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Abstract: The model predictive current control (MPCC) of the permanent magnet syn-
chronous motor (PMSM) is highly dependent on motor parameters, and a parameter mis-
match will cause the system performance degradation. Therefore, a strategy based on an
internal model control (IMC) observer is proposed to correct the mismatch parameters.
Firstly, based on the MPCC strategy of the PMSM, according to the dynamic model of the
PMSM in a rotating orthogonal coordinate system, 𝑑-axis and 𝑞-axis current IMC observers
are designed, and the stability derivation is carried out. It is proved that the observer can es-
timate 𝑑-axis and 𝑞-axis disturbance components caused by a parameter mismatch without
static error. Then, the estimated disturbance component is compensated for by the reference
voltage prediction expression. Finally, the effectiveness of the proposed strategy is verified
in two different conditions. The experimental results show that the proposed control strategy
can effectively compensate for the parameter mismatch disturbance in MPCC for PMSM,
improve the dynamic and static performance of the system, and improve the robustness of
the system.
Key words: internal model control observer, MPC, PMSM, predictive current control

1. Introduction

Permanent magnet synchronous motors (PMSMs) are highly efficient, energy-saving, struc-
turally diverse, and high in starting torque, which explains their extensive applications in various
industries and fields, such as petroleum, rail transit, and household appliances [1–3]. Currently,
model predictive control (MPC) is a research focus in motor control due to its flexible principle of
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optimality, good robustness, and efficiency when it comes to solving nonlinear and multivariable
problems [4–6].

MPC for the PMSM is a control algorithm that is significantly dependent on parameters.
A model mismatch will affect the precision and accuracy of motor control, causing calculation
errors in the time of vector effects, among many others [7–9]. At present, to address the problem
of degraded MPC strategic performance arising from a model mismatch, many scholars have
proposed a number of countermeasures. In [10], authors used identified motor parameters to
correct parameters of the predictive model in real time. This measure introduces ordinary least
squares (OLS) to identify the motor parameters, but OLS computation is very time consuming,
which makes it unsuitable for real-time identification [11, 12]. In [13], authors converted OLS
into a recursive algorithm allowing it to store only a part of the data for identification, thus making
real-time identification achievable. Yet, the recursive least squares (RLS) algorithm is poor in
tracking the time-varying environment, not to mention that it is vulnerable to noise, which may
lead to a larger error in model parameter estimation. Another alternative is to combine predictive
control with intelligent control. Predictive control based on neural network error correction
can better inhibit a model mismatch but tends to suffer from the slow convergence rates of
neural networks, preventing them from quick adaptation to environments with variable operating
conditions [14, 15]. The feedback compensation for error from a model mismatch by fuzzy
inference also offers a viable path [16, 17] but tends to be disadvantaged by a less systematic fuzzy
control design. The last countermeasure would be to perform an early estimation of predictive error
caused by a model mismatch, before including the corresponding error compensation in the MPC
strategy [18,19]. By building the error model of each step and the transitive relationship of errors,
independent error compensation schemes for each step can be developed. However, the estimation
of predictive error increases the system’s computation burden and reduces system efficiency.

To solve the problem of degraded predictive control performance caused by a motor model
mismatch, on top of the three-vector model predictive current control (MPCC) for the PMSM,
this paper proposes a model parametric mismatch countermeasure based on an internal model
control (IMC) observer [20]. To begin with, the IMC observer was designed according to the
dynamic model of the PMSM in a rotating orthogonal coordinate system. The stabilities of the
designed IMC observer on 𝑑-axis and 𝑞-axis currents were then derived and verified, proving the
effectiveness of the observer in estimating the component of parametric-mismatch-caused distur-
bance along the 𝑑 and 𝑞 axes. After that, the estimated disturbance component is compensated
for by the reference voltage prediction expression. In the end, the strategy is applied in the PMSM
three-vector MPCC. According to the experiment, the strategy herein can compensate for the
disturbance of a parametric mismatch in real time, thus improving the system robustness.

2. Three-vector MPCC of PMSM

2.1. Mathematical model of the PMSM
The model for the surface-mounted PMSM in the rotating orthogonal coordinate system (𝑑-𝑞)

can be expressed as: 
d𝑖𝑑
d𝑡

=
1
𝐿𝑑

(
𝑢𝑑 − 𝑅𝑖𝑑 + 𝜔𝑒𝐿𝑞𝑖𝑞

)
d𝑖𝑞
d𝑡

=
1
𝐿𝑞

(
𝑢𝑞 − 𝑅𝑖𝑞 − 𝜔𝑒𝐿𝑑𝑖𝑑 − 𝜔𝑒𝜓 𝑓

) , (1)



Vol. 71 (2022) Predictive current control for permanent magnet synchronous motor 345

where: 𝐿𝑑 and 𝐿𝑞 are the direct-axis and quadrature-axis components of stator inductance,
respectively, 𝐿𝑑 = 𝐿𝑞 = 𝐿; 𝑖𝑑 , 𝑖𝑞 , 𝑢𝑑 and 𝑢𝑞 are the direct-axis and quadrature-axis components
of the stator current and voltage, respectively; 𝑅 is the stator resistance; 𝜔𝑒 is the rotor electrical
angular speed, and 𝜓 𝑓 is the rotor permanent magnet flux linkage.

