that out of the total faults
recorded, as shown in the graph, AdaBoost and random for-
est algorithm training achieve lower results than nearest neigh-
bors. Meanwhile, naive Bayes exhibits significantly different
patterns of prediction than the former three algorithm training
results. The reason why naive Bayes does not fit is because it
detects even very slight changes in voltage magnitude. Addi-
tionally, the voltage does not maintain a consistent value over
time, and some allowable fluctuations make this unsatisfactory.
Thus, based on the training set results, it is determined that near-
est neighbors and the other two algorithms achieve a more sat-

Fig. 17. Total fault occurrence in grid network during testing phase of
electrical drives

isfactory outcome when any abnormal behavior occurs in the
power system network or in the electrical drive system, as in-
dicated in Fig. 17 (fault occurrence moment) in an industrial
setting. As per the data obtained from Figs. 16 and 17, predic-
tion accuracy reaches an almost 80% outcome. By implement-
ing the aforementioned machine learning algorithm, electrical
drives will be able to detect the defect, and equipment man-
ufacturers will be able to enhance their product options using
Industry 4.0 technology, thereby preventing any faults from oc-
curring.

5. CONCLUSIONS
The quality of the grid network fed to electrical drives is exam-
ined using the various instructions obtained from the machine
learning algorithm. Out of the several available algorithms, the
four techniques determined to be the best fit for this application
and case study have been reviewed in detail, with each algo-
rithm displaying its own distinct prediction findings. Nearest
neighbors achieve the highest accuracy and provide approxi-
mately 80% present prediction accuracy based on the total fault
test data fed into the training set, as illustrated above. Because
the prediction is made using only the voltage value obtained at
each instant of a five-second time difference, if the prediction
scheme is implemented using this pro forma, the scheme will
be uncertain in some cases since live data streaming will result
in a prediction but with a delay in the result. This is because
the circumstances preceding and following the abnormal event
are perfectly typical. Thus, in order to obtain a more accurate
prediction well in advance of the occurrence, a slightly updated
algorithm is required, which can be accomplished as part of an
extended research project on the electrical inverter drive sys-
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tem. By incorporating this training into the inverter drive algo-
rithm, fault identification can be performed easily and on a daily
basis, allowing for additional upgrades for the manufacturers.
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