According to Expression (1), taking stator current as a variable of state, the state-space model
can be re-expressed as:

di
d𝑡

= A i + B u + C, (2)

where:

A =

[
−𝑅/𝐿 𝜔𝑒

−𝜔𝑒 −𝑅/𝐿

]
, B =

[
1/𝐿 0
0 1/𝐿

]
, C =

[
0

−𝜓 𝑓 𝜔𝑒/𝐿

]
,

i =
[
𝑖𝑑 , 𝑖𝑞

]𝑇
, u =

[
𝑢𝑑 , 𝑢𝑞

]𝑇
.

2.2. The principle of three-vector MPCC
The so-called “three vectors” refer to the three basic space voltage vectors, which include

two effective voltage vectors and one zero-vector. The effective voltage vectors are (100), (110),
(010), (011), (001) and (101), while the zero-vectors are (000) and (111).

Figure 1 is the structure diagram of the three-vector MPCC of the PMSM, showing mainly
the predictive current, calculation of time of vector effect, value function optimization and other
modules. The given current in the system is 𝑖∗

𝑑
= 0; the given current 𝑖∗𝑞 is the output of a velocity

loop PI controller. Among others, 𝑢𝑖 and 𝑢 𝑗 are two effective voltage vectors, which, together
with the zero-vector, form the resultant voltage vector 𝑢𝑑𝑞-control variable of the PMSM.
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Fig. 1. Block diagram of the three-vector-based model predictive current control system

2.3. Predictive current
By discretizing the equation of state (2) with the Euler method, the expression of delay

compensation of 𝑑-axis and 𝑞-axis currents can be expressed as:

i𝑝 (𝑘 + 1) = A(𝑘)i(𝑘) + B(𝑘)u(𝑘) + C(𝑘), (3)
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where:

i𝑝 (𝑘 + 1) =
[
𝑖
𝑝

𝑑
(𝑘 + 1), 𝑖𝑝𝑞 (𝑘 + 1)

]𝑇
, i(𝑘) =

[
𝑖𝑑 (𝑘), 𝑖𝑞 (𝑘)

]𝑇
, u(𝑘) =

[
𝑢𝑑 (𝑘), 𝑢𝑞 (𝑘)

]𝑇
,

A(𝑘) =
[
1 − 𝑇𝑠𝑅/𝐿 𝑇𝑠𝜔𝑒 (𝑘)
−𝑇𝑠𝜔𝑒 (𝑘) 1 − 𝑇𝑠𝑅/𝐿

]
, B(𝑘) =

[
𝑇𝑠/𝐿 0

0 𝑇𝑠/𝐿

]
, C(𝑘) =

[
0

−𝑇𝑠𝜓 𝑓 𝜔𝑒 (𝑘)/𝐿

]
.

In Formula (3), i(𝑘) is the sampled value of current in the 𝑘 th period; i𝑝 (𝑘 +1) is the predicted
value of current of the (𝑘+1)th period; 𝑇𝑠 is the sampling period; u(𝑘) is the sampled value of
voltage in the 𝑘 th period, which is worked out in the (𝑘−1)th period; 𝜔𝑒 (𝑘) is the sampled value
of rotor electrical angular speed in the 𝑘 th period.

The following is the computation formula for stator voltage applied onto surface-mounted
PMSMs at 𝑡 (𝑘 + 1) in the 𝑑 − 𝑞 rotating coordinate system using the deadbeat current control:

𝑢∗
𝑑
(𝑘 + 1) = 𝑅𝑖

𝑝

𝑑
(𝑘 + 1) + 𝐿

𝑖∗
𝑑
− 𝑖

𝑝

𝑑
(𝑘 + 1)
𝑇𝑠

− 𝜔𝑒 (𝑘)𝐿𝑖𝑝𝑞 (𝑘 + 1)

𝑢∗𝑞 (𝑘 + 1) = 𝑅𝑖
𝑝
𝑞 (𝑘 + 1) + 𝐿

𝑖∗𝑞 − 𝑖
𝑝
𝑞 (𝑘 + 1)
𝑇𝑠

+ 𝜔𝑒 (𝑘)𝐿𝑖𝑝𝑑 (𝑘 + 1) + 𝜔𝑒 (𝑘)𝜓 𝑓

. (4)

In two-phase stationary coordinate system, determine the sector 𝑛 where the complex vector
is located, and calculate the position angle 𝜃𝑝 of the complex vector in the sector. The relationship
expression between 𝑛 and 𝜃𝑝 is

𝜃𝑝 = arcsin
(
𝑢𝛽

𝑢𝛼

)
− (𝑛 − 1)𝜋

3
. (5)

The position angle of the reference voltage vector is shown in Fig. 2.
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Fig. 2. Schematic diagram of reference voltage vector position angle
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For convenience, note

|𝑢∗ | =
√︃
𝑢∗2
𝑑
+ 𝑢∗2𝑞 ,

and the expression of reference voltage vector amplitude correction 𝑢∗
𝑑𝑞

is



𝑢
opt
𝑑

=



𝑉dc𝑢
∗
𝑑

√
3 sin

( 𝜋
3
+ 𝜃𝑝

)
|𝑢∗ |

, |𝑢∗ | > 𝑉dc
√

3 sin
( 𝜋
3
+ 𝜃𝑝

)
𝑢∗
𝑑
, 0 < |𝑢∗ | ≤ 𝑉dc

√
3 sin

( 𝜋
3
+ 𝜃𝑝

)
𝑢

opt
𝑞 =



𝑉dc𝑢
∗
𝑞

√
3 sin

( 𝜋
3
+ 𝜃𝑝

)
|𝑢∗ |

, |𝑢∗ | > 𝑉dc
√

3 sin
( 𝜋
3
+ 𝜃𝑝

)
𝑢∗𝑞 , 0 < |𝑢∗ | ≤ 𝑉dc

√
3 sin

( 𝜋
3
+ 𝜃𝑝

)
. (6)

𝑢
opt
𝑑

and 𝑢
opt
𝑞 are the voltage vectors after amplitude correction. If they are taken as the given

voltage of the inverter, the actual voltage of the inverter is 𝑢opt
𝑑

and 𝑢
opt
𝑞 . The two basic voltage

vectors and zero vectors adjacent to the sector 𝑛, where the reference voltage complex vector is
located are the three vectors required for control. Note

|𝑢 | =
√︂(

𝑢
opt
𝑑

)2
+
(
𝑢

opt
𝑞

)2
,

then the action time expression of the three vectors is



𝑡
opt
𝑖

=

√
3𝑇𝑠 |𝑢 | sin

( 𝜋
3
− 𝜃𝑝

)
𝑉dc

𝑡
opt
𝑗

=

√
3𝑇𝑠 |𝑢 | sin

(
𝜃𝑝

)
𝑉dc

𝑡
opt
𝑗

= 𝑇𝑠 − 𝑡
opt
𝑖

− 𝑡
opt
𝑗

. (7)

3. The three-vector MPCC with online model parameter correction

3.1. Design of IMC observer
Under actual working conditions, control systems face inevitable parameter disturbance, such

as model mismatch between the model of the control system and the actual system. Therefore, the
algorithm-based predictive trajectory may deviate from the actual trajectory of system operation,
potentially causing system performance degradation or even system instability. The following
part introduces an IMC-based observer to address the model parametric mismatch. Subject to
changes in actual motor parameters, the mathematical model of a surface-mounted PMSM can
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be re-expressed as:
d𝑖𝑑
d𝑡

=
1

(𝐿 + Δ𝐿)
(
𝑢𝑑 − (𝑅 + Δ𝑅)𝑖𝑑 + 𝜔𝑒 (𝐿 + Δ𝐿)𝑖𝑞

)
d𝑖𝑞
d𝑡

=
1

(𝐿 + Δ𝐿)
(
𝑢𝑞 − (𝑅 + Δ𝑅)𝑖𝑞 − 𝜔𝑒 (𝐿 + Δ𝐿)𝑖𝑑 − 𝜔𝑒 (𝜓 𝑓 + Δ𝜓 𝑓 )

) , (8)

where: 𝐿, 𝑅 and 𝜓 𝑓 stand for the model parameter of stator inductance, stator resistance and
permanent magnet flux linkage, respectively; Δ𝐿, Δ𝑅 and Δ𝜓 𝑓 are the corresponding deviation.

𝑓𝑑 and 𝑓𝑞 are defined to be the deviation of the rate of current change along the 𝑑-axis and
𝑞-axis, respectively, in the model mismatch system.

𝑓𝑑 = Δ𝐿
d𝑖𝑑
d𝑡

+ Δ𝑅𝑖𝑑 − 𝜔𝑒Δ𝐿𝑖𝑞

𝑓𝑞 = Δ𝐿
d𝑖𝑞
d𝑡

+ Δ𝑅𝑖𝑞 + 𝜔𝑒Δ𝐿𝑖𝑑 + 𝜔𝑒Δ𝜓 𝑓

. (9)

As such, Formula (8) can be simplified to:

d𝑖𝑑
d𝑡

=
1
𝐿

(
𝑢𝑑 − 𝑅𝑖𝑑 + 𝜔𝑒𝐿𝑖𝑞 − 𝑓𝑑

)
, (10)

d𝑖𝑞
d𝑡

=
1
𝐿

(
𝑢𝑞 − 𝑅𝑖𝑞 − 𝜔𝑒𝐿𝑖𝑑 − 𝜔𝑒𝜓 𝑓 − 𝑓𝑞

)
. (11)

In Formula (10), taking 𝑖𝑑 as the variable of state, the equation of state becomes:{
¤𝑥 = 𝑎𝑥 + 𝑏(𝑢 − 𝑑)
𝑦 = 𝑥

, (12)

where: 𝑥 = 𝑖𝑑 , 𝑎 = −𝑅

𝐿
, 𝑏 =

1
𝐿

, 𝑢 = 𝑢𝑑 + 𝜔𝑒𝐿𝑖𝑞 , 𝑑 = 𝑓𝑑 .
In Formula (12), factors 𝑎 and 𝑏 can be readily obtainable. The state estimation system of

the original system was then constructed to facilitate the acquisition of the original system’s
coefficient from the coefficient of state estimation. The state estimation equation is:{

¤̂𝑥 = 𝑎𝑥 + 𝑏(𝑢 − 𝑑)
𝑦̂ = 𝑥

, (13)

where 𝑥 and 𝑑 are the estimations of the variable of state 𝑥 and the estimation of the deviation 𝑑.
Assuming the error of the state variable 𝑥̃ = 𝑥 − 𝑥, then the error of deviation would be 𝑑 = 𝑑 − 𝑑.

By subtracting (12) from (13), the state equation with the error 𝑥̃ as the variable of state can
be expressed as: {

¤̃𝑥 = 𝑎𝑥̃ + 𝑏𝑑

𝑦 − 𝑦̂ = 𝑥̃
. (14)

The error 𝑑 is taken as a system input or control variable. Theoretically, when the initial value
of the original system is the same as that of the reconstructed system, 𝑥 = 𝑥 and 𝑑 = 𝑑. But in
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fact, it’s very hard to make sure their initial values are identical, i.e., 𝑥 ≠ 𝑥. When 𝑥 ≠ 𝑥, 𝑦 ≠ 𝑦̂.
Therefore, the feedback signal 𝑦̃ = 𝑦− 𝑦̂ is introduced to form a closed-loop system. According to
the design principle of IMC, a system whose reference input is equal to 0 can be designed, with
the following error 𝑒 of Formula (14) being:{

𝑒 = 0 − 𝑦̃

¤𝑒 = −¤̃𝑦 = −¤̃𝑥
. (15)

Introducing a new variable of state 𝑧 = ¤̃𝑥 to Formula (14), we have:

¤𝑧 = ¥̃𝑥 = 𝑎𝑧 + 𝑏
¤̃
𝑑. (16)

(15) and (16) constitute the state space equation group:[
¤𝑒
¤𝑧

]
=

[
0 −1
0 𝑎

] [
𝑒

𝑧

]
+
[
0
𝑏

]
¤̃
𝑑 → ¤𝑍 = A Z + B ¤̃

𝑑, (17)

where: A = [0, −1; 0, 𝑎], B = [0, 𝑏]𝑇 . In (14), rank[B AB] = 2, the rank of the matrix is
apparently equal to the number of rows, i.e., the system represented by (17) is fully controllable.
Feedback ¤̃

𝑑 = −KZ was then introduced to the randomly set eigenvalue of the system. In ¤̃
𝑑 = −KZ,

K = [𝑘1, 𝑘2], so that controlled Formula (17) may achieve asymptotical stability. According to
(15) and (16), the control variable ¤̃

𝑑:

¤̃
𝑑 = −𝑘1𝑒 − 𝑘2𝑧 = 𝑘1𝑥̃ − 𝑘2 ¤̃𝑥, (18)

where 𝑘1 and 𝑘2 are the parameters to be designed. The system properties can be modified by the
reasonable design of the values 𝑘1 and 𝑘2. When the sampling period 𝑇𝑠 of the control system is
negligible, assuming that the value of the parameter 𝑑 is constant, ¤𝑑 = 0, and Formula (18) can
be further expressed as:

¤̂
𝑑 = 𝑘1𝑥̃ − 𝑘2 ¤̃𝑥. (19)

The eigenvalue of the state feedback system can be obtained from the eigenfunction

det
[
𝑠I − (A − BK)

]
= 0.

Let the system eigenvalue be the eigenvalue of a typical second-order system

−𝜉𝜔𝑛 ± j𝜔𝑛

√︃
1 − 𝜉2 ,

where: 𝜁 is the damping ratio; 𝜔𝑛 is the undamped oscillating frequency. System performance
can be improved by selecting the appropriate 𝜁 and 𝜔𝑛 values. The eigenvalue can be further
determined to obtain the observer parameters 𝑘1 and 𝑘2:

𝑘1 = −𝜔2
𝑛

𝑏

𝑘2 =
𝑎 + 2𝜁𝜔𝑛

𝑏

. (20)
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Stability analysis
According to the principle of state feedback, Formula (17) is under the constraint of feedback

parametric Expression (19) [21]; when the system operation time 𝑡 → ∞, i.e., the system is at a
steady state, the stability value of the state vector 𝑍 in (17): 𝑍𝑠 →, therefore, the stability values
of the corresponding variables 𝑒 and 𝑧: 𝑒𝑠 →, 𝑧𝑠 →. According to (14)–(16), at a steady state,
the error of the state variable 𝑥̃𝑠 →, ¤̃𝑥𝑠 →. Substituting 𝑥̃𝑠 and ¤̃𝑥𝑠 → into (14), it can be learned
that at a steady state, the deviation error 𝑑𝑠 →, therefore, 𝑑𝑠 = 𝑑𝑠 = 𝑓𝑑 , i.e.,

¤̂
𝑓𝑑 =

¤̂
𝑑 = 𝑘1𝑥̃ − 𝑘2 ¤̃𝑥. (21)

3.2. Estimation of system parameters
Formulas (13) and (21) constitute the equation set of the 𝑑-axis current of the IMC ob-

server, i.e., 
𝑖𝑑 =

𝑇∫
0

−𝑅

𝐿
𝑖𝑑 + 1

𝐿

(
𝑢𝑑 + 𝜔𝑒𝐿𝑖𝑞 − 𝑓𝑑

)
d𝑡

¤̂
𝑓𝑑 = 𝑘1

(
𝑖𝑑 − 𝑖𝑑

)
− 𝑘2

(
¤𝑖𝑑 − ¤̂𝑖𝑑

) . (22)

From ¤𝑑 = 0, we have ¤̂
𝑑𝑠 = ¤𝑓𝑑 = 0, 𝑘1 ≠ 0 and 𝑘2 ≠ 0 in (22). Therefore, 𝑖𝑑 = 𝑖𝑑 , ¤𝑖𝑑 = ¤̂𝑖𝑑 .

Obviously, the IMC observer can be used to estimate the state variable of the original system
without the presence of static error.

Likewise, the 𝑞-axis current equation set of the IMC observer is similar to its 𝑑-axis counter-
part, specifically as follows:

𝑖𝑞 =

𝑇∫
0

−𝑅

𝐿
𝑖𝑞 + 1

𝐿

(
𝑢𝑞 − 𝜔𝑒𝐿𝑖𝑑 − 𝜔𝑒𝜓 𝑓 − 𝑓𝑞

)
d𝑡

¤̂
𝑓𝑞 = 𝑘1

(
𝑖𝑞 − 𝑖𝑞

)
− 𝑘2

(
¤𝑖𝑞 − ¤̂𝑖𝑞

) . (23)

Similarly, ¤̂
𝑑𝑠 = ¤𝑓𝑞 = 0, 𝑘1 ≠ 0 and 𝑘2 ≠ 0, therefore, 𝑖𝑞 = 𝑖𝑞 , ¤𝑖𝑞 = ¤̂𝑖𝑞 . According to the

above analysis, the IMC observer can be used to estimate 𝑑-axis and 𝑞-axis stator currents of the
motor and its rate of change under zero steady-state error. Figure 3 shows the structural diagram
of 𝑑-axis and 𝑞-axis stator currents of the motor, as estimated by the IMC observer.

Then, the expression of the disturbance component from the mismatch parameter should be:
𝑓𝑑 =

∫
𝑘1

(
𝑖𝑑 − 𝑖𝑑

)
− 𝑘2

(
¤𝑖𝑑 − ¤̂𝑖𝑑

)
d𝑡

𝑓𝑞 =

∫
𝑘1

(
𝑖𝑞 − 𝑖𝑞

)
− 𝑘2

(
¤𝑖𝑞 − ¤̂𝑖𝑞

)
d𝑡

. (24)

By compensating the disturbance component to the reference voltage Expression (4), the
revised computation formula for stator voltage at 𝑡 + 1 can be expressed as follows:

𝑢∗𝑑 (𝑘 + 1) = 𝑅𝑖
𝑝

𝑑
(𝑘 + 1) + 𝐿

𝑖∗
𝑑
− 𝑖

𝑝

𝑑
(𝑘 + 1)
𝑇𝑠

− 𝜔𝑒 (𝑘)𝐿𝑖𝑝𝑞 (𝑘 + 1) + 𝑓𝑑

𝑢∗𝑞 (𝑘 + 1) = 𝑅𝑖
𝑝
𝑞 (𝑘 + 1) + 𝐿

𝑖∗𝑞 − 𝑖
𝑝
𝑞 (𝑘 + 1)
𝑇𝑠

+ 𝜔𝑒 (𝑘)𝐿𝑖𝑝𝑑 (𝑘 + 1) + 𝜔𝑒 (𝑘)𝜓 𝑓 + 𝑓𝑞

. (25)



Vol. 71 (2022) Predictive current control for permanent magnet synchronous motor 351

di

d̂i


 1k

2k

1
s

1
L

1
s

R
L








d̂f

d e qu L i

d̂i


(a) IMC observer of 𝑑-axis current




1
s

1
L

1
s

R
L









qi

q̂i

q̂f

q d e feu L i  

q̂i

1k

2k

(b) IMC observer of 𝑞-axis current

Fig. 3. Structure diagram of 𝑑-axis and 𝑞-axis IMC observer

3.3. IMC observer-based countermeasure against model mismatch

Figure 4 shows the diagram of the IMC-observer-based countermeasure against the model
mismatch. Based on the sampled stator current, 𝑑-axis and 𝑞-axis currents can be obtained, while
the estimation disturbance caused by mismatched parameters can be acquired from the IMC
observer. The estimated disturbance could then be fed back to the MPC module to attain the
optimal switching tube state within a sampling period. In this way, the output current could be
pushed as close to the given current as possible.

Figure 5 shows the diagram of IMC-observer-based PMSM three-vector MPCC. Unlike
traditional PMSM three-vector MPCC systems, an online estimation disturbance was introduced
before computing the module at the time of effect, using the said estimation disturbance to correct
the model.
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3.4. Kalman filter system
In practical application, the estimation of motor stator current is often disturbed by the

internal and external boundaries, which cause the interference signal to be superimposed on the
useful signal, so it is necessary to eliminate or weaken the interference noise from the parameter
estimation data and extract the optimal parameter estimation. Therefore, the current estimation in
Formula (24) is obtained from the real-time observation data of the IMC observer and processed
by the Kalman filter.

Considering that the filter system has no control quantity, the discrete Kalman filter system
equation can be simplified to

𝑥𝑘+1 = A𝑥𝑘 + 𝑤𝑘 , (26)

𝑧𝑘 = H𝑥𝑘 + 𝑣𝑘 , (27)

where: 𝑥𝑘 is the parameter estimation vector of the discrete time series 𝑘; 𝑧𝑘 is the observation
vector of the discrete time series 𝑘; both matrix 𝐴 and matrix 𝐻 are the known square matrices;
vector 𝑤𝑘 and vector 𝑣𝑘 represent process noise and observation noise, respectively.
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It is assumed that the noise signal satisfies the white noise of normal distribution, i.e.,

𝑧𝑘 = H𝑥𝑘 + 𝑣𝑘 , (28)
𝑣𝑘 ∼ 𝑁 (𝑄, 𝑅), (29)

where the matrix Q is the process noise covariance and the matrix R is the observed noise
covariance. 𝑖−

𝑘
is defined as a priori estimate, that is, the parameter estimate obtained according

to the last online calculation result; 𝑖𝑘 is defined as a posteriori estimate, that is, the parameter
estimate obtained according to the current calculation results.

After setting the initial values of filtering and covariance of Kalman filter, the calculation
process can be divided into the following steps:

1. The a priori estimate 𝑖−
𝑘

of the time 𝑘 is calculated from 𝑖𝑘−1.

𝑖−𝑘 = A𝑖𝑘−1 . (30)

At the same time, the covariance matrix 𝑃̂−
𝑘

of 𝑖−
𝑘

is obtained.

𝑃̂−
𝑘 = A𝑃̂𝑘−1A𝑇 + Q. (31)

2. Calculate the optimal Kalman gain K𝑘 .

K𝑘 = 𝑃̂−
𝑘H𝑇

(
H𝑃̂−

𝑘H𝑇 + R
)−1

. (32)

3. The observation vector estimation of the time 𝑘 is calculated according to a priori estima-
tion 𝑖−

𝑘
.

𝑧−𝑘 = H𝑖−𝑘 . (33)

4. The difference between the parameter estimates 𝑧𝑘 and 𝑧−
𝑘

observed by the IMC observer is
calculated, and the a priori estimate 𝑖−

𝑘
is compensated for to obtain the a posteriori estimate

𝑖𝑘 , that is, the optimal parameter estimate.

𝑖𝑘 = 𝑖−𝑘 + K𝑘

(
𝑧𝑘 − H𝑖−𝑘

)
. (34)

5. Calculate the a posteriori covariance matrix 𝑃̂𝑘 .

𝑃̂𝑘 = (𝐼 − K𝑘H)𝑃̂−
𝑘 . (35)

4. Simulation results

In actual working conditions, rise in stator temperature boosts the stator resistance, rise in
stator current lowers the stator inductance, while prolonged motor operation may weaken the
permanent magnet flux linkage. To verify the effect of the proposed countermeasure in dealing
with a motor model mismatch, this paper carried out an experimental verification under two
operating conditions, each involving three different circumstances. The controlled object is a
surface-mounted PMSM, whose rated parameters are shown in Table 1. The parameters of IMC
observers for 𝑑-axis and 𝑞-axis currents are as follows: 𝑘1 = −32000, 𝑘2 = 50. The Kalman
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Table 1. Parameters of PMSM

Parameter Rating
Stator resistance/Ω 0.4578

Rotor inertia/kg·m2 1.469 · 10−3

Stator inductance/H 3.34 · 10−3

DC bus voltage/V 300

Flux linkage of permanent magnet/Wb 0.171

Rated speed/rpm 2300

Pole pair 4

Rated torque/N·m 14.2

filter system takes 𝑄 = 0.0003 and 𝑅 = 5. The a-phase current, 𝑑-axis current, 𝑞-axis current,
rotor speed and electromagnetic torque of the motor’s stator are denoted by 𝑖𝑎, 𝑖𝑑 , 𝑖𝑞 , 𝜔𝑟 and 𝑇𝑒,
respectively.

Condition 1: Motor running under steady-state operating conditions at a 1500 r/min rotational
speed against a 7 N·m given load torque. The sampling took place every 𝑇𝑠 = 100 μs.

The traditional three-vector MPCC’s controlled motor model adopts rated parameters. Exper-
imental waveforms of 𝑖𝑎, 𝑖𝑑 , 𝑖𝑞 , 𝜔𝑟 and FFT spectrum are as shown in Figs. 6(a)–6(e).

0
-5

-1
0

5
10

1 10 20 30 40 50




a
A

i

 mst

(a) a-phase current

-1
-0
.5

0
0.
5

1



d
A

i

0 10 20 30 40 50
 mst

(b) 𝑑-axis current

6
6.
5

5.
5

7
5




q
A

i

1 10 20 30 40 50
 mst

(c) 𝑞-axis current

1 10 20 30 40 50
 mst




m
in

r
r



15
00

14
99

15
01

(d) rotational speed

M
ag

(%
 )

Frequency(kHz)

1
5

1
0

5
0

0 2 4 6 8 10

(e) FFT spectrum of a-phase current

Fig. 6. Experimental waveform of three vector model predictive current control under rated motor parameters
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To simulate the actual circumstances of the model mismatch, the model rotor flux linkage
was set to 1.1 times the rated value, the model stator inductance to 2 times the rated value, and
the model stator resistance to 0.5 times the rated value. Under conditions of the model mismatch,
experimental waveforms of 𝑖𝑎, 𝑖𝑑 , 𝑖𝑞 , 𝜔𝑟 and FFT spectrum are as shown in Figs. 7(a)–7(e),
respectively.
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Fig. 7. Experimental waveform of three vector model predictive current control under the condition
of motor parameter mismatch

Comparing Fig. 6 and Fig. 7, it could be learned that when actual parameters of the motor
deviated further from the model parameters, 𝑑-axis and 𝑞-axis current fluctuations became more
intense, a-phase current distortion became more significant, and rotational speed fluctuation
slightly varied. In Fig. 6(e), the THD value of phase current is 0.43%, whereas in Fig. 7(e), the
value becomes 14.80%, with more harmonic components appearing near 5 kHz.

Figure 8 shows the results of the motor experiment conducted using the strategy proposed
herein under the same mismatch conditions as Fig. 7. It shows that the method could effectively
eliminate the impact of mismatched parameters on control performance, and mitigate the para-
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metric sensitivity of the MPCC method. The experimental waveforms of 𝑖𝑎, 𝑖𝑑 , 𝑖𝑞 and 𝜔𝑟 under
the proposed strategy are as shown in Figs. 8(a)–8(f), respectively.
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Fig. 8. Experimental waveform of three vector model predictive current control based on self-correcting
under the condition of motor parameter mismatch

It can be seen from Fig. 8 that, at a steady state, the observation method was able to effectively
perform its self-corrective functions in the predictive current control against the PMSM model
mismatch. Compared with the mismatch conditions, the corrected 𝑑-axis and 𝑞-axis currents
showed significantly smaller fluctuation, and the distortions of the a-phase current were also
ameliorated to some extent. Figure 8(e) shows the speed waveform during motor starting under
three working conditions. The speed step response is almost the same as a whole. Compared with
the mismatch, the speed curve is smoother under normal and corrected conditions. To vividly
depict the harmonic components of the a-phase current, Fig. 8(f) presents the FFT spectrum
analysis performed using the method herein. As can be seen from Fig. 8(f), the THD value of the
phase current sits at 2.07%, with harmonic components mainly distributed at 0∼5 kHz.
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Subsequently, the formulas of current fluctuation coefficients along the 𝑑-axis and 𝑞-axis were
defined as (36) and (37), respectively.

Δ𝑖𝑑 =

√√√
1
𝑁

𝑁∑︁
𝑛=1

(𝑖𝑑 (𝑛) − 𝑖𝑑_ave), (36)

Δ𝑖𝑞 =

√√√
1
𝑁

𝑁∑︁
𝑛=1

(𝑖𝑞 (𝑛) − 𝑖𝑞_ave), (37)

where: 𝑖𝑑_ave and 𝑖𝑞_ave represent the average of the sampled current of the 𝑑-axis and 𝑞-axis,
respectively; 𝑖𝑑 (𝑛) and 𝑖𝑞 (𝑛) are the sampled values of the 𝑑-axis and 𝑞-axis currents; 𝑁 is the
total number of the sample points.

Table 2 lists out the 𝑑-axis and 𝑞-axis current fluctuation coefficients from Figs. 6–8 as well
as the a-phase total harmonic distortion (THD).

Table 2. Current ripple and THD under three conditions of Condition 1

Condition 1 𝚫id 𝚫iq THD

Normal condition 0.1327 0.1201 0.43%

Mismatch condition 0.7660 0.7789 14.80%

Internal model control observer 0.4632 0.4050 2.07%

It can be seen from Table 2, that the observation method has effectively reduced the current
fluctuation coefficients and THD values under the mismatch condition.

Condition 2: The motor was initiated without any load and ran until the rotational speed
reached 500 r/min; at this point, the load torque was stepped from 0 N · m to 7 N · m. The
sampling was taken every 𝑇𝑠 = 50 μs.

Adopting the rated parameters with the traditional three-vector MPCC controlled motor
model, the resulting experimental waveforms of 𝑖𝑎, 𝑖𝑑 , 𝑖𝑞 , 𝜔𝑟 and the FFT spectrum are shown in
Figs. 9(a)–9(e), respectively.

The rotor flux linkage of the model was set to 1.1 times the rated value, the model stator
inductance to 2 times the rated value, and the model stator resistance to 0.5 times the rated value.
Incorporating the model mismatch, the resulting experimental waveforms of 𝑖𝑎, 𝑖𝑑 , 𝑖𝑞 , 𝜔𝑟 and the
FFT spectrum can be seen in Figs. 10(a)–10(e), respectively.

Comparing Fig. 9 and Fig. 10, while also making references to Figs. 6–7, it can be learned
that at low rotational speeds, the actual motor parameters deviated from the model parameters,
in which case the three-phase current waveform shows significantly greater harmonic distortion,
in addition to a significant increase in the 𝑑-axis and 𝑞-axis current fluctuations. The THD value
of the phase current also jumped from 0.41% to 16% in Fig. 9(e) and Fig. 10(e), showing the
presence of more harmonic components within a vicinity of 10 kHz.

Under the same mismatch conditions as Fig. 10, the results of the motor experiment conducted
using the proposed strategy are presented in Fig. 11. The corresponding experimental waveforms
of 𝑖𝑎, 𝑖𝑑 , 𝑖𝑞 and 𝜔𝑟 are shown in Figs. 11(a)–11(f), respectively.
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Fig. 9. Waveform of three vector model predictive current control under rated motor parameters

It can be observed from the figures that the proposed method still demonstrated its self-
correcting functions in the predictive current control against the model mismatch during the
speed regulating stage. Compared with the mismatch conditions, the corrected 𝑑-axis and 𝑞-axis
currents showed significantly smaller fluctuations, with the distortions of the a-phase current
also getting considerably lessened. Figure 11(e) shows the speed waveform during motor starting
under three working conditions. As can be seen from Fig. 11(e), the response curve fluctuates
slightly under mismatch, and the corrected speed step response curve is closer to the curve under
normal working conditions. To vividly show the harmonic components of the a-phase current, the
FFT spectrum analysis conducted using the proposed method is laid out in Fig. 11(f), showing
that the THD value of the phase current sits at 0.52%.

Table 3 enumerates the 𝑑-axis and 𝑞-axis current fluctuation coefficients from Figs. 9–11 as
well as the a-phase THD.

According to Table 3, both the current fluctuation coefficients and THD values under normal
conditions and corrected conditions are small relative to the mismatch conditions. This implies
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Fig. 10. Experimental waveform of three vector model predictive current control under the condition
of motor parameter mismatch

Table 3. Current ripple and THD under three conditions of Condition 2

Condition 2 𝚫id 𝚫iq THD

Normal condition 0.1333 0.1133 0.41%

Mismatch condition 0.8552 0.8176 16.00%

Internal model control observer 0.1327 0.1449 0.52%

that the observation method proposed herein has significantly reduced the current fluctuation
coefficients and THD values under the mismatch condition.
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Fig. 11. Experimental waveform of three vector model predictive current control based on self-correcting
under the condition of motor parameter mismatch

5. Conclusions

This paper introduces an IMC-observer-based method for motor model predictive current
control, whose main contributions and advantages can be summarized into the following four
aspects:

1. With regards to feasibility, IMC is not only convenient to design and easy to realize, but
also boasts a smaller online computational load.

2. In terms of robustness, the IMC-observer-based PMSM predictive current control strategy
features a self-corrective function, allowing it to improve the quality of system current
waveforms and system robustness under the model mismatch.

3. As for practicality, the IMC-observer-based PMSM predictive current control strategy is
applicable under different conditions. At various conditions, be it high and low speeds,
or in a steady state and speed regulating stage, the proposed strategy shows satisfactory
control performance.
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4. As far as control performance goes, the proposed strategy also shows better control perfor-
mance, in addition to improving the current fluctuation coefficient and THD value under
the mismatch condition.

Regardless of the above superiorities, the proposed IMC observer-based predictive control
countermeasure against the PMSM model mismatch also suffers from disturbance in estimation
accuracy, whose source of estimation errors has yet to be explored in greater depth in this paper.
With that said, analyzing the mechanism of how the estimation error is generated, and optimizing
the estimation of disturbance using intelligent algorithms shall become the topic in future works.
